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AbSTrAcT 

The impact of model uncertainties on analyzed data is investigated using a global data assimilation system. This issue 
is explored in a 3D-Var system based on the National Centers for Environmental Prediction (NCEP)/Department of Energy 
(DOE) system using two convective parameterization schemes, the Simplified Arakawa scheme and the Community Climate 
Model (CCM) scheme. Two sets of six-hourly analysis data are generated for the summer of 2004. The difference between the 
resulting analyses using different convective parameterization schemes is found to be significantly greater than that between 
two well-known analyzed data sets, the NCEP/National Center for Atmospheric Research (NCAR) reanalysis (RA1) and the 
NCEP/DOE reanalysis (RA2). This dependency is more pronounced in data-sparse areas like the East Asian region than in 
data-rich areas like the North American region. Our study indicates that predictabilities for short- to medium-range forecasts 
in the global forecast system are indirectly influenced by forecast model accuracy via the quality of the initial conditions. 
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1. InTroDUcTIon

A data assimilation system is a comprehensive sys-
tem utilizing meteorological measurements, a statistical 
approach, and an atmospheric model to describe the state 
closest to the true atmospheric state (Daley 1991). The key 
objective in such a system is generally to create analysis 
fields that represent optimal states of the atmosphere and, 
ultimately, to provide initial fields as input to numerical 
weather prediction models. Additionally, such systems are 
used to reproduce sequences of long-term, reliable analysis 
datasets for weather and climate research, also known as 
reanalysis data (Kalnay et al. 1996; Kistler et al. 2001; Ka-
namitsu et al. 2002b; Uppala et al. 2005). 

The major components of a data assimilation system** 

are the observational data, a data assimilation algorithm, and 
a forecast model, all of which are closely coupled. The ap-
plication of a data assimilation system may include various 
sources of error, mostly due to observations and the fore-

cast model (Lu and Browning 1998). It is common for such 
observed data to have inevitable subjective, instrumental, 
or other errors. Therefore, observation error statistics cor-
responding to the observation type are assigned in the data 
assimilation module. 

Moreover, forecast models for background fields in-
herently suffer from errors due to uncertainty in the initial 
data and from model error, which is related to the chaotic 
behaviors of nonlinear systems in the evolution of the atmo-
sphere. The data assimilation algorithm itself is not consid-
ered to possess these errors, since it is the method used to 
find the best estimate of the atmospheric state using the dif-
ference between the background of the forecast model and 
the corresponding observations. However, the assimilation 
system is processed with the pre-determined error statistics  

** Throughout this paper, we define the assimilation algorithm as a matrix 
solver for the model and observation errors, used to obtain the optimal 
state of the atmosphere, over the data assimilation system including the 
quality control component, the assimilation algorithm, and the forecast 
model used to generate the guess field.
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from the forecast model and the observations. Thus, there 
are relative pros and cons associated with the methods used 
in various assimilation algorithms, such as the three- or 
four-dimensional variational (4D-Var) method and the Kal-
man Filter. The reader is referred to Kalnay (2003) for an 
overview of data assimilation.

The majority of data assimilation research has been 
conducted on data assimilation algorithms and the associ-
ated data acquisition and quality control, rather than on the 
exploration of the forecast model component. It is generally 
believed that errors in the forecast model are mostly due to 
model physics, which causes systematic errors in the ana-
lyzed data. Although it is known that differences in physical 
parameterization schemes can result in different forcings in 
a prediction model (Hack 1994; Lu and Browning 1998), 
impact studies of model uncertainty on the quality of the 
initial conditions are relatively rare.

In this study, the influence of forecast model uncer-
tainty on analyzed data is investigated in a 3D-Var sys-
tem by employing two different cumulus parameterization 
schemes, the simplified Arakawa-Schubert (SAS; Pan and 
Wu 1995; Hong and Pan 1998) and the community-climate 
model (CCM; Zhang and McFarlane 1995) algorithms, in 
an identical assimilation system. The primitive variables, 
such as temperature and moisture, are evaluated against the 
corresponding radiosonde observations. The resulting pre-
cipitation is assessed in relation to the observations over the 
time frame studied. The analyzed data sets are also com-
pared to other two popular reanalysis data sets. The discus-
sion focuses primarily on the differences resulting from the 
choice of forecast model, rather than on the departure from 
the in-situ observations. Kang and Hong (2008) demon-
strated the overall outperformance of the SAS scheme over 
that of the CCM scheme when simulating the East Asian 
summer monsoon in a regional climate model study. It is 
important to note, however, that the purpose of our study is 
not to judge the superiority of one cumulus parameterization 
scheme over another, but rather to assess model uncertainty, 
since parameterization of deep convection is one of the most 
important and uncertain components in the forecast model. 

