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ABSTRACT

We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated
with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with
those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear
regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions
in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and
the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation
coefficient and RMS of our retrievals are 0.95 and ~2 mm hr', respectively. In particular, at heavy rain rates, our Bayesian
retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves
surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve

forecast and prevent potential damages in Taiwan during typhoon seasons.
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1. INTRODUCTION

Precipitation measurements are an essential component
for understanding the variability and feedback of surface-
atmospheric processes in water and energy cycles (McCabe
et al. 2008). Assimilations of precipitation also demon-
strated significant improvement in regional and climate mo-
deling (Treadon 1996; Hou et al. 2001; Krishnamurti et al.
2001; Hou et al. 2004; Atlas et al. 2005). Global precipita-
tion is observed from various platforms, including rain gau-
ges, surface radars, and spaceborne visible, infrared, micro-
wave, and radar sensors (Nesbitt et al. 2004). Among them,
satellite microwave observations are now widely used to re-
trieve surface rainfall because of their ability to penetrate
clouds (Adler et al. 2001).
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The Tropical Rainfall Measuring Mission (TRMM) sa-
tellite, launched in 1997, has successfully provided passive
microwave as well as active radar observations in the tro-
pics. The TRMM Microwave Imager (TMI) measures dual
polarizations at frequencies ranging from 10 to 85 GHz,
while the Precipitation Radar (PR) is operated at 13.8 GHz
(Kummerow et al. 1998). Tremendous efforts were made in
both development and validation of retrieval methods from
TMI and PR data (Benedetti et al. 2005).

A number of rain rate (RR) retrieval methods were de-
veloped based on the Bayes’ theorem methods (Evans et al.
1995; Olson et al. 1996; Marzano et al. 2002; Di Michele et
al. 2005; Chiu and Petty 2006; Grecu and Olson 2006; Olson
etal. 2006). The theorem describes that for a given set of ob-
servations the posterior probability density function (PDF)
of parameters to be retrieved can be computed from the pro-
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duct of the conditional and the prior PDF, as shown in the
following formula:

J(R[P)ec f(P[R) f(R) (1

In this formula, R is the RR to be retrieved, and P repre-
sents passive microwave observations. /(R | P) is the po-
sterior PDF describing RR probability at given observa-
tions. f(P | R) is the conditional PDF that defines the de-
pendency of observations on RR, and f(R) is our prior know-
ledge of RR. This formula provides a theoretical frame-
work that optimally combines prior knowledge with new
evidence (e.g., observations).

The Bayes’ theorem has been applied to retrieval met-
hods in different ways. First, training databases are differ-
ent. One can characterize the prior and conditional PDFs us-
ing cloud-radiative simulations or match-up datasets. The
advantage of the use of simulations is the ability to retrieve
hydrometeor vertical profiles of rain clouds. However, re-
trieval performance strongly relies on the representativeness
and variety of model simulations (Kummerow et al. 2000;
Masunaga et al. 2002). On the other hand, match-up datasets
could include calibrated RR measurements, and thus retri-
evals are not affected by simulation accuracy. However,
large samples are typically required to meet statistical signif-
icance. Second, approaches to construct probability density
functions are different. One can retrieve precipitation prop-
erties by either selecting cloud profiles in which simulated
microwave signatures are closed to observations, or using
explicit functions to fully describe the prior and conditional
PDFs. The use of explicit functions makes it possible to de-
rive the complete posterior PDF of RR, which is important
for assimilation purposes.

Validating retrieved RR over the ocean can be difficult.
Up to now, validations are often conducted against retrievals
either from PR or from other TMI algorithms. However, a
number of studies demonstrated that RRs from PR standard
products were systematically lower than measurements from
buoy rain gauges (Serra and McPhaden 2003; Bowman 2005;
DeMoss and Bowman 2007). As a result, intercomparison
with other retrievals only ascertains whether the algorithm
performance is comparable with others. Direct measurements
from rain gauges are still needed in retrieval validation.

This paper demonstrates a new Bayesian approach for
RR retrievals from TMI observations, with an emphasis on
typhoon cases in the West Pacific. Note that most algorithms
aim to provide unbiased global precipitation estimates, and
thus various types of precipitation systems in different cli-
mate regimes are included to ensure the representativeness
of training databases. However, this type of algorithms might
not work well for heavy rain events. For examples, com-
parison between version 5 TMI standard retrieval product
(2A12) and buoy rain gauge readings showed that the high
bias of TMI increased with increasing RRs (Nesbitt et al.

2004). Because the ultimate goal of this study is to improve
predictions of typhoon tracks and landfall in the surrounding
area of Taiwan, we develop a new method to accurately esti-
mate surface rainfall particularly for typhoons.

