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AbstrACt

Spectral methods seek the solution to a differential equation in terms of series of known smooth function. The Chebyshev 
series possesses the exponential-convergence property regardless of the imposed boundary condition, and therefore is suited 
for the regional modeling. We propose a new domain-decomposed Chebyshev collocation method which facilitates an efficient 
parallel implementation. The boundary conditions for the individual sub-domains are exchanged through one grid interval 
overlapping. This approach is validated using the one dimensional advection equation and the inviscid Burgers’ equation. We 
further tested the vortex formation and propagation problems using two-dimensional nonlinear shallow water equations. The 
domain decomposition approach in general gave more accurate solutions compared to that of the single domain calculation. 
Moreover, our approach retains the exponential error convergence and conservation of mass and the quadratic quantities such 
as kinetic energy and enstrophy. The efficiency of our method is greater than one and increases with the number of processors, 
with the optimal speed up of 29 and efficiency 3.7 in 8 processors. Efficiency greater than one was obtained due to the reduc-
tion the degrees of freedom in each sub-domain that reduces the spectral operational count and also due to a larger time step 
allowed in the sub-domain method. The communication overhead begins to dominate when the number of processors further 
increases, but the method still results in an efficiency of 0.9 in 16 processors. As a result, the parallel domain-decomposition 
Chebyshev method may serve as an efficient alternative for atmospheric and oceanic modeling.
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1. INtrODuCtION

Advances in spectral transform methods (Orszag 1970) 
and Fast Fourier Transform (FFT) brought about success-
ful global atmospheric modeling using these methods (e.g., 
Bourke et al. 1977; Machenhauer 1979). Compared with fi-
nite difference and finite element (volume) methods, global 
spectral models with spherical harmonics can eliminate the 
singularity of poles and preserve high accuracy and effi-
ciency due to the “exponential convergence” property and 
the easy implementation of the semi-implicit method. The 
spectral methods also allow the discrete conservation of ki-
netic energy and enstrophy, which are important for two-
dimensional turbulence.

In addition to the popularity of spectral methods for 
global models, the modified Fourier method is often used 
in operational regional spectral models, such as the fore-
cast model at the Japan Meteorological Agency (Segami 
et al. 1989), US NCEP regional spectral model (Juang and 
Kanamitsu 1994; Juang 2000), and the HIgh-Resolution 
Limited-Area Model (HIRLAM) in Europe (Haugen and 
Machenhauer 1993). However, the exponential conver-
gence property in these models may reduce to algebraic 
convergence with O(N -3), which loses the major advantage 
of the Fourier method. Also, the basis functions used in 
the modified Fourier method need to be determined by the 
time-dependent boundary conditions and cannot be selected 
arbitrarily (Roache 1978; Kuo and Williams 1992; Adcock 
2009).
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Fulton and Schubert (1987a, b) proposed a Chebyshev 
spectral method for the limited area (regional) atmospheric 
modeling. The method successfully handles the time-depen-
dent boundary conditions while retaining the advantage of 
spectral method. The appeal of Chebyshev spectral meth-
ods in the regional atmospheric modeling is its efficiency 
and accuracy due to the fast transform, and the exponential 
convergence rate for the selected basis function. The con-
vergence rate of the Chebyshev method depends mainly on 
the smoothness of the expanded function, rather than the 
boundary conditions (Fulton and Schubert 1987a; Kuo and 
Williams 1992, 1998). Moreover, Chebyshev transforms 
can be implemented using FFT since they can be reduced 
to discrete cosine transforms (Fulton and Schubert 1987a; 
Kopriva 2009).

There are two types of projections for Chebyshev 
spectral modeling. In the tau approximation, the Chebyshev 
basis functions need not individually satisfy the boundary 
conditions; however, these boundary conditions are satis-
fied by the whole truncated series. The other is called col-
location projection, which requires the residual to vanish 
on the collocation points and the boundary conditions are 
implemented in physical space. Kuo and Schubert (1988) 
studied the stability of cloud-topped boundary layer with a 
Fourier-Chebyshev tau method based Boussinesq nonhy-
drostatic convective model. The method handles the strong 
gradients of temperature and moisture which are critical in 
boundary layer convection modeling.

