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ABSTRACT

In this study, we develop a three steps rank adjustment procedure to constrain 
future projections of interest. This procedure uses nonparametric present-future rela-
tions from a given multi model ensemble (MME) to estimate the rank distribution of 
observations in future projection period to constrain the corresponding projections. 
We then applied this rank adjustment procedure to constrain future projections of 
the global mean surface temperature (GMST) as well as the surface temperature and 
the precipitation fields from the CMIP5 Representative Concentration Pathway 8.5 
(RCP85) scenario MME. For the GMST, we successfully narrow the 5 - 95 uncer-
tainty range by one-half at the end of the 21st century. For the surface temperature 
field, the constrained MME medians averaged over 2081 - 2100 exhibit more smooth 
and homogeneous spatial variations than those original MME medians. More inter-
estingly, the corresponding projected precipitation field are completely free from the 
long-standing double ITCZ bias. These results suggest that the use of rank adjust-
ment procedure is capable of yielding more consistent future projections for both the 
surface temperature and the precipitation fields. More importantly, because the rank 
adjustment procedure is based on nonparametric present-future relations of a given 
MME, one expects that it have wider range of applicability than previously identified 
and proposed emergent constraints.
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1. INTRODUCTION

Climate is a one of the major factors affecting human 
well-being and economic productivities around the world 
(Carleton and Hsiang 2016). To mitigate and adopt climate 
change induced social and economic impacts, we need to 
estimate the magnitude and associated uncertainty range of 
future climate change under various radiative forcing sce-
narios. For this purpose, simulation results from multi model 
ensembles (MMEs) of the Coupled Model Intercomparison 
Project (CMIP) are valuable data sources. Many efforts have 
been made to integrate MME results into combined projec-
tions that represent some consensus view with associated 
uncertainty during different phases of the CMIP (Tebaldi 
and Knutti 2007; Knutti 2008, 2010; Sanderson et al. 2015). 
The mostly common approach for dealing with MME results 
is model democracy (i.e., “one model one vote”) (Knutti 
2010). Thus, the ‘best-guess’ and uncertainty ranges of fu-

ture projection of a given climate variable are estimated us-
ing the simple ensemble mean and the 5 - 95 range of model 
spread from MME of the CMIP5 (Taylor et al. 2012). How-
ever, CMIP5 models are not independent (Knutti et al. 2013; 
Masson and Knutti 2011). Furthermore, research organiza-
tions simply submit as many simulations as they are able 
to. Therefore, it is extremely unlikely that the corresponding 
multi model mean is in any way optimal (Herger et al. 2018). 
Although Bayesian methodologies (Robertson et al. 2004) 
and model weighting (Krishnamurti et al. 2000) have been 
used for model combination, but the correct implementation 
and interpretation of such studies is subject to some debate 
(Tebaldi and Knutti 2007; Sanderson and Knutti 2012).

Recently, the emergent constraint approach that offers 
hope to constrain future projections of quantities of inter-
est is gaining popularity in climate models evaluation (Hall 
and Qu 2006; Bracegirdle and Stephenson 2012; Caldwell 
et al. 2014; Hall et al. 2019). Briefly speaking, emergent 
constraints are empirical relationships between current cli-
mate and future prediction emerging from collections of 
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climate model simulations that are physically explainable 
(Klein and Hall 2015). Thus, by selecting a set of models 
that are consistent with observations, these empirical re-
lationships can be used to constrain the range of possible 
future projections (Borodina et al. 2017). However, some 
studies (Abe et al. 2009; Knutti et al. 2010; Caldwell et al. 
2014) showed that the correlation between the present-day 
and future climate patterns exhibited in models generally 
was not significant. Furthermore, the lack of independence 
of CMIP ensemble members may create artificial correla-
tions and the screening of predictors will likely find correla-
tions that have no physical basis (DelSole and Shukla 2009; 
Masson and Knutti 2013; Caldwell et al. 2014; Sanderson et 
al. 2015). Moreover, most emergent constraints have been 
proposed or identified so far are linear (Hall et al. 2019). 
Because the earth climate is a highly nonlinear system, it is 
likely that a substantial fraction of relations between future 
changes and current states may also be nonlinear. There-
fore, we may need to find methods other than conventional 
regression method to cope with such situations.