As previously mentioned, ideally, oceanic RR retrievals
should be validated against buoy rain gauge data. Unfortu-
nately, there is no buoy rain gauge network around Taiwan.
Therefore, we evaluate our retrievals mainly against rain
gauges located on Japanese islands in the West Pacific. We
are aware that data from rain gauges on islands might be
affected by local topography and land surface heating. To
minimize those effects, we carefully selected rain gauges
and examined precipitation homogeneity with TRMM vi-
sible and infrared observations.

This paper is organized as follows. In section 2, we
briefly review key features of TMI and PR, as well as the
physical relationship between microwave observations and
RR. In section 3, we detail the basis of our retrieval method,
including cloud-radiative simulations used to construct ex-
plicit functions of the conditional PDFs. In section 4, we val-
idate retrieval against rain gauge data and retrievals from
two other benchmark algorithms. Conclusions are given in
section 5.

2. SATELLITE OBSERVATIONS
2.1 TRMM/Microwave Imager (TMI)

The TRMM satellite was launched in 1997 and posi-
tioned in an orbit of 350 km. To extend TRMM’s mission
life, the operating orbit was boosted to 403 km in August
2001. The TMI scans the earth conically with a swath of
760 km (pre-boost) and 878 km (post-boost). The incident
angle is about 52.8°. The TMI measures dual-polarized
brightness temperatures (TBs) at 10.65, 19.35, 37.0, and
85.5 GHz, except 21.3 GHz with vertical polarization only.
The field-of-view (FOV) of TMI depends on frequencies,
and is slightly larger in the post-boost period than in the pre-
boost period. For the purpose of development and validation
of our retrieval method, brightness temperatures (version 6)
for all channels are interpolated to 10 x 10 km grid points.
After interpolations, the vertically polarized TBs for the
aforementioned TMI channels are denoted as TBgy, TBov,
TB,1v, TB37v, and TBgsy, and replaced the V with H for hori-
zontal polarizations. Detailed descriptions of TMI can be
found in Kummerow et al. (1998).

To illustrate characteristics of microwave observation,
we simulated the response of microwave signatures to RR
using the TMI channels. Similar to results in Petty (2001) for
SSM/I channels, our simulations (Fig. 1a) show non-linear,
non-monotonic relationships between microwave brightness
temperature and RR. At lighter RRs, TB increases with RR
due to emission. In contrast, at higher RRs, TB decreases
with RR due to scattering. The depression in TB due to scat-
tering is more substantial at higher frequencies. In addition,
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Fig. 1. (a) Idealized TBs versus surface rain rate over ocean, and (b) the relationship between corresponding attenuation P index and rain rate for TMI

channels of 10.65, 19.35, 37.0, and 85.0 GHz.

due to the non-polarized emission of rain clouds, polariza-
tion difference becomes smaller with increasing RR. Note
that simulations in Fig. 1 were based on a simple rain cloud,
similar to Wilheit etal. (1977). Simulated brightness temper-
atures could vary significantly with many factors, including
sea surface temperature, surface wind speed, water vapor, as
well as the assumed density, size distribution, and vertical
distribution of hydrometeors.

Because microwave brightness temperature shows non-
monotonic dependency on RR, Petty (1994) proposed an at-
tenuation index (P) as the observed variable to reduce re-
trieval ambiguity. The P index is defined as:

T, - T
P o= @)
T - Th,o

V,0

where T, and T, are vertically and horizontally polarized
TB; T,, and T}, are the TBs in the clear sky (i.e., back-
ground brightness temperatures). For simulations, back-
ground brightness temperatures can be calculated by sim-
ply setting all hydrometeors to be zero. For real-world ap-
plications, brightness temperatures can be modeled using
empirical regression equations that account for column wa-
ter vapor, surface wind speed, and sea surface temperature
(Chiu and Petty 20006).

Ideally, P will be in the range between 0 and 1, where 1
corresponds to a cloud-free situation, and values approach-
ing 0 correspond to a very opaque atmospheric condition as-
sociated with heavy precipitation. The attenuation index Pis
favorable over direct brightness temperature because P is
not sensitive to the background variability, and has a mo-

notonic dependency on RR. This monotonic relationship be-
tween P and RR is shown in Fig. 1b, corresponding to the
same precipitation system used in Fig. la. Figure 1b also
shows that the attenuation indices approach 0 (i.c., satu-
rated) at smaller RR for higher frequencies. For example, the
attenuation index at 85 GHz is saturated at 1 mm hr'l, while
the attenuation index at 10.65 GHz is not saturated until
around 30 mm hr”'. Because this paper focuses on typhoons
that are typically associated with heavy RR, P at 85 GHz
cannot provide enough information on RR in these environ-
ments. Therefore, only three attenuation indices at 10.65,
19.35, and 37.0 GHz are used as observation variables and
denoted as a P vector, (P, P19, P37) in this study.