The idea of maintaining the exponential convergence 
property with domain-decomposition for spectral meth-
ods was initiated by Patera (1984). Patera (1984) used the 
“Patched” method, in which each block spans a single in-
terface line between a pair of adjoin domains, to handle the 
domain interface. Kopriva (1986, 1989) further proposed 
another composite-grid approach which maps the hyper-
bolic equations in the complicated geometries to several 
squared sub-domains. The spectral method is performed 
within each domain. The advantages of domain-decompo-
sition for Chebyshev spectral method were discussed in Ko-
priva (1986, 1989) introduced both “patched” and “overset” 
methods for solving hyperbolic equations for complicated 
geometry. A decade later, Kopriva and Kolias (1996) de-
veloped a conservative staggered-grid Chebyshev multi-
domain method for compressible flows with patched grids. 
Kopriva (1996) found that within each sub-domain, the 
polynomial order can be determined independently regard-
less of its neighbors. The Chebyshev pseudospectral (collo-
cation) method with domain-decomposition is also applied 
to deal with viscous flow in order to reduce the Gibbs phe-
nomena over an entire domain (Yang and Shizgal 1994). 
These Chebyshev-type spectral approaches with domain-
decomposition problems such as hyperbolic equations (Ko-
priva 1986, 1989), viscous flow (Yang and Shizgal 1994), 
and compressible flow (Kopriva 1996; Kopriva and Kolias 

1996). However, none has directly applied to atmospheric 
modeling.

The spectral method with domain-decomposition can 
be regarded as a variation of “spectral element method” 
(Deville et al. 2002; Washington and Parkinson 2005; Clau-
dio et al. 2007). One of the typical spectral element meth-
ods is the discontinuous Galerkin method with Legendre 
polynomials (Iskandarani et al. 1995; Cockburn 2003; 
Ramachandran et al. 2005). The major advantage of the 
discontinuous Galerkin method is that much of the com-
putation is local to an element and the conservation prop-
erty is maintained. The Galerkin method is also suitable to 
simulate complex domain geometry. However, the compu-
tational cost is expensive due to the spectral element and 
its parallel implementation requires better load balance. The 
unique benefit of Chebyshev spectral method lies in its fast 
transformation (Fulton and Schubert 1987a; Kopriva 2009), 
which is readily available and efficient. The Chebyshev 
spectral method uses the non-uniform (Chebyshev) grids 
with finer resolution near the boundary. It should be noted 
that equidistant grid points do not guarantee uniform error 
distribution (Runge phenomenon; Hesthaven et al. 2007), 
while Chebyshev grids provide uniform error distribution 
(Fig. 2.3 in Conte and Boor 1980). In addition, the domain-
decomposition enhances the homogeneity of the fine resolu-
tion as the number of sub-domains increases, which provide 
more flexibility for further adaptive grid refinement. Thus, 
the domain-decomposition approach adds the Chebyshev 
spectral method to the list of spectral element methods.

The traditional domain-decomposition method for 
Chebyshev spectral modeling is the “Patched” method 
which overlaps one grid point on the boundary. The numeri-
cal flux is calculated from the left and right of the bound-
ary to implement the sub-domain boundary condition (Ko-
priva 2009). However, this process is complicated as (8.41) 
and (8.42) in Kopriva (2009). In this study, we follow the 
CReSS model (Tsuboki and Sakakibara 2002) method, 
which simply overlaps one-grid width, to exchange bound-
ary information along the sub-domain boundaries. The 1-D 
advection equation, inviscid Burgers’ equation, and the 2-D 
fully nonlinear shallow water equations are used to check 
the validity of this new approach.

The main objective of this study is to develop and im-
plement a new parallel Chebyshev collocation method with 
domain-decomposition which is suited for atmospheric and 
oceanic modeling. The multi-dimensional domain-decom-
position provides the most flexible combination and effec-
tive performance for the large-scale atmospheric and oce-
anic modeling. The spectral operation counts for derivative 
computation are even reduced for each sub-domain, which 
leads to a high speed up value. Following the suggestion 
of Fulton and Schubert (1987a), we have adopted the shal-
low water equations in advective form for better accuracy. 
Because the domain-decomposition is the most efficient 
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way in parallel computing to improve the computational 
efficiency, we employed Message Passing Interface (MPI) 
in this study. The multi-domain calculations are performed 
using different computing processes simultaneously, which 
reduces a significant amount of computing time and relieves 
the memory requirement for a large-scale system from the 
advantage of parallel computing (Smith et al. 1996; Shonk-
wiler and Lefton 2006).