The rank histogram (Anderson 1996; Hamill and Co-
lucci 1997; Hamill 2001) is a widely used technique for 
evaluating the reliability or calibration of an ensemble fore-
cast. A rank histogram is constructed by using the rank sta-
tistics of the observation in an ensemble (Anderson 1996). 
Because ranking is a nonparametric concept, this character-
istic renders the rank histogram a flexible tool to be used for 
assessing the calibration (Mirzargar and Anderson 2017). 
This nonparametric characteristic also leads us to wonder 
whether some kinds of relationships between rank distribu-
tions of a given MME in historical and future projection 
periods can be established. If such relations do exist, then 
we may be able to use them to constrain the corresponding 
future projections with current observations. Therefore, one 
of the main purpose of this study is to explore the feasibility 
of using the rank distributions of a given MME to establish 
nonparametric present-future relations to be used in con-
straining the corresponding future projections. Furthermore, 
because adjustments using emergent constraints can remove 
the effect of historical simulation errors on future climate 
projection in each model (Li et al. 2016), the use of anoma-
lous time series with/without mean bias removed may have 
significant impact on calibrated results. Hence, the other 
purpose of this study is to examine the effect of different 
data preprocessing procedures on constrained results.

Because the surface temperature and the precipitation 
are the two variables that have the most social-economic 
influences, in this study we examine if the proposed non-
parametric present-future relation of a MME can be used 
to constrain the corresponding future projections of these 
two variables. The remainder of this paper is organized as 
follows. We first describe data and the two data preprocess-
ing procedures used in this study in section two. Then, we 
introduce the methodology and implementation of the three 

steps rank adjustment procedure in section three. In sec-
tion four, we present and compare the original and the rank 
adjustment constrained results of the global mean surface 
temperature (GMST) anomalies, the surface temperature 
and the precipitation fields. Finally, we summarize and con-
clude this study in section five.

2. DATA

Observed data used in this study are monthly mean 
surface temperature anomalies in the period 1901 - 2018 
from the Met office Hadley Centre HadCRUT4.6 (Morice 
et al. 2012) and monthly mean precipitation in the period 
1979 - 2018 from the CPC Merged Analysis of Precipita-
tion (CMAP) (Xie and Arkin 1997). Model data are monthly 
mean surface temperature (tas) and monthly mean precipi-
tation (pr) in the period 1901 - 2100 from all simulations 
of the Representative Concentration Pathway 8.5 scenario 
in the CMIP5 dataset of the KNMI Climate Explorer web-
site (https://climexp.knmi.nl/start.cgi) and are denoted as 
the RCP85 MME. Table 1 lists the number of simulations 
of each variable for each CMIP5 model. In all, there are 81 
and 77 members in the RCP85 MME for surface temperature 
and precipitation, respectively. Furthermore, all original ob-
served and model data were regridded to a common resolu-
tion of 5° × 5° grid prior to further analyses.

To examine the effect of different data preprocessing 
procedures on constraining future projections, two anoma-
lous datasets were generated from the original RCP85 MME 
in this study. The first dataset is generated by removing a 
common reference state from each original time series of 
the RCP85 MME and is denoted as the RCP85-clim MME. 
The common reference state for the surface temperature 
field is the same as the climatological reference state of the 
HadCRUT4.6 (i.e., the 1961 - 1990 mean seasonal cycle). 
However, because the CMAP data are only available from 
1979 onward, the same 1961 - 1990 period cannot be used 
as the reference period, therefore we choose the 1981 - 2010 
mean seasonal cycle of the CMAP as the common reference 
state for the precipitation field. The second dataset is gener-
ated by removing each individual time series’ own mean 
seasonal cycle from the original RCP85 MME and is de-
noted as the RCP85-individual MME. The mean seasonal 
cycle of each time series is defined in the same correspond-
ing reference period as above.