2.2 TRMM/Precipitation Radar (PR)

The TRMMY/PR is an electronic scanning radar operated
at 13.8 GHz, measuring 3D precipitation distributions over
both land and ocean surfaces (Kummerow et al. 1998). The
PR scans 17° to either side of nadir at an interval of 0.35°,
giving a swath width of 215 km (pre-boost) and 247 km
(post-boost). The horizontal footprint at nadir is from 4.3 km
(pre-boost) to 5 km (post-boost), and the vertical resolution
is 250 m. The minimum detectable threshold of PR reflec-
tivity is about 17 dBZ without attenuation, corresponding to
a rain rate of 0.5 - 0.7 mm hr’'. The TRMM/PR standard
product (2A25) contains vertical profiles of RR retrieved
through the Z-R relations (Iguchi et al. 2000). In this study,
we used near-surface RRs in 2A25 and interpolated them to
10 x 10 km grid points in order to match TMI data. For con-
venience, the interpolated near-surface RR is referred as PR
RR hereafter. Note that according to Demoss and Bowman
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(2007), PR-retrieved RR has a low bias relative to rain gauge
data, but the change in bias from pre- to post-boost period is
not significant.

3. RETRIEVAL ALGORITHM

As previously mentioned, the posterior RR distribution
is determined by the prior RR PDF and the conditional PDF
that describes physical relationships between RR and ob-
served variables. We referred to this physical relationship as
the RR-P relationship hereafter, because our retrieval met-
hod use P index as the observed variable. To characterize the
prior PDF, it is important to have calibrated RR measure-
ments and a significant amount of data. Therefore, we used
PR data to specify the prior RR distribution. For the condi-
tional PDF, the RR-P relationship can be specified by two
approaches. One is to derive the relationship from PR-TMI
match-up data; the other is from model simulations. We at-
tempted to match PR and TMI data for typhoon cases, but
found that the sample size was small. As a result, we speci-
fied our conditional PDF using simulations from the God-
dard Cumulus Ensemble (GCE) model (Tao and Simpson
1989, 1993; Tao et al. 2003) and a 3D fast radiative transfer
model (Liu 1998, 2004). Details in model simulations are
given next.

3.1 Simulations from Cloud-Resolving and Radiative
Transfer Models

We used the GCE model to generate 5-day simulations
for the Kwajalein Experiment (KWAJEX) field campaign
during 7 - 12 August 1999. The equations that govern the
cloud-scale motion (wind) in the GCE model are elastic. The
cloud microphysics parameterization is based on a 5-cate-
gory scheme, including cloud water, cloud ice, rain, snow
and graupel (Lin et al. 1983; Rutledge and Hobbs 1984).
Drop size distributions for rain, snow, and graupel followed
the Marshall-Palmer distribution (Marshall and Palmer
1948). The densities for snow and graupel were assumed 0.1
and 0.4 g cm™, respectively. The horizontal domain was 512
x 512 km with a horizontal grid resolution of 2 km. The ver-
tical domain contained 32 layers with a varying resolution
from 143 m in the boundary layer to 1164 m near the model
top. The time step was 12 seconds.

To simulate microwave brightness temperatures, the
outputs of GCE model for KWAJEX were then used as input
to a 3D radiative transfer model developed by Liu (1998
2004). The model assumed sea surface temperatures of
300 K. Brightness temperatures were simulated from 4-stream
calculations. We compared TBs to those simulated from
32-stream calculations, and found that the error from using
4 streams is generally less than 1 K. The calculated TBs were
then averaged to a 10 km resolution for developing our re-
trieval method.

Note that the weather system simulated for KWAJEX
was a squall line. While our emphasis is placed on RR re-
trieval for typhoons, it is natural to characterize the RR-P re-
lationship using typhoon simulations instead of squall line
systems. The main reason for the use of Kwajalein squall
line simulations is because of the concern about the large
scale forcing introduced to the cloud-resolving model. The
initial forcing is crucial for the success of simulations. Dur-
ing the KWAJEX, better initial dynamic fields were pro-
vided for the GCE model because soundings were launched
typically every 6 hours on 6 islands and the NOAA Ship
Brown. In addition, a number of studies have reported their
evaluations of the KWAJEX simulations (Shie et al. 2003;
Seo etal. 2007; Zeng et al. 2008). In general, it remains diffi-
cult for cloud-resolving models to produce horizontal and
vertical precipitation distributions similar to observations,
but the statistical characteristics of cloud microphysical va-
riables from simulations are proven representative.

To better understand the representativeness of our simu-
lations from the cloud-resolving model and radiative trans-
fer model, we compare simulated brightness temperatures
with those observed from TMI. By examining horizontal
distributions of simulated and observed TBs;y for one of the
output time periods (as shown in Fig. 2), we found that there
was no great similarity between the two. This confirms that
we cannot compare simulations with satellite observations
on a point-to-point basis, but rather a statistical basis is re-
quired. We then further examined occurrence histograms of
simulated and observed brightness temperatures for all chan-
nels. The occurrence histograms were calculated by binning
brightness temperatures with an interval of 10 K, as shown
in Fig. 3. Because our retrieval method uses information
from 10.65, 19.35, and 37 GHz, the following comparisons
are focused on these three channels only.