This paper is organized as follows. Section 2 introduc-
es the Chebyshev collocation method. The parallel domain-
decomposed Chebyshev collocation method is proposed in 
section 3. Section 4 investigates the accuracy of the parallel 
domain-decomposed Chebyshev method using advection 
and inviscid Burgers’ equations. The characteristics are 
discussed in terms of the exponential convergence of error. 
Section 5 presents the application of vortex formation and 
propagation using the 2-D nonlinear shallow water equa-
tions. Finally, concluding remarks are given in section 6.

2. MethODs

Spectral methods seek solutions in terms of a series of 
known basis functions. The essence of choosing basis func-
tions is based on the property of “completeness.” Namely, 
the solution can be represented by a set of functions. Practi-
cal consideration of the basis functions for spectral methods 
is orthogonality and efficient calculation of their projection 
or inner product. The “orthogonality” of basis functions for 
spectral methods is practically important in the computation 
since the coefficients are independent.

Consider the Sturm-Liouville equation in the limited 
domain [a, b],

L x p x x q x x w x x{ { { m {= - + =l l^ ^ ^ ^ ^ ^ ^h h h h h h h6 @      (1)

where L is a linear operator involving space derivatives, 
with determined functions p(x), q(x), and w(x) . The prime 
represents the differentiation with respect to x. Equation (1) 
has infinite and countable sets of solutions x

n 0
{ 3

=^ h , corre-
sponding to their eigenvalues n 0m

3
= . Therefore, any smooth 

function u(x) can be expanded by the basis n n 0{ 3

=" ,  with ap-
propriate coefficients as

        
u x u xn n n0 {= 3

= t^ ^h h/         (2)

where
        

,u un n w
{=t ^ h          (3)

To estimate the magnitude of unt , we substitute n{  in un =t
,u n w
{^ h  from Eq. (1) and implement the integration by parts 

twice:

, , ,u u w L B u vn n n n n n ww

1 1 1m { m { {= = +- - -t ^ ^ ^h h h6 @      (4)

where ,B u xp x u x u x xn n n x a
x b{ { {= - =

=l l^ ^ ^ ^ ^ ^h h h h h h6 @  and v 
= w-1 Lu.

The Chebyshev polynomials are the solutions of 
Chebyshev differential equation which is a special case of 
the Sturm-Liouville equation with p(x) = (1 - x2)1/2, q(x) = 
0 and w(x) = (1 - x2)-1/2. Taking the case having the domain 
[-1,1] and p(-1) = p(1) = 0, which means B(u, n{ ) equals 
to 0 no matter what bounded function u is, we can perform 
integration by parts for the ,vn n w

1m {- ^ h6 @ term repeatedly 
as long as the function is smooth enough after each inte-
gration. Since the (v, n{ )w term is bounded regardless of n 
and the asymptotic behavior of eigenvalues λn = O(n2) and 
eigenvectors x O 1n{ =^ ^h h, x O nn{ =l^ ^h h as n " 3, we 
get u <nt  O(n -m) if u is m times differentiable (Courant and 
Hilbert 1953). This indicates the exponential convergence 
by definition, i.e., the convergence rate of Chebyshev series 
only depends on the smoothness of the expanded function 
regardless of the boundaries. A thorough description of the 
Chebyshev spectral method is given in Fulton and Schu-
bert (1987a, b). If a function is expanded by the truncated 
Chebyshev series Tn(x)

x T xn
N

n n0} }= =
t^ ^h h/         (5)

we can obtain the spectral coefficients n}
t  by the relation

, , , , ...c T n2 0 1n
n

n}
r
}= =t ^ h        (6)

where cn = 2 when n = 0, and cn = 1 when n > 0. Equa-
tions (5) and (6) can be calculated efficiently by the Fast 
Chebyshev Transform. Similar to the Fast Fourier Trans-
form, the Fast Chebyshev Transform reduces the N degree 
of freedom transformation to O(N log N) operations instead 
of O(N2) (Fulton and Schubert 1987a; Kopriva 2009). This 
advantage favors its potential application in large-scale at-
mospheric modeling. Note that Chebyshev spectral method 
is known as the best method to reduce the point-wise error 
compared to other polynomial projection methods. It can 
also eliminate the wild oscillations near the boundary, so 
called Runge phenomena (i.e., Hesthaven et al. 2007).