Section 2 presents the experimental design, while sec-
tion 3 contains evaluations of the precipitation and obser-
vation verifications of the analyzed fields. This paper ends 
with concluding remarks in section 4.

2. ExpErIMEnTAl DESIGn

Two sensitivity experiments are conducted to discuss 
the impact of different model physics, the SAS and CCM 
schemes, under an identical data assimilation system. Here-
after, the resulting data sets are referred to as the Gsas and 
Gccm data, respectively. The 3D-Var system used in these 
two experiments closely follows the National Centers for 
Environmental Prediction/Department of Energy (NCEP/

DOE) reanalysis-2 system (RA2; Kanamitsu et al. 2002b). 
However, the forecast model for generating the guess field 
for Gsas and Gccm is different from that in RA2. The dy-
namical framework in the model is based on that of the RA2 
system, but the physical processes are updated as described 
in Kanamitsu et al. (2002a). In addition, the Yonsei Univer-
sity scheme (Hong et al. 2006) for vertical turbulence diffu-
sion is adopted in these sensitivity experiments. Since Gsas 
and Gccm experiments use a similar data assimilation algo-
rithm to that of RA2, but with a different forecast model, a 
comparison of the experimental results with those predicted 
by RA2 can provide an estimation of the uncertainty due 
to forecast model errors in a data assimilation system. The 
summer of 2004, which recorded nearly normal seasonal 
precipitation over East Asia, was selected for this study.

The NCEP/National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis (RA1; Kalnay et al. 1996) and 
NCEP/DOE reanalysis-2 (RA2) systems, released to the 
public, are compared as references. The RA2 system is an 
updated version of RA1, with certain components enhanced, 
corrected, or newly introduced (Kanamitsu et al. 2002, see 
Appendix). Most of these changes concern components re-
lated to the forecast model, such as model physics and fixed 
boundary fields; the principal module of the data assimila-
tion algorithm is still used in RA2. New precipitation data 
assimilation and smoothed orography are only adopted in 
the assimilation algorithm in RA2. Data assimilation sys-
tems are generally regarded as a combination of model fore-
cast and an assimilation algorithm that digests observations. 
Although the assimilation algorithm is mostly unchanged in 
RA2, the analysis fields are significantly altered since the 
background field used in assimilation was changed due to 
the improved forecast model. RA2 shows significant differ-
ences from RA1 in parameters such as soil moisture, global 
radiation budget, tropospheric humidity, precipitation, cloud 
cover, and near-surface temperature. 

The Gsas and Gccm data differ only with respect to the 
forecast model, having different cumulus parameterization 
schemes. The differences between RA1 and RA2 involve the 
forecast model physics, corrections of various errors in the 
assimilation algorithm resulting in improvements to fixed 
fields such as surface albedo, snow, and ice, and the intro-
duction of new system components. That is, the RA1 and 
RA2 data are the two different analyses with major differ-
ences in their respective assimilation systems, whereas the 
differences in the Gsas and Gccm data are due to a specific, 
uncertain component of the forecast model within identical 
assimilation systems. 

To evaluate the accuracy of the analyzed data, radio-
sonde observation data (RAOBs) for specific humidity 
and temperature and the Global Precipitation Climatology 
Project (GPCP) data for precipitation are used. The RAOBs 
originate from the University of Wyoming website (UWYO, 
http://weather.uwyo.edu/) and are processed through a sim-
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ple quality control. The GPCP (Huffman et al. 2001) data, 
with a 1° × 1° spatial resolution, are used for evaluation of 
precipitation in each analysis. 

3. rESUlTS
3.1 Temperature and Moisture

Analysis fields are compared with the corresponding 
radiosonde observations in order to compute the bias (anal-
ysis minus observation). With regard to data assimilation, 
the sign of the bias is opposite from that of the observation 
increment, which is the correction of the model error (ob-
servation minus guess field). The biases in temperature over 
East Asia are relatively small for the RA1 and RA2 data in 
the lower troposphere and for the RA2 and Gsas data in the 
middle troposphere (Fig. 1a). Overall cold biases appear in 
the upper troposphere in all of the analyses studied. The bias 
in RA2 decreases with warmer temperatures in the middle 
troposphere and with colder temperatures in the lower tro-
posphere compared to the bias of the RA1 profile. This may 
be due in part to enhanced vertical mixing in the Hong and 
Pan (1996) scheme as compared to that in the local diffu-
sion scheme of Louis (1979). The non-local mixing of Hong 
and Pan (1996) tends to exhibit warming within the bound-
ary layer and cooling above it, as compared to the local ap-
proach of Louis (1979).