Figures 3a - b show that simulations have the same
modes of occurrence histograms as TMI observations at
10.65 GHz. The modes are located at 170 - 180 K and 90 -
100 K for TB,oy and TB,oy, respectively. Recall that emis-
sion dominates at 10.65 GHz, and thus brightness tempera-
ture increases with rain rate (as discussed in section 2 and
Fig. 1). In other words, low brightness temperatures in this
frequency correspond to areas associated with either no rain
or very light rain rate. Therefore, the consistencies between
simulations and observations in the mode locations and the
lowest value ranges indicate that the set up of the back-
ground atmospheric status in the radiative transfer model is
appropriate. However, we notice that for both vertically and
horizontally polarized status, simulations show more points
associated with higher TBs than observations. In general, a
higher brightness temperature corresponds to a heavier rain
rate unless scattering becomes significant. Therefore, the ex-
cess in the amount of points with higher TBs implies that
model outputs may generate more areas with higher RRs,
which are not seen in actual observations.
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Fig. 2. Vertically polarized brightness temperatures at 37 GHz from (a) model simulations and (b) TRMM/TMI measurements for the Kwajalein
Experiment on 10 August 1999. Simulations are based on outputs of the cloud-resolving model at 1300 UTC, while TMI observations were taken
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Figures 3c - d show that the modes of the occurrence
histograms for simulated and observed TB oy values are the
same, but different by ~10 K for TB,oy. Similarly, the mode
locations for TB37y; also have a shift of 10 K between simula-
tions and observations (Figs. 3e, f). The shift in the mode lo-

cations for horizontally polarized TBs may be attributed to
the following factors. First, the observations might have
more data points with non-precipitating clouds or very light
rain rates. As shown in Fig. 1a, a small increase of RR in the
light rain regime enhances TBs significantly. The rate of en-
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hancement in TB is greater for the higher frequency and the
horizontally polarized status than that for the lower frequ-
ency and the vertically polarized. It explains why the shift in
the mode locations is shown in TB;9y and TB37y, but not in
TBi9y and TB;37y.

Second, Zeng et al. (2008) reported that the precipitable
water in simulations was smaller than that in observations by
~10 mm. This dry bias of simulations has a negligible impact
on TB at 10.65 GHz. However, the bias alone could reduce
simulated TB gy and TB37y by ~4 K, and TB g and TB37y; by
~7K, causing the mode shift of simulations toward the lower
values. Note that the errors due to water vapor uncertainty
will be greatly cancelled out in calculations of P values. As a
result, our method is not sensitive to this type of error, as
shown by histograms of simulated and observed P indices
(Fig. 4).

As expected, Fig. 4 shows that in all channels, most of
the rain-free grid points in simulations have P values of 1 (an
ideal value, in the bin of 1 - 1.1), and some are slightly less
than 1. The majority of the observed P values for rain-free
points are also around 1, while some are slightly greater than
1 due to instrument noise and errors in estimation of back-
ground brightness temperatures. Because our interest is in
rainy areas, the difference in P values close to 1 is not a con-

cern for our retrieval method.

In the P range between 0 and 0.9 that corresponds to
rainy areas, we see remarkable agreement between simu-
lations and observations at 19.35 and 37 GHz, except at
10.65 GHz. As previously discussed, compared to observa-
tions, simulations have a larger amount of grid points with
higher rain rates, resulting in an excess of low simulated P
values. This difference is not necessarily a defect for our re-
trieval method. In fact, the wider range of P in simulations
allows us to better characterize conditional PDFs, which is
not easily sampled and achieved using actual observations,
as confirmed in Fig. 5.

Figure 5 shows scatter plots of P, Py9, and P;; that are a
crucial indicator to evaluate whether simulations well repre-
sent the joint PDFs of Py, Py, and P3;. Figure 5a demon-
strates that the simulations agree well with observations in
representing the highly non-linear relationship between Piq
and Ps;. Figure 5b also shows that the majority of observa-
tions overlap well with simulations. However, apparently,
the use of observations is insufficient to represent heavy rain
events because of the lack of samples with lower Py values.

In summary, we are confident that our cloud-radiative
simulations can be used to properly characterize RR-P rela-
tionships. The final simulations contain 8 x 10* samples,
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with a rain rate range between 0.01 and 85 mm hr™".