3. the PArAllel DOMAIN-DeCOMPOsItION 
APPrOACh

The development of a parallel domain-decomposi-
tion approach for Chebyshev collocation method is novel 
in atmospheric and oceanic modeling. The computational 
saving is significant not only due to the distributed com-
puting for each domain, but also due to the relaxation for 
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time constraint (i.e., allowing larger Δt), as mentioned in 
Kopriva (1986). For a limited domain with a specified de-
gree of freedom N, the time step Δt is mainly constrained by 
the Courant-Friedrichs-Lewy (CFL) criteria. For the non-
uniform Chebyshev grid, the minimal Δx is proportional to  
L/N2, where L is the length of the domain, N is the degrees 
of freedom. Assuming Δts and Δtm are the ideal time steps 
for certain numerical methods in a single domain and m 
domain-decomposed sub-domains, respectively, the propor-
tionality of time step to the minimal Δx leads to

t N
L

s 2\D          (7)

and, similarly,

t N m
L m

m N
L

m 22\D =^ h         (8)

where L/m is the length of each sub-domain and the minimal 
Δx in sub-domains is proportional to 1 / (N/m)2 (each sub-
domain includes only N/m Chebyshev grids). This implies 
that an m time larger time step can be used when several 
sub-domains are employed. Ideally, this should result in an 
m2 speed-up in the distributed platform if no communication 
cost is taken into account. Apparently, the main advantage 
of domain-decomposition also favors the use of Chebyshev 
method.

Minimal communication between sub-domains is re-
quired for an efficient atmospheric or oceanic model. Fol-
lowing the grid arrangement of the CReSS model (Tsuboki 
and Sakakibara 2002), a one-grid width overlapped bound-
aries is used here for the data exchange between sub-do-
mains. Figure 1 shows the (a) one-dimensional and (b) 
two-dimensional schematic diagrams for the data exchange 
along the overlapped boundaries. Note that the grids setting 
match well at the overlapped boundaries. Assuming xMN  to 
be the N th Chebyshev collocation point at M th sub-domain, 
we assign the data value u xMNa^ h to u x M 1 N+^ ^ hh  and assign 
u x M 1 N Na+ -^ ^ ^ hh h  to u xM0^ h, respectively. The length of each 
sub-domain is

cosL N N N N
L

1 2 1 1a
D D ar

= - - -^ ^ ^h h h6 @       (9)

where L is the length of the whole domain, Na + 1 is the num-
ber of overlapped grids between sub-domains with Na ≥ 1,  
ND is the number of sub-domains, and N is the degrees of 
freedom of each sub-domain.

4. test PrObleMs

In order to show the accuracy and convergence of the 

new domain-decomposed Chebyshev approach, we first 
consider the 1-D linear advection equation in the domain 
[-1, 1]
  
      

t
u

x
u 0

2
2

2
2+ =        (10)

The initial and boundary conditions are given by the analyti-
cal solution

, expu x t A h
x x t0

2

= - - -^ `h j8 B     (11)

where h = 0.2, x0 = -0.5 and A = h-1/2 (π / 2) -1/4 are selected as 
in Fulton and Schubert (1987a). The fourth-order Runge-
Kutta method is used for the time integration scheme. Here, 
we also compare our results with the fourth-order finite dif-
ference scheme (FD4).

Figure 2 compares the analytical solution and the nu-
merical approximation by Chebyshev collocation method 
and FD4 at time t = 1.0 The domain is divided into two sub-
domains with one grid width overlapping, e.g., two over-
lapped grids, as shown in Fig. 1a. The degrees of freedom 

Fig. 1. Schematic representation of (a) one-dimensional and (b) two-
dimensional domain-decomposition and the communication strategy 
for parallel computations using MPI. The blue shadings represent the 
overlapped areas (after Tsuboki and Sakakibara 2002).