To demonstrate the distinct effects of these two data 
preprocessing on temporal behavior of the original MME, 
Fig. 1 shows temporal evolutions of the GMST from the 
original RCP85 MME as well as the GMST anomalies (gm-
sta) from the RCP85-clim MME and the RCP85-individual 
MME, respectively. It is noted that because the only differ-
ence between the GMST in Fig. 1a and the gmsta in Fig. 1b  
is the common mean seasonal cycle, therefore, time se-
ries in both panels exhibit similar temporal evolutions and  
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warming trends. Furthermore, the spreads of these two 
MMEs are over-dispersive compared to temporal variabil-
ity of the HadCRUT4.6 but remains approximately con-
stant over time and the corresponding MME means exhibit 
slightly cold biases compared to the observations. Hence this 
kind of data preprocessing in generating the gmsta of the 
RCP85-clim MME will preserve almost all temporal charac-
teristics of the original data including the mean bias of each 
original time series. On the other hand, because the gmsta in  
Fig. 1c were generated by removing each individual time 
series’ own mean seasonal cycle in period 1961 - 1990 from 
the GMST of the original RCP85 MME, the mean bias of 
each original time series in that reference period is also re-
moved. Thus, although clear warming trends are still ob-
served, those anomalies in Fig. 1c tend to concentrate around 
the observations in period 1961 - 1990 but gradually disperse 
toward both ends. Furthermore, all anomalous time series in  
Fig. 1c exhibit no visible mean biases in historical period. 
These results suggest that this kind of data preprocessing 
in generating the gmsta of the RCP85-individual MME can 
remove the mean bias of the reference period from each 
original time series but cannot preserve the relative positions 
(ranking) of each time series in the original RCP85 MME.

3. METHODOLOGY

In this study, we develop a three steps rank adjustment 
procedure to explore the feasibility of using nonparametric 
present-future relationships of a given MME to constrain 
the corresponding future projections. The first step is to es-
tablish nonparametric present-future relations from the rank 
distributions of future projection and historical periods for 
all members of a given MME. The second step is to con-
struct the rank distribution of the observations in the same 
historical period to be used to constrain the corresponding 
future projections. The third step is to adjust the rank distri-
bution of the observations in the future projection period us-
ing the established present-future relationships to constrain 
the ‘best-guess’ and uncertainty ranges of future projections 
from the corresponding MME. A brief description of de-
tailed implementation for each step is as follows.

3.1 Establish Nonparametric Present-Future 
Relationships

To establish a present-future relationship of a given 
variable at a specific grid, we first apply the perfect model 
approach (Abramowitz and Bishop 2015; Knutti et al. 2017) 
to calculate the rank difference between future projection 
period (2051 - 2100) and historical period (1951 - 2000) for 
all members of either the RCP85-clim MME or the RCP85-
individual MME. For a given MME, the basic concept of 
the perfect model approach is to treat each member in turn 
as ‘truth’ and the rest of the MME as the corresponding 