3.2 Characterizations of the Conditional and Prior
PDF

The relationship between P vector and RR can be ap-
proximated by:

J@IR) = f(By | RV f(Ro | Py RVF (P | Bos By, R)  (3)

where f(p37| R) is the conditional PDF of P;; at a given R;
f (P19 | P37, R) is the conditional PDF of Py at given P3; and
R; and f'(Pyo | P19, P37, R) is the conditional PDF of P, at gi-
ven Pjq, P37, and R. These PDFs are further parameterized as:

F(Py| Ry Py(l Pg»exp{—z%(f’n - ﬂs)z} @)

g,

SRy | Py R) o Bo(l — P19)exp|:_2]_2(P19 - /12)2:| %)

0,

F(Py | Py P R) < Pyl = Ro)eXp{—#(l’m - u.f}(@

0,

where u; and o; (i = 1, 2, 3) are determined by fitting the
aforementioned model simulations. Note that parameters u;
and o; are not constants, but rather complicated functions.
For example, x5 and o3 are a function of R, showing the de-
pendency of P3; on R. Similarly, parameters u, and 0, are a
function P37 and R, and parameters ¢; and o, are a function
Py, P37, and R. The complexity in parameters #; and o; be-
comes greater from Eq. (4) to (6), because the PDF is con-
ditioned at more variables in Eq. (6). In addition, distribu-
tions of Eq. (4) to (6) are not necessarily bell-shaped. More
details can be found in Chiu (2003).

Chiu and Petty (2006) pointed out that the specification
of the prior RR distribution is crucial for the success of a
Bayesian algorithm. However, once the prior is properly char-
acterized, retrieved RR is not sensitive to small variations of the
prior PDF. Therefore, we used the same prior distribution as
that in their study, and briefly review their method as follows.

Surface rain rate distributions have been commonly
parameterized by lognormal functions (Kedem et al. 1990;
Sauvageot 1994; Nzeukou and Sauvageot 2002). Therefore,
we used a lognormal function to characterize the prior dis-
tribution rain rate, defined as:

log N(R| 1,0) =

27)""*(Ro) " eXp[—Z%(lﬂR - ﬂ)z} R >0 (7

where R, i, and o are the rain rate, the mean and standard
deviation, respectively, all in unit of mm hr'. By fitting
4-month PR data in 1998, parameters u and o were deter-
mined as -2.8 and 2.0, respectively. It is worth noting that
the lognormal distribution is not the only choice for charac-
terizing PR-observed surface RR. Cho et al. (2004) has
found that a Gamma distribution is also proper to model PR
RRs.

3.3 Summary of the New RR Retrieval Algorithm

A flowchart is given in Fig. 6 to summarize our retrieval
method. First, the conditional PDF, describing the RR-P re-
lationship, is specified by simulated attenuation indices from
3D cloud-resolving and radiative transfer models. Second,
the prior RR distribution is specified by TRMM/PR data.
Then, based on the Bayes’ theorem, we calculate the poste-
rior RR distribution that is a normalized product of the con-
ditional and prior distributions. Once the posterior distri-
bution is known, two common estimators are used to build
three-dimensional lookup tables for retrieval of each pixel.
These estimators are the average and the maximum of a pos-
terior probability, denoted as Baye AVE and Baye MAP,
respectively, and stored in lookup tables for various P values
with an interval of 0.02.

4. VALIDATION
4.1 Rain Gauge

We validate RR retrievals against rain gauge measure-
ments. These rain gauges, supported by the Japanese Mete-
orological Agency (JMA), are on 11 Japanese islands lo-
cated around 220 km east of Taiwan and 300 km southwest
of Okinawa (Table 1; Fig. 7). These gauges measure rainfall
every 10 min.

Establish prior Fit by
GCE 3-D probability distribution Lognormal
model data with PR near surface distribution
rain rate f(R)
. Simulated brightness Establish
Radiative i+
temperature (Tb) and conditional
Transfer Model |— . .
(3-D) calculate P vector probability density
(P10, P19, P37) function f(P|R)
Average estimator
to calculate rain rate
per pixel (AVE) Choose suitable Posterior
estimator to — probability [
- calculate distribution f(R|P)
Maximum a
posterior probability
estimator to
calculate rain rate
per pixel (MAP)

Fig. 6. The flowchart of Bayesian method for retrieving surface RR of
typhoons over ocean.
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Table 1. The locations of rain gauges on isolated islands in Japan.

No. Rain gauge Station No. Location Altitude (m)
1. IRABU 93011 24.82°N, 125.17°E 10
2. MIYAKOJIMA 93041 24.79°N, 125.27°E 40
3. GUSUKUBE 93051 24.74°N, 125.41°E 55
4. TARAMA 93061 24.66°N, 124.69°E 16
S. IBARUMA 94001 24.50°N, 124.28°E 15
6. KABIRA 94036 24.46°N, 124.14°E 7
7. YONAGUNIJIMA 94017 24.46°N, 123.01°E 30
8. IRIOMOTEJIMA 94061 24.38°N, 123.74°E 9
9. ISHIGAKIJIMA 94081 24.33°N, 124.16°E 6
10. OOHARA 94101 24.26°N, 123.87°E 28
11. HATERUMA 94116 24.05°N, 123.76°E 38
123°E 124°E 125°E .
\ . . 4.2 Benchmark Algorithm

Two benchmark algorithms are used to evaluate the per-

25°N 25°N formance of the new RR retrieval method presented here.