The biases over North America are considerably less 
than those in East Asia and are smaller for the Gsas and 
RA2 than for the Gccm and RA1 throughout the entire tro-
posphere (Fig. 1b). This may be due to differences in the 
amounts and qualities of observation data between the two 
regions, since these differences in turn determine the depen-
dency of the resulting analysis on the assimilation module or 
forecast model (Kistler et al. 2001). In other words, changes 
in the data assimilation system could affect the quality of 
analysis in a data-rich region, though not in a data-sparse re-
gion. It is true that rawinsonde and surface observations are 
not available over oceans; hence, the East-Asian region con-
tains a smaller number of observation data sets than does the 
North American region. The typical distribution of obser-
vations can be found in Kalnay (2003). The improvements 
from RA1 to RA2 indicate the overall effect of changes in 
the data assimilation system, including the observational 
data, the assimilation algorithm, and the forecast model. 

Figure 2 shows the verification of humidity against ra-
diosonde observations. Note that the bias patterns in specific 
humidity are similar over both regions in spite of the differ-
ent amounts and qualities of observational data between the 
two regions. It can be explained that the humidity variable is 
strongly influenced not only by observational data but also 
by the model; this is unlike the temperature variable, which 
is strongly influenced by observational data (Kalnay et al. 
1996). As was the case for temperature, the Gsas and RA2 
profiles exhibit comparatively smaller biases than those of 

the other two sets. The humidity profiles from the Gccm and 
RA1 data reveal severe dry biases centered around 800 hPa, 
and the bias for the Gsas data is much smaller than that for 
the Gccm data at altitudes below the middle troposphere. It 
is also clear that the bias difference between the Gsas and 
Gccm data appears greater with respect to specific humidity 
than with respect to temperature, highlighting the idea that 
the model physics affect moisture fields more significantly 
than they do temperature fields (see Hong and Pan 1996). 
Notably, the dry bias in the lower troposphere frequently 
appears in the Gccm and RA1 data even though these data 
are generated by two assimilation systems that differ in 
many aspects. 

Our results also demonstrate that the difference be-
tween the Gsas and Gccm profiles is, on the whole, greater 
than that between RA2 and RA1. The vertically averaged 
differences in temperature (Fig. 1) between Gsas and Gccm 
are 0.188 and 0.135 K over East Asia and North America, 

Fig. 1. Vertical profiles of temperature biases (K) for four different 
analyzed data sets relative to the radiosonde observations: RA2 (thick 
dotted line), RA1 (thin dotted line), Gsas (thick solid line), Gccm (thin 
dotted line) over (a) East Asia and (b) North America.

(a)

(b)
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respectively, whereas the corresponding differences be-
tween RA1 and RA2 are 0.167 and 0.082 K. For moisture 
(Fig. 2), the differences between Gsas and Gccm are 0.165 
and 0.163 g kg-1 over East Asia and North America, respec-
tively, whereas the corresponding values between RA1 and 
RA2 are 0.152 and 0.102 g kg-1. This suggests that the un-
certainty in the forecast model pertaining to the data assimi-
lation system can significantly affect the analyzed data.

3.2 precipitation

To investigate the effects of the convective param-
eterization scheme in the forecast model on precipitation in 
each data set, the three-month averaged zonal mean precipi-
tations are calculated and compared (Fig. 3). It is apparent 
that the analyzed data tend to overestimate the precipitation 
in both hemispheres, but the patterns are more diverse in 
the Northern Hemisphere than in the Southern Hemisphere. 

Tropical precipitation values over the ITCZ from the Gsas 
data are closer to what was observed than are those from the 
Gccm data in terms of latitudinal location, although both 
data sets exaggerate the peak intensity. This peak is also 
overestimated by the RA2. Again, the difference between 
the Gccm and Gsas data sets is greater than that between 
RA1 and RA2, except for the ITCZ. 

Three-month total precipitation values over the globe 
are compared with the GPCP precipitation results (Fig. 4). 
The tabulated amounts and pattern correlation scores for the 
seasonal mean precipitations are shown in Table 1. Precipi-
tation values other than those from RA1 are similar to each 
other; the greatest agreement is observed between the RA1 
and GPCP data. Precipitation peaks over the tropics are ex-
aggerated by the RA2, Gsas, and Gccm data. The relative 
deterioration of the precipitation distributions when chang-
ing from the RA1 to the RA2 data is explained by the nega-
tive effects of the physics change in the NCEP operational 
model (see Kanamitsu et al. 2002a for the details). An in-
distinct yet discernible impact is seen between the Gsas and 
Gccm results. The pattern correlation of the three-month 
precipitation from the Gsas data is better than that from the 
Gccm over the different geographical regions of the globe.