Model number Model Name RCP8.5 tas RCP8.5 pr

1 ACCESS1-0 1 1

2 ACCESS1-3 1 1

3 BCC-CSM1-1 1 1

4 BNU-ESM 1 1

5 CanESM2 5 5

6 CCSM4 6 6

7 CESM1-BGC 1 1

8 CESM1-CAM5 2 2

9 CMCC-CM 1 1

10 CMCC-CMS 1 1

11 CNRM-CM5 5 5

12 CSIRO-Mk3.6.0 10 10

13 EC-EARTH 8 4

14 FGOALS-g2 1 1

15 FIO-ESM 3 3

16 GFDL-CM3 1 1

17 GFDL-ESM2G 1 1

18 GFDL-ESM2M 1 1

19 GISS-E2-H p1 1 1

20 GISS-E2-H p2 1 1

21 GISS-E2-H p3 1 1

22 GISS-E2-R p1 1 1

23 GISS-E2-R p2 1 1

24 GISS-E2-R p3 1 1

25 HadGEM2-AO 1 1

26 HadGEM2-CC 1 1

27 HadGEM2-ES 4 4

28 INMCM4 1 1

29 IPSL-CM5A-LR 4 4

30 IPSL-CM5A-MR 1 1

31 IPSL-CM5B-LR 1 1

32 MIROC5 3 3

33 MIROC-ESM 1 1

34 MIROC-ESM-CHEM 1 1

35 MPI-ESM-LR 3 3

36 MPI-ESM-MR 1 1

37 MRI-CGCM3 1 1

38 NorESM1-M 1 1

39 NorESM1-ME 1 1

Table 1. The number of RCP8.5 simulations from each CMIP5 model.
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MME. Then, we can determine the rank distribution of each 
‘truth’ within the given MME in any given period. Take the 
gmsta of the RCP85-clim MME in historical period (1951 - 
2000) as an example. Because there are 81 members in the 
MME and each member has 600 time steps, this example 
dataset forms a 81 × 600 matrix A. By sorting each column 
of A in ascending order and identifying the corresponding 
column position of the ‘truth’, we yield a time series con-
sisting 600 ranks of the ‘truth’. From this time series we can 
then construct the rank histogram of the ‘truth’ in histori-
cal period. Therefore, by treating each member in turn as 
‘truth’ and applying the same data manipulations as above, 
we can obtain the rank distributions for all members of the 
given MME at both historical and future projection periods. 
Afterward, we calculate rank differences of each member 
between future projection and historical periods at 5th, 10th, 
20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, and 95th per-
centiles. Taking the 5th percentile of the RCP85-clim MME 
as an example, we first calculate the rank of 5th percentile 
from 600 ranks of a given model in period 1951 - 2000 (rank 
A). Similarly, we calculate the rank of 5th percentile from 
600 ranks of a given model in period 2051 - 2100 (rank B). 
Then the corresponding rank difference is defined as rank 
B-rank A. The same calculations are repeated for every 
member of the given MME.

As a demonstration, Fig. 2 shows boxplots of rank dif-
ferences between future projection and historical periods as 
a function of percentiles for the original RCP85 GMST, the 
RCP85-clim gmsta, and the RCP85-individual gmsta. One 
clearly observes that boxplots in Figs. 2a and b are identical. 
This is expected because the data preprocessing in deriving 

the RCP85-clim gmsta does not alter the rank distribution 
of the original RCP85 MME. More interestingly, one notes 
that all medians of rank differences in these two panels are 
very close to zero. It is noted that rank differences between 
future projection and historical periods can be viewed as 
the corresponding nonparametric trends of each member at 
these percentiles. This implies that the medians of rank dif-
ferences of all members of a given MME can be viewed as 
the optimal estimation of the nonparametric trends of the 
given MME at these percentiles. Therefore, median of rank 
differences from each examined percentile is the desired 
nonparametric present-future relation we want to estab-
lish. From this perspective, all medians of rank differences 
in both Figs. 2a and b imply that both the original RCP85 
MME and the RCP85-clim MME exhibit no preferred non-
parametric trends at all examined percentiles and are in 
agreement with the almost constancy of MME spreads ob-
served in Figs. 1a and b. In contrast, almost all medians of 
rank differences in Fig. 2c are significantly different from 
zero. This result indicates that the RCP85-individual MME 
has notable nonparametric trends at all examined percen-
tiles. Thus, the rank distribution of this MME is apparently 
inconsistent with that of the original MME. Because the 
mean bias of each member of the original RCP85 MME in 
period 1961 - 1990 were removed, this result implies that 
this kind of data preprocessing renders the rank distribution 
of the RCP85-individual MME being significantly deviated 
from that of the original RCP85 MME.

Base on the above results, it appears that the close-
ness to zero of most medians of rank differences from all 
examined percentiles can be used to identify whether the 

(a)

(b)

(c)

Fig. 1. Temporal evolutions of the GMST from the original RCP85 MME (a) as well as the gmsta from the RCP85-clim MME (b) and the RCP85-
individual MME (c), respectively. In each panel, the green lines are all time series from the given MME, while the thick black and red lines are the 
corresponding time series from the HadCRUT4.6 and the given MME mean, respectively.
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rank distribution of a given MME is consistent with the 
constancy of rank distribution condition. Therefore, in this 
study we define a rank constancy indicator (c ) as the aver-
age of absolute values of the medians of rank differences 
from all examined percentiles and the closeness to zero of 
c  may be used to identify whether the rank distribution of a 
given MME is consistent with the constancy condition. The 
formula of c  is as follows. Let ic  be the median of rank 
difference of the i-th examined percentile and m is the total 
number of examined percentiles. Then c  is defined as

m
1

i
i

m

1
c c=

=
/  (1)

where ic  is the absolute value of ic .
For example, in this study we calculate rank differenc-

es of each member between future projection and historical 
periods at the 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 
80th, 90th, and 95th percentiles. Therefore, in this study, m 
= 11, 1c  corresponds to the median of rank difference at the 
5th percentile, 2c  corresponds to the median of rank differ-
ence at the 10th percentile, etc. Using the above formula, the 
rank constancy indicators of gmsta from the RCP85-clim 
MME (Fig. 2b) and the RCP85-individual MME (Fig. 2c) 
are .1 18c =  and .13 09c = , respectively. Hence, the rank 
distribution of the RCP85-clim MME is more consistent 
with the constancy of rank distribution condition than that 
of the RCP85-individual MME.