] ‘ ' sane "’3_';' I One is GPROF that is the official algorithm for TMI; the

. L 03041 other is a statistical algorithm derived by multi-channel lin-

+ g e ear regressive statistical method (MLRS; Chen and Li 2002).

ga.utp 94081 GPROF is a Bayesian algorithm (Kummerow et al. 1996,

24°N - | e - 24°N 2001; Olson et al. 2006) and used to produce TRMM stan-

dard 2A12 product. This algorithm introduces a database to

[] Coast tine represent the prior PDFs of rain rate and cloud profiles, us-

+ Japan_station ing simulations of hurricanes, squall lines, and mid-latitude

1 2_'.’,0 E 1 2;1°E 12 I5°E cyclones. Cloud profiles are selected when their correspond-

Fig. 7. A map of the 11 Japanese rain gauge stations.

The comparison of satellite RR retrievals with rain
gauge observations can be challenging, though. This pro-
blem arises because satellite RR represents an average es-
timation in a FOV, while a rain gauge provides a point value
measurement. In addition, satellite RR is retrieved from
column-integrated microwave signatures that are affected
by rain and ice particles aloft and thus may not be correlated
well to surface RR. Because of these issues, Liu et al. (2001)
analyzed two-year co-located ground-based microwave ra-
diometry and rain gauge data, and suggested that a time pe-
riod of 1 hour was optimal for comparing satellite retrievals
and surface RRs. This optimal time period was also found to
be the same by Chen and Li (2002). Therefore, to obtain the
best correlation in our comparison for all retrieval methods
(see next section), for each rain gauge, we calculate rain rate
using gauge measurements over a time window that is 30
minutes prior to and after the satellite overpass.

ing microwave brightness temperatures are close to the ob-
served values. The selected cloud profiles are then averaged
to yield the best surface rain rate and precipitation structure
for each pixel.

DeMoss and Bowman (2007) reported that TMI 2A12
retrievals (version 6) are biased around 12% and 1% low
relative to rain gauges during the pre-boost and post-boost
periods, respectively. As we will show later, the typhoon
cases studied in this paper occurred in the post-boost period.
Compared to the reported global low bias of 1%, it would be
interesting to learn whether TMI 2A12 products perform
differently for extremely heavy rain events. Note that 2A12
products provide surface rain rate at a resolution of 5 km. To
match the resolution of our retrievals, we averaged surface
rain rates of 2A 12 (version 6) to 10 km for intercomparison.

The second benchmark algorithm is derived by multi-
channel linear regression statistical method. Recall that mi-
crowave brightness temperatures have a non-monotonic re-
lationship with RR (see section 2). Microwave brightness
temperatures respond mostly to emission from cloud and li-
quid rain at lower RRs, and mostly to scattering from ice
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particles at higher RRs. Therefore, our statistical method,
similar to Chen and Li (2002), uses two regression equations
to describe these two regimes separately. We call this sta-
tistical method as MLRS hereafter.

Regressions were generated using a match-up data set of
rain gauge measurements and TMI overpasses from 1998 -
2003. Rain gauges used in regression analysis are the same
as those in retrieval validation (Table 1). A total of 14 ty-
phoon cases (64 overpasses) were selected. When TBgsy and
TBgsy are lower than 274.56 and 253.61 K, respectively, we
determine that the data point is in the scattering regime and
its equation of RR can be approximated by:

R = 152,65 — 0.77TB,,, + 0.47TB,,, — 0.147TB,,,
+0.537TB,,; — 0.508TB,,, + 0.818TB,,,
~ 0.773TB,,, — 0.91TB,,, + 0.803TB,,, (8)

Otherwise, the data point is in the emission regime, and the
regression equation is given as:

R = —4428 — 0.107TB,,, + 0.06TB,,, + 0.7TB,,
~ 0.15TB,,,; — 0.308TB,,, + 0.148TB,,,
~ 0.15TB,,, — 0.17TB,,, + 0.18TB,,, 9)

Note that for this method, we screened rain and no rain as
follows. Based on our match-up data, a pixel is determined
as possibly rainy when observed TB)gy, TB1on, TB1ov, TBion,
and TB,;vy are greater than 174.83, 91.54, 213.77, 153.46,
and 241.54 K, respectively. Then, if the pixel has a scatter-
ing index (SI; Ferraro et al. 1994) greater than 10, it is as-
signed as a rainy pixel. Otherwise, the pixel is rain-free.

4.3 Results of Intercomparison

Retrieved RR is validated from qualitative and quanti-
tative aspects. First, we present qualitative comparison of
horizontal structures from two overpasses of Typhoon Aere.
This comparison was conducted mainly against PR-retrieved
RR. Second, we present quantitative comparisons against
rain gauge measurements for 5 typhoon cases (16 overpasses)

in 2004 (Table 2).