(a)

(b)
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of each sub-domain is now 12. Figure 2a shows that the ap-
proximation of Chebyshev collocation method with domain-
decomposition is almost identical to the analytical solution 
in 1-D advection problem without numerical dispersion. 
Figure 2b further shows the L2 error of the numerical re-
sults of Chebyshev collocation method with single domain, 
double domain, and FD4 method with analytical solution at 
t = 1.0. As expected, the absolute accuracy is slightly higher 
in the single domain than the double domains since the ad-
vected Gaussian function is centered at x = 0.5, where the 
double domains have coarser resolution. However, the error 
convergence in the spectral solutions are uniformly decreas-
ing on the order of 10 (-N/4) as N approaches 64, while the 
error in FD4 decreases on the order of N. The exponential 
convergence of the spectral method remains regardless of 
the number of domains. Instead of reproducing the identical 
result as single domain, the Chebyshev domain decomposi-
tion approach shows the numerical convergence (converg-
ing to the true solution) when we refine the resolution.

Next, we consider the inviscid Burgers’ equation in the 
limited domain [-1, 1]

t
u u x u

x 0
2
2

2
2+ =^ h       (12)

with the initial condition , tanu x u x x0 1
0= - --^ ^h h. The 

boundary conditions are given by the general solution of  
Eq. (12). Thus, the analytical solution gives

tanu u x ut x1
0= - - -- ^ h      (13)

Furthermore, the time of scale-collapse can be obtained by 

differentiating Eq. (13) with respect to x

x
u

x x ut
t u x

1
1

0
22

2 2 2
= - + - -

-
^
^

h
h

 
Assuming x x ut0= +  and uu = , this gives

x
u t x

u1
x x ut x x ut0 02

2
2
2= - -

= + = +
` `j j; E     (14)

and then

x
u

t t1
1 1as

x x ut0

" "
2
2 3= - -

= +
` j      (15)

Thus, the time of scale-collapse of u is 1 with the position 
of scale-collapse at x u0 + . Given the appropriate u  and 
x0, the analytical solution of Eq. (12) at certain x and t can 
be obtained numerically for desired accuracy. The fourth-
order Runge-Kutta method is used for the time integration 
scheme. Figure 3a shows the numerical results compared 
with the analytical solution for the case .u 0 5=  and x0 = 
0 (the scale-collapse occurs at x0 = 0). The general pattern 
can be obtained by the numerical solution with only 32 de-
grees of freedom. Figure 3c shows the corresponding er-
ror distribution in the physical space. Note that the error in 
double domains is larger than that in single domain since 
the scale collapse (sharp front) is located near coarser col-
located points. On the other hand, for another case .u 0 5=  
and x0 = -0.5, the scale collapse occurs near the center of the 
simulation domain (Fig. 3b), better results are achieved for 

Fig. 2. (a) Comparison between the analytical solution (exact) and numerical results for the linear advection equation. Label “D” represents the 
Chebyshev collocation method with double domains. The result with the fourth-order finite difference scheme (FD4) is also superimposed. (b) The 
L2 error for FD4 and Chebyshev collocation method using single domain (S) and double domain (D), respectively.

(a) (b)
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double domains since the single domain has coarser collo-
cated points there, as expected.

Figure 4 shows the convergence rates for the case of x0 
= 0 and .u 0 5= . The time scale T shows the duration from 
the integration. Since the scale-collapse time of u is 1, the 
worst convergence rates should occur as the time approach-
ing to T = 1. The black lines indicate different reference 
slopes on the log plot (mn: log y = nN/24). The convergence 
rates for the case with double domains are consistently bet-
ter than the results for the case with a single domain since 
the case with double domains has a higher resolution near 
the central area. This confirms that the magnitude of error is 
determined by the density of collocated grids if the function 
has a sharp gradient there. For the general smooth function, 
the local error may not directly relate to the grid resolution. 
Different combinations of domain-decomposition should 
provide enough flexibility for adaptive grid refinement and 
better resolution when needed.