3.2 Construct the Rank Distribution of the 
Observations in Historical Period

To construct the rank distribution of the observations 
within a given MME in historical period, we need to com-
bine the observations with the given MME to form an aug-
mented matrix AM . Using the same example as that of section 
3.1, AM  is a 82 × 600 matrix. By sorting each column of AM  in 
ascending order and identifying the corresponding column 
position of the observations, we yield a time series consist-
ing 600 ranks of the observations. Then, the rank histogram 
of the observations in historical period can be constructed 
from this time series.

3.3 Adjust Rank Distribution to Constrain Future 
Projections

In this study, we modify the rank histogram calibra-
tion method (Hamill and Colucci 1997, 1998) to adjust the 
‘best-guess’ and the 5 - 95 uncertainty ranges of future pro-
jections for a given variable from the corresponding MME. 
Conceptually, by identifying the ranks of the 5th (P5), 50th 
(P50), and 95th (P95) percentiles from the rank histogram 
of the observations, we can use these ranks to calibrate the 
median and the 5 - 95 uncertainty range of the observations 
derived from the corresponding MME in any period. How-
ever, because there is no observation in future projection 
period, the total rank of the MME in future projection period 
is reduced by 1 compared to that in historical period. There-
fore, we need to adjust these ranks before applying them to 

(a) (b) (c)

Fig. 2. Boxplots of rank differences between future projection period (2051 - 2100) and historical period (1951 - 2000) as a function of percentiles 
from the original RCP85 MME (a), the RCP85-clim MME (b), and the RCP85-individual MME (c), respectively. Each box and the red line within 
the box correspond to the interquartile range (IQR) and the median value at the given percentile. Because there are 81 members in each MME, 
therefore each boxplot consists of 81 samples.
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constrain the estimation of the ‘best-guess’ and the 5 - 95 
uncertainty range from the given MME.

It is noted that P5 implies there is 5% (95%) probability 
of occurrence that the rank of observations will be small-
er (larger) than P5. If one removes the observations from 
the MME, then there is 5% (95%) probability that the rank 
of the 5th percentile will be reduced by 1 (i.e., the rank is 
reduced to P5 - 1), while there is 95% probability that the 
rank of the 5th percentile will remain the same (i.e., the rank 
remains the same as P5). Therefore, when the observations 
are absent, the rank of the 5th percentile should be adjusted 
to . ( ) .P PP5 0 05 5 1 0 95 5# #= - +K . However, because the 
median of rank difference at the 5th percentile ( 1c ) can be 
viewed as an optimal trend estimation of rank at this per-
centile, 1c  should be added to the adjusted ranks in future 
projection period to account for the presence of this nonpara-
metric trend. Therefore, the adjusted rank of the 5th (denoted 
as P5l) percentile of the observations in future projection 
period can be estimated as,

. ( ) .P P P P5 5 0 05 5 1 0 95 51 1# #c c= + = - + +l K  (2)

Similarly, the adjusted ranks of the 50th (P50l) and 95th 
( 9P 5l) percentiles of the observations in future projection 
period can be estimated as

. ( ) .P P P P50 50 0 5 50 1 0 5 506 6# #c c= + = - + +l P  (3)

and

. ( ) .P P P P5 5 0 5 5 1 0 5 59 9 09 9 91 11 1# #c c= + = - + +l P  (4)

where 6c , and 11c  are the medians of rank differences at 
the 50th and 95th percentiles, respectively. Then, we can 
use these adjusted ranks to constrain the median and the 5 - 
95 uncertainty range of the corresponding variable in future 
projection period from the given MME.

4. RESULTS

Figure 3 shows the original and constrained medians 
and 5 - 95 uncertainty ranges of the gmsta from the RCP85-
clim MME and the RCP85-individual MME, respectively. 
In Fig. 3a, one notes that the original 5 - 95 uncertainty 
ranges of the RCP85-clim MME are over-dispersive but 
remain approximately constant during the whole period. 
Furthermore, the medians of the MME exhibit slightly cold 
bias in historical period compared to the observations. In 
contrast, the constrained 5 - 95 uncertainty ranges shown 
in Fig. 3c are very compact and narrow. Compared to  
Fig. 3a, these 5 - 95 uncertainty ranges around the end of 
the 21st century have been successfully narrowed from 3° K 