Figure 8 shows the track of slow-moving (about 12 -
15 km hr") Typhoon Aere that originated east of the Phi-
lippines on 20 August 2004. On August 24, the typhoon
passed over Miyako and Yaeyama Islands. It had a peak in-
tensity of ~45 ms™, low pressure of 955 hPa, and a wide eye
of 80 km. Typhoon Aere struck Taiwan on August 25. Some
parts of Taiwan recorded accumulated rainfalls of 1.5 meters.

Figure 9 shows retrieved RR distributions of Typhoon
Aecre from PR, the new retrieval method (Baye AVE and
Baye MAP), GPROF, and MLRS. For visualization pur-
poses, the projection of PR RRs on the horizontal plane is
also provided in Fig. 9b. The projection is plotted only when
the corresponding PR surface RR is greater than 10 mm hr™".
In Fig. 9a of the PR rain map, the eye of Typhoon AERE is at
around (25°N, 124°E). Two narrow rain bands are seen
around the eye and 126°E. Between two rain bands, there is
an area (~125.5°E) with no rain or very light rain rates.
Figures 9c - f show that the locations of the eye and rain
bands in retrieved precipitation distributions are similar to
what have been found in the PR rain map, although retrieved
rain rates from the aforementioned methods are quite dif-

2004 ¥ #] (AERE)
115 120 126 1808~ 185

s

08/22

2(

§ i 2R, 08/21

(Vmax >=51.0ms")
(X313

(Vmax 32.7 - 50.9 ms™)
15| 6 B AR

(Vmax 17.2-32.6 ms™)

QA A

(Vmax<17.2ms")

19

08/20

115 130 135

Fig. 8. The best track of Typhoon Aere originating east of the Philip-
pines on 20 August 2004 (by courtesy of Central Weather Bureau). The
inner dashed box corresponds to the domain shown in Fig. 7.

Table 2. Five typhoon cases for validating rain rate retrievals against rain gauge measurements.

No. Name of Typhoon Time of data Max. wind speed (m s')  Pressure (hPa) No. of Overpass
1 CONSON 2004 0609 ~ 0610 47 960 2
2 MINDULLE 2004 0701 ~ 0703 62 940 4
3 AERE 2004 0823 ~ 0825 42 955 5
4 HAIMA 2004 0911 ~ 0912 15 992 4
5 NOCK-TEN 2004 1025 ~ 1026 55 945 1
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Fig. 9. Rain rates (a) and 3D vertical profiles (b) of Typhoon Aere retrieved from PR for orbit No. 38609 at 0151 UTC on 24 August 2004. In (b), we
also shade areas that correspond to PR surface rain rate greater than 10 mm hr”'. Rain rates in (a) are compared to those retrieved from (c) Baye AVE,
(d) Baye MAP, (e) the Goddard Profiling Algorithm (GPROF), and (f) a multi-channel linear regression statistical method (MLRS). Baye AVE and
Baye MAP are both derived from our Bayesian method, representing the average and the maximum value of the posterior probability, respectively.
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ferent. For the rain bands, PR RRs are in better agreement
with retrievals from Baye AVE and Baye MAP than those
from GPROF and MLRS. For the area between rain bands,

MLRS seems to perform best, and Baye AVE and Baye

MAP tend to overestimate RRs. Figure 10 takes a closer look
at one of the rain bands around the eye wall. This figure con-
firms that Baye AVE and MLRS capture the main inner rain
band, while the rain band from GPROF is not well defined in
the south of the eye. On the other hand, GPROF and MLRS
capture light rain areas better than Baye  AVE. We also found
similar results in another overpass for Typhoon AERE
(Fig. 11): two bands with heavy rain rates are seen both in
the PR rain map and in Baye AVE retrievals, but are less dis-

tinct in retrievals of GPROF and MLRS. However, clearly,
Baye AVE overestimates rain rates in the area of (24°N,
124°E). To better understand whether any bias exists in our
retrievals, quantitative comparisons are conducted next.

In our quantitative validation against rain gauge mea-
surements, we exclude two types of TMI pixels. First, we ex-
clude pixels that are associated with significant beam filling
effects (Kummerow 1998), because for those pixels, rain
gauges measurements might be too localized to compare
with TMI retrievals. The homogeneity of precipitation for
each TMI pixel was evaluated by examining infrared bright-
ness temperatures at 11-pum from the Visible Infrared Scan-
ner (VIRS) of TRMM. Typically within a TMI FOV, there
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Fig. 10. A zoom-in of Fig. 8. Rain rates are retrieved from (a) PR RR, (b) Baye AVE, (c) GPROF, and (d) MLRS. Plus signs (“+”) represent locations

of rain gauges, while solid lines are coastlines. Underlying circles (“O”) represent TMI FOV.
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Fig. 11. Same as Fig. 10, but for Orbit No. 38613 that Typhoon Aere passed at 0826 UTC on 24 August 2004.

are around 15 VIRS pixels. If the standard deviation of
brightness temperatures of these VIRS pixels is greater than
8 K, following Chen and Li (2002), we determine that the
beam filling effect is significant and exclude the TMI pixel
in our comparison.