5. 2-D NONlINeAr shAllOw wAter MODel

Since the set of primitive equations for the atmosphere 

could be projected on the vertical normal mode based on 
the normal mode analysis, solving the atmospheric primi-
tive equations is equivalent to solving the set of shallow 
water equations (Fulton and Schubert 1985). Therefore, we 
use the vortex formation and propagation problem based on 
shallow water equations in a limited-area (Fulton and Schu-
bert 1987b) to show the advantage of our new approach. We 
use the collocation method (rather than tau method) due to 
the ease of implementation using the domain-decomposition 
approach. The 2D nonlinear shallow water equations are

t
u u u v y

u fv x
h

x 0
2
2

2
2

2
2

2
2+ + - + =

0t
v u x

v v y
v fu y

h
2
2

2
2

2
2

2
2+ + + + =

Q= , ,t
h u x

h v y
h h h x

u
y
v x y t

2
2

2
2

2
2

2
2

2
2+ + + + +^ c ^h m h    (16)

where u and v are the velocity components along x and y 
directions, respectively, f is the Coriolis parameter, Q(x, y, 
t) is the time varying outer forcing, h  is the basic state of 

Fig. 3. Analytical solution and numerical results in single domain and double domains for inviscid Burgers’ equation with (a) x0 = 0 and .u 0 5=  
and (b) x0 = -0.5 and .u 0 5= , respectively. The error distribution in the physical space for (c) x0 = 0 and .u 0 5=  and (d) x0 = -0.5 and .u 0 5= , 
respectively.

(a) (b)

(c) (d)
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geopotential, and h is the total height deviation from the ba-
sic state .h

We consider the 2-D shallow water equation on the 
β-plane (f = f0 + βy, where f0 and β are both constants) with 
gh c2=  is 2500 m2 s-2. The domain has the size [xa, xb] × 
[ya, yb] = [-2000 km, 2000 km] × [-2000 km, 2000 km]. 
The center y = 0 located at 30°N [ /sinf 2 60 rX= ^ h and b = 

/ /cosR2 6rX^ ^h h, where X  is the earth rotating rate and R 
is the radius of earth]. An additional forcing term, Q(x, y, t), 
is added to simulate the 2-D vortex dynamics, such as the 
existence of an idealized hurricane:

, ,Q x y t x
x x

y
y y4 c c t t

0
0

2

0

2
2
0
3 2 0= - - - - - -expq t t e^ ` ch j m; E    (17)

where q0 = 6250 m2 s-2, t0 = 21600 s, e-folding width x0 = y0 = 
200 km and centered at (xc, yc) = (1000 km, -1000 km). Note 
that the maximum Q(x, y, t) occurs when t = t0. The initial 
condition is then given as

, , 0 , , ,cosu x y U y y
y y v x y 0 0
b a

a
r=- -

- =^ c ^h m h    (18)

where U = 7.5 m s-1. The Q-forcing causes the vortex to vary 
with time and is advected away from the original location. 

We make h in geostrophic balance on the β-plane, i.e.,

, ,y
h x y f y0 0
2
2

b= - + u^ ^h h       (19)

If we set Q(x, y, t) = 0 and Eq. (19) is held for h, the 
system is in geostrophic balance state on a β-plane continu-
ously. The periodic boundary condition is used along x di-
rection. The wall boundary condition is then applied along 
the other direction at y = ya and y = yb, i.e., v = 0 at y = ya 

and y = yb.
In our simulation, the vortex formation by Q-forcing 

is located at (1000 km, -1000 km). All model settings are 
identical to that in Fulton and Schubert (1987b). The vortex 
drifts from the easterly background flow to the westerly and 
recurved due to the β effects and the surrounding vorticity 
gradient.