- 6° K to 4° K - 5.5° K. Furthermore, the constrained medi-
ans show no visible bias with the observations in historical 
period. These results demonstrate that the adjustment proce-
dure can effectively reduce biases and uncertainty ranges of 
gmsta’s future projections from the RCP85-clim MME. On 
the other hand, Figs. 3b and d show quite different charac-
teristics. The medians in both panels clearly overlaps with 
the observations in historical period and the 5 - 95 uncer-
tainty ranges tend to center around the observations in pe-
riod 1961 - 1990 but gradually disperse toward both ends. 
Furthermore, one notes in Fig. 3d that the constrained 5 - 95 
uncertainty ranges are too narrow to cause a sizable frac-
tion of observations after year 2000 being left outside of the 
range. Because the rank distribution of RCP85-individual 
MME is not consistent with the constancy of rank distri-
bution condition, this result suggests that a naïve applica-
tion of the adjustment procedure to an already mean-bias-
removed MME may lead to over-constrained consequence. 
Thus, it appears that if the rank distribution of a given MME 
is consistent with the constancy of rank distribution condi-
tion, then the rank adjustment procedure can properly con-
strain biases and uncertainty ranges of the corresponding 
variable’s future projections.

Can this rank adjustment procedure be applied to in-
dividual grids and to other variables to constrain the cor-
responding future projections? To examine these possibili-
ties, we first calculated the rank constancy indicator (c ) of 
surface temperature and precipitation fields from both the 
RCP85-clim MME and the RCP85-individual MME at each 
grid on the global. Figure 4 shows the corresponding results. 
For surface temperature fields, Fig. 4a shows most grids ex-
cept those around northern polar region have 2<c , while 
most grids in Fig. 4c have 2>c . As noted in Fig. 2, these 
results indicate that the rank distributions of surface temper-
ature anomalies at most places from the RCP85-clim MME 
are more consistent with the constancy of rank distribution 
condition than those from the RCP85-individual MME. 
However, anomalies around northern polar region from both 
MMEs are inconsistent with the constancy of rank distribu-
tion condition. Furthermore, differences in c  between these 
two MMEs are larger in ocean areas than those in land ar-
eas. Because the main difference between these two MMEs 
is whether the mean bias in each model was removed, this 
result suggests that surface temperature warming trends in 
land areas may be more consistent among members of the 
CMIP5 MME than those in ocean areas.

As for precipitation fields, most grids in both  
Figs. 4b and d have 1<c . Grids with 1>c  mainly locate 
within the Tropics. Nevertheless, no c  value is larger than 3. 
Furthermore, although generally c  values from the RCP85-
clim MME are still less than those from the RCP85-individ-
ual MME at most places, the differences between them are 
small. These results indicate that the rank distributions of 
precipitation anomalies at most places from both MMEs are 
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(a) (b)

(c) (d)

Fig. 3. The original and constrained median and 5 - 95 uncertainty range of the gmsta from the RCP85-clim MME (a) (c) and the RCP85-individual 
MME (b) (d), respectively. Blue, red, and green lines are lines of the 95th, 50th, and 5th percentiles, respectively. These lines are determined as 
follows. In period 1901 - 2000, 5P K , 50PP , and 95PP  are used. In period 2051 - 2100, 5P l, 50P l, and 95P l are used. In period 2001 - 2050, the cor-
responding ranks are increased linear from 5P K , 50PP , and 95PP  to 5P l, 50P l, and 95P l, respectively. Black line in each panel corresponds to the 
observations. The red vertical lines in each panel mark the range of reference period (years 1961 and 1990, respectively).

(a) (b)

(c) (d)

Fig. 4. Spatial distributions of the rank constancy indicator (c ) of surface temperature (a) (c) and precipitation fields (b) (d) from the RCP85-clim 
MME and the RCP85-individual MME, respectively.
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consistent with the constancy of rank distribution condition. 
The only notable exception is the equatorial central Pacific 
where c  values from the RCP85-clim MME are larger than 
those from the RCP85-individual MME. This result indi-
cates that precipitation trends in this region exhibit less con-
sistent behavior among members of the CMIP5 MME than 
those in elsewhere.