4. conclUDInG rEMArkS

The impact of model uncertainties on analyzed data 
is examined using a global data assimilation system that 
closely follows the NCEP/DOE reanalysis system. The un-
certainties of model errors are estimated by applying the 
forecast model with two different cumulus parameterization 

Fig. 3. Zonally averaged precipitation for June-July-August 2004.

Fig. 2. Vertical profiles of specific humidity (g kg-1) for four different 
analyzed data sets relative to the radiosonde observations: RA2 (thick 
dotted line), RA1 (thin dotted line), Gsas (thick solid line), Gccm (thin 
dotted line) over (a) East Asia and (b) North America.

(a)

(b)
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schemes, namely, the SAS and CCM algorithms. A six-
hourly assimilation cycle is performed for the summer of 
2004, and the resulting analyses are evaluated for accuracy 
against radiosonde observations collected over East Asia (a 
data-sparse region) and North America (a data-rich region). 
The resulting precipitation values are also compared. Two 
popular reanalyzed data sets, the NCEP/NCAR RA1 and 
NCEP/DOE RA2, are used as references. 

Our major finding is that the quality of the analysis de-
pends highly on the forecast model embedded within the 

data assimilation system. Given identical data assimilation 
algorithms and observation data, the bias from a system us-
ing the SAS scheme is typically smaller than that from a 
system using the CCM scheme, a finding which is consis-
tent with evaluations of convection schemes in simulating 
the East Asian summer monsoon (Kang and Hong 2008). 
The differences in large-scale fields (such as temperature 
and humidity) between the analyses with the two different 
convection schemes are as great as the disparities between 
the RA1 and RA2 data. These features are more prominent 
in the data-sparse region over East Asia than they are in the 
data-rich region over North America.

Note that the RA2 assimilation system is significantly 
different from the RA1 system in observational data and 
the assimilation system due to the system improvements, 
the correction of human processing errors and many prob-
lems in observational processing, and changes to the model 
physics and fixed fields such as albedo, snow, and ice. It 
is certain that the effective use of observational data and 
development of data assimilation algorithms can decrease 
deviation in analysis fields from actual observations. It has 
been realized that advanced assimilation algorithms such 
as 4D-Var represent a significant increase in the quality of 

Fig. 4. Global distribution of precipitation (mm day-1) for June-July-August 2004.
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initial conditions, which leads to improvements in medium-
range forecast accuracy (Rabier et al. 2000; Laroche et al. 
2005). For example, the quality of the ECMWF reanaly-
sis data using 4D-Var is generally better than that of RA1 
or RA2 (e.g., Ponte and Dorandeu 2003). It has also been 
shown that the prediction skill of a medium-range global 
forecast system is highly dependent on the accuracy of the 
initial data (Lorenz 1963, 1993; Palmer 2000). However, 
our evaluation of the analyzed data sets compared to radio-
sonde observations also ensures that improvements to the 
internal physics of the forecast model can be as significant 
as improvements in the assimilation system and increases in 
the quantity of archived data. Therefore, we may conclude 
that continuous efforts should be made toward refinement 
of model physics as well as enhancement of data assimi-
lation systems in order to improve forecast skill in global 
forecast systems. 
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AppEnDIx
System configurations of rA1 and rA2

rA1 rA2

Model configuration T62L28 (~210 km resolution, ~3 hPa), global spectral model

Model physics Cumulus parameterization (SAS), Shallow convection 
(Campana et al. 1994), SW radiation (Racis and Hansen 
1974), LW radiation (Fels and Schwarztkopf 1975), GFDL 
PBL, Radiation computation on linear grid, radiation code 
run once every three hours.

Minor tuning of cumulus parameterization, modified shallow 
convection, SW radiation (Chou and Lee 1996), MRF PBL, 
updated cloud-tuning coeff., realistic cloud-top cooling, 
radiation computation on Gaussian grid. Radiation code run 
once an hour.

boundary fields Improved desert albedo, snow cover, sea-ice, and SST. New 
ozone climatology.

new components Simple rainfall assimilation over land sfc.
Smoother orography, new treatment of snow.

Error fixes Corrected SH bogus data, humidity diffusion, oceanic albedo, 
snowmelt term, and human errors. Removed discontinuities 
in RH-cloudiness relationship table.

Assimilation Observational data within ±3 hours of analysis time are assimilated every six hours

observation data  
used for assimilation

Surface land (only surface pressure from SYNOP), surface marine (SHIP, BUOY, ATLAS buoy), upper-air observation 
(rawinsonde, pibal, etc.), aircraft (AIRCARS, MDCARS, ASDAR, AIREP, PIREP), satellite (TIROS ATOVS soundings, 
METEOSAT, cloud drift wind, and data from the sources of various satellites)
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