The Chebyshev collocation method is used to calculate 
all derivatives and the fourth-order Runge-Kutta method is 
used for the time integration. For the domain-decomposi-
tion experiments, we exchange the data along x direction 
initially, followed by y direction. The simulation results 
(Fig. 5) are interpolated on regular grid points via Cheby-
shev interpolation. Figure 5 shows the resulting geopoten-
tial field h/c (shown as contours) on 72, 144, and 216 hours, 

Fig. 4. Convergence rate of the inviscid Burgers’ equation with a single domain and double domains, respectively. The scale-collapse occurs at x =  
0 with .u 0 5= . The convergence gets worse when T is increasing, as expected. Label S represents a single domain case, and label D represents 
double domains case. The black lines indicate different reference slopes on the log plot (mn: log y = nN/24).
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respectively. These results agree well with those in Fulton 
and Schubert (1987b), and there is almost no difference be-
tween single domain, domain-decomposed 2 × 2 domains 
(DD 2 × 2), and domain-decomposed 4 × 4 domains (DD 
4 × 4) simulations. The vortex propagates smoothly across 
the sub-domain boundaries without noticeable oscillations. 
Figure 6 shows further analysis of the axisymmetric veloc-
ity and vorticity on 72 and 216 hours later, respectively. All 
results are almost identical within the rounding error.

To analyze the convergence rate, we use the single do-
main calculation with degree of freedom N = 192 as the ref-
erence state. Figure 7 compares L2 error between the case us-

ing a single domain and the case using double sub-domains, 
respectively (degrees of freedom is N = 192 for both cases). 
Only the results of day 2 (48 hours) and day 4 (96 hours) 
are shown for generality. The accuracy of the domain-de-
composed case is slightly less than the single domain re-
sults due to the difference in the non-uniform grid spacing. 
Most importantly, these results confirm that the exponential 
convergence holds regardless of the number of sub-domains 
(convergence order of 10-4 in these calculations).

The parallel performance for the 2-D shallow water 
equations model are summarized in Table 1 with the speed-
up defined as SU = T1/Tp, and the efficiency SU/n; T1 and Tp 

Fig. 5. The geopotential field h/c for shallow water model with single domain, DD 2 × 2, and DD 4 × 4 on 72, 144, and 216 hours later, respec-
tively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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are the CPU time for single domain and p sub-domains with 
domain-decomposition, respectively, and n is the number of 
Message Passing Interface (MPI) tasks. The benchmark test 
is performed on a Linux cluster, in which each computing 
node has two quad-cores processors. The communication is 
based on the infiniband connection. Note that the efficiency 
is greater than 1 and increases with the increasing number 
of MPI tasks for the number of MPI tasks ≤ 8. This leads to 
a major advantage of the domain-decomposed Chebyshev 
method. Note that it requires O(N2) operations to take de-
rivatives on N degrees of freedom for the typical Cheby-
shev collocation method (using a 1-D calculation as an ex-
ample). For each sub-domain, the degrees of freedom can 
be reduced to N/m, where m is the number of sub-domains. 
This leads to O(N2/m2) operations simultaneously for each 
sub-domain and increases the efficiency for a small number 
of MPI tasks. The communication overhead begins to domi-
nate when the number of MPI tasks further increases (e.g.,  

Fig. 6. The comparison of axisymmetric velocity (a, b) and vorticity (c, d) of the vortex with single domain, DD 2 × 2, and DD 4 × 4 on Day 3 and 
Day 9, respectively.

n = 16). This mainly results from more data exchange across 
the computing nodes.

Table 2 shows the conservation of mass, kinetic en-
ergy, and enstrophy in the whole domain after day 3, 6 and 
9, respectively, based on the case of DD 4 × 4 over a single 
domain. The results suggest that the conservation of the first 
and second moments is reasonably retained using the new 
domain decomposition approach.

Some weak oscillations are observed in the geopoten-
tial field (h/c) in all simulations as noted in Fulton and Schu-
bert (1987b). Because this results from the energy cascade to 
unresolved scales and non-exact boundary conditions, sim-
ply increasing model resolution will not completely elimi-
nate the oscillations. Using a small amount of dissipation 
is one alternative to represent the energy cascade process 
and reduce the effects from the non-exact boundary data. 
In Fulton and Schubert (1987b) and in our single domain 
simulation, Chebyshev models could run well without any 

(a) (b)

(c) (d)
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dissipation. This property still holds for the domain-decom-
position simulations.