Second, we exclude pixels that are affected by high
emissivity of land. TMI pixels are categorized as either land,
coast, or oceanic, based on a high-resolution (100 m) geo-
graphic database from ArcGIS. If a pixel is defined as land
or coast, the observed microwave brightness temperatures
are most likely affected by land emissivity, and thus we can-
not estimate the RR using our oceanic retrieval method.
Therefore, if a rain gauge is found to be co-located with a
land or coast TMI pixel, we use retrievals from the nearest

oceanic TMI pixel to compare with rain gauge measurements.

Five typhoons in 2004 (Table 2) were used in our quan-
titative validations. After excluding pixels affected by beam-
filling effect or/and land contamination, only 28 out of 66
match-up pixels are left in our comparisons. Figure 12 shows
scatter plots of retrieved RR versus rain gauge measure-
ments. The coefficients of determination (R2; Garrett and
Woodworth 1960) and root-mean-squared error (RMS) are
also listed for each retrieval method. These plots demon-
strate that retrievals from the Baye AVE method have the
best linearity and the smallest RMS against rain gauge data.
Comparing Fig. 12a with b, we have found that the Baye
MAP method has better performance than Baye AVE at RR
less than 5 mm hr!, but tends to underestimate RR in the
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Fig. 12. Scatter plots of retrieved rain rate versus rain gauge measurements. Rain rate is retrieved from the (a) Baye AVE, (b) Baye MAP, (c)
GPROF, and (d) MLRS method. Coefficients of determination (R2) and root-mean-square errors (RMS) are also shown here.

range between 5 and 10 mm hr’'. The GPROF method
(Fig. 12¢) has significant errors for RRs higher than 5 mm hr™".
Retrievals from the MLRS method (Fig. 12d) have good lin-
earity against rain gauge data, but scatter more significantly
than those retrieved from Baye AVE, especially at RRs
greater than 10 mm hr'. In addition, the MLRS method
tends to overestimate in light RR regimes and underestimate
in heavy RR regimes, which is a typical drawback for a lin-
ear statistical retrieval method.

5. CONCLUSION

We developed a new Bayesian approach to retrieve oce-
anic RR from TRMM/TMI microwave brightness tempera-
tures, with an emphasis on typhoon cases in the West Pacific.
The success of a Bayesian retrieval method relies on two fac-
tors: one is the prior distribution about RR, and the other is
the conditional probability distribution that describes how

microwave observations respond to RR. In this paper, we
specified the prior distribution using retrievals of TRMM
PR, while the dependency of microwave observations on RR
was based on simulations of cloud-resolving and 3D radia-
tive transfer models.

Simulations used to build conditional probabilities were
squall line cases in the KWAJEX. The rationale for the use
of this experiment is that large scale forcing was well pro-
vided for in the cloud-resolving model, and extensive evalu-
ations have been conducted. Comparing our simulated mi-
crowave brightness temperatures with TMI observations,
we showed that simulations and observations have similar
statistics, although they are not similar in horizontal struc-
tures of rain clouds. We also found that the cloud model gen-
erated more data points with heavy rain rates that were not
frequently sampled by TMI observations.

We used an attenuation index as the observed variable in
our method. Unlike brightness temperature, attenuation in-



830 Hu et al.

dex has a monotonic relationship with RR, and is less sensi-
tive to background noise from water vapor, wind speed and
sea surface temperature. In addition, because the attenuation
index at 85 GHz approaches zero at small RRs (~1 mm hr™"),
we used indices at 10.65, 19.35, and 37.0 GHz that are not
saturated at higher RR for typhoon cases. Note that an excess
of frozen hydrometeor concentration in cloud model simula-
tion has been reported in many cases (Zhou et al. 2007; Zeng
et al. 2008), leading to significant scattering signatures at
higher frequencies. Therefore, the use of an attenuation in-
dex at lower frequencies also helps to reduce uncertainty
from unrealistic frozen hydrometeors in simulations.

Validations of our new Bayesian approach were con-
ducted against retrievals from PR, GPROF, and MLRS
methods, and measurements from rain gauges located on
Japanese islands. Fifteen typhoons that passed over rain
gauges in 2004 were selected. We found that our Bayesian
retrievals and PR RR show significant similarity in hori-
zontal distributions of precipitation. Quantitative results
also demonstrate that our retrievals agree well with rain
gauge measurements, showing the highest correlation (0.95)
and the smallest root-mean squared error (~2 mm hr™).

This paper demonstrates that our new method provides
satisfactory RR retrievals for typhoon cases over the ocean,
which could help analyze structures of tropical cyclones, im-
prove model initialization, and predict storm tracks and po-
tential landfall. It is desired to include more typhoon simu-
lations in our database and to investigate how much extra
information could be added in. We have started simulations
using the Weather Research and Forecasting (WRF) model.
More regional and global validations in simulations and re-
trievals are part of our ongoing research.
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