It should be pointed out that the method used here 
cannot achieve the “reproducibility” of parallel computing 
(i.e., Juang et al. 2007). Due to the irregular grid points, the 
Chebyshev method will not achieve identical results for par-
allel domain-decomposition computation (Kopriva 1986, 
1989, 1996; Kopriva and Kolias 1996). However, the ma-
jor concern of spectral method is the “exponential conver-
gence” (converging to the true solution exponentially) when 
we refine the resolution. The parallel reproducibility may 
not be that relevant. The approach we have demonstrated 
in this study takes the advantage of both parallel algorithm 
and grid rearrangement. Our results (Figs. 2b and 7) suggest 
the property of exponential convergence even with the sub-
domain approach with the spectral method.

6. CONCluDINg reMArks

The choice of numerical method is often governed 
by the considerations of accuracy and efficiency. Spectral 
methods have been extensively used in the atmospheric 
modeling community. Spectral methods seek the solution to 
a differential equation in terms of series of known smooth 
functions. The exponential convergent property and the fast 
transformation calculations are the practical considerations 
of these methods.

The Chebyshev spectral method uses fast transforma-
tion calculations and possesses the exponential-convergence 
property regardless of the imposed boundary condition, thus 
is suited for regional modeling. We propose a new domain-
decomposed Chebyshev collocation method which facili-
tates an efficient parallel implementation. Similar to the 
CReSS model approach, our sub-domain is connected with 
one grid width overlapping. Owing to the unique property of 
Chebyshev grids arrangement and the CFL relation between 
Δx and Δt , the constraint of Δt with the Chebyshev method 
in a single domain can be further relaxed in the domain-
decomposition approach.

Using the new domain decomposed Chebyshev collo-
cation method, we show that the exponential convergence 
in a 1-D linear advection benchmark problem. In a more 
strict test of inviscid Burgers’ equation, the model can be 
integrated successfully until the shock formation. We show 
that the domain-decomposition approach in general yields 
accuracy comparable to that of the single domain calcula-
tion and still holds the exponential convergence property.

In a more realistic atmospheric modeling with a 2-D 
nonlinear shallow water model, the domain-decomposed 
Chebyshev method results also compare favorably to the 
single domain spectral method results with an L2 error with 
respect to a very high resolution model run on the order of 
10-4. The domain-decomposition also reduces the spectral 
operation counts for each sub-domain and increases the al-

Fig. 7. The L2 error between the case using a single domain and the 
case using double sub-domains, respectively (degrees of freedom is N 
= 192 for both cases). Label S represents the case using single domain, 
and label D represents the case using double domains.

Table 1. Comparison of computational time, speed-up, and efficiency 
for different numbers of MPI task in 2-D nonlinear shallow water sim-
ulation (degrees of freedom N = 192).

Table 2. Conservation property of mass, kinetic energy, and enstrophy 
after day 3, 6 and 9.

Number of  
Processors

time  
(seconds) speed-up efficiency

1 552.59 1 1

4 89.80 6.15 1.54

8 18.76 29.44 3.68

16 39.97 13.83 0.86

Mass kinetic energy enstrophy

72 hours 99.99% 100.00% 99.94%

144 hours 100.00% 99.92% 99.72%

216 hours 99.99% 99.99% 97.32%

lowed time step in integration, which provides a high speed 
up value such as 29.4 and higher than one efficiency such 
as 3.7 when 8 processors are used. The communication 
overhead begins to dominate when the number of processor 
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further increases, but the method is still efficient (0.9 with 
16 processors). We have also examined the time-splitting 
method (Wicker and Skamarock 2002) in our 2D shallow 
water model. Since two-thirds of the derivative terms in 
(16) need to be calculated in the small gravity wave time 
step, the time-splitting method is not efficient in this case, 
and the additional complication may introduce more model 
instability.

Our approach is in general agreement with the ap-
proach of the spectral element method. With the flexible 
domain arrangement, it is possible to allocate high resolu-
tion sub-domains to achieve the exponential convergence of 
the solution. As noted by Patera (1984), the spectral element 
method expands the generality of the finite element method 
with higher spectral accuracy. Compared with highly local-
ized methods, such as finite difference methods and finite 
volume methods, the spectral element method reduces the 
data exchange across the sub-domain boundary. With these 
advantages of efficiency, our sub-domain Chebyshev spec-
tral method may be useful. Additional work is required to 
substantiate these advantages for regional atmospheric and 
oceanic modeling.
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