We then applied the rank adjustment procedure to ex-
amine whether future projections of surface temperature and 
precipitation fields can be properly constrained. Figure 5 
shows the 2081 - 2100 averaged spatial distributions of the 
original and constrained medians of both surface tempera-
ture and precipitation fields from the RCP85-clim MME. 
One notes in Fig. 5a that the original RCP85-clim MME 
medians of surface temperature anomalies exhibit signifi-
cant spatial variabilities. Furthermore, although most places 
exhibit warming, still slightly cooling exist in some places 
(e.g., mid northern Atlantic Ocean between 45 and 60°N and 
Antarctic continent near dateline). In particular, anomalies 
around Antarctic are very erratic and some change signs 
over very short distances. In contrast, constrained medians 
in Fig. 5c are all positive and exhibit smoother and more 
homogeneous spatial variations than those in Fig. 5a. These 
medians generally follow land-sea distribution and tend to 
increase in magnitudes from low latitudes toward high lati-
tudes. Furthermore, erratic variations around Antarctic are 
absent. These characteristics of Fig. 5c are quite similar to 
those of the 1988 - 2017 mean field of the HadCRUT4.6 
shown in Fig. 6a. Because the HadCRUT4.6 data are surface 
temperature anomalies deviated from the 1961 - 1990 mean 
seasonal cycle, spatial pattern of Fig. 6a is equivalent to 
the mean climate change pattern of the 1988 - 2017 period. 
Thus, the resemblance between Figs. 5c and 6a suggests that 
the rank adjustment procedure is capable of properly con-
straining the corresponding future projections by selecting a 
subset of ranks that are consistent with those of observations 
from the given MME.

As for the precipitation field, constrained results are 
even more encouraging. In Fig. 5b one notes that the origi-
nal RCP85-clim MME medians of precipitation anoma-
lies exhibit a clear double intertropical convergence zone 
(ITCZ) pattern (Mechoso et al. 1995; Lin 2007) in the tropi-
cal Pacific. Because the double-ITCZ pattern is a common 
precipitation bias in many climate models, its appearance 
in Fig. 5b is not unexpected but is likely spurious. In con-
trast, the constrained medians of the precipitation anomalies 
shown in Fig. 5d exhibits a more realistic spatial pattern 
that resembles the 1988 - 2017 mean field of the CMAP 
shown in Fig. 6b in the equatorial Tropics. More interest-
ingly, there is no spurious ITCZ pattern in the tropical south 
Pacific. Since this resemblance is very pronounced in the 
ITCZ region, the constrained future projection of precipita-
tion field shown in Fig. 5d appears to be consistent with 
the rich-get-richer mechanism of precipitation change under 

global warming (Chou and Neelin 2004; Held and Soden 
2006; Chou et al. 2009). Again, this result suggests that the 
rank adjustment procedure is capable of properly constrain-
ing the corresponding future projections by selecting a sub-
set of ranks that are consistent with those of observations 
from the given MME.

Figure 7 shows the same as Fig. 5, except for results 
from the RCP85-individual MME. Look at this figure, one 
immediately notes the resemblance of spatial patterns be-
tween original and constrained results in both fields. Fur-
thermore, the spatial patterns of surface temperature anom-
alies are similar to that of Fig. 6a. However, both spatial 
patterns of precipitation exhibit a clear double-ITCZ pat-
tern. Because the mean bias of each model had been re-
moved in constructing the RCP85-individual MME, both 
fields show no obvious differences between original and 
constrained results. Thus it appears that the rank adjustment 
procedure does not have any visible capability to better con-
strain the corresponding future projections from the RCP85-
individual MME.

Figures 8 and 9 show the 2081 - 2100 averaged spatial 
distributions of the constrained 5 - 95 uncertainty ranges for 
both surface temperature and precipitation fields as well as 
the corresponding differences between the constrained and 
the original 5 - 95 uncertainty ranges from the RCP85-clim 
MME and the RCP85-individual MME, respectively. In  
Fig. 8a one clearly notes that the calibrated uncertainty rang-
es have distinct land-sea contrast with magnitudes over lands 
being significantly larger than those over oceans. Further-
more, both Arctic and Antarctic regions have significantly 
greater uncertainty ranges than elsewhere. These features 
are similar to those of the 1988 - 2017 standard deviation 
field of the HadCRUT4.6 shown in Fig. 6c. It is noted that 
spatial patterns of both the uncertainty range and the stan-
dard deviation fields characterize the spatial distribution of a 
given variable’s temporal variability. Furthermore, temporal 
variability of a given variable at individual grid is an inte-
gral response of the dynamic and thermodynamic properties 
of that specific place. Therefore, if global climate change 
does not introduce substantial change in local dynamic and 
thermodynamic properties in most places on the earth, this 
resemblance of spatial patterns between the uncertainty 
range and the standard deviation fields may be unexpected. 
Similar features are also observed in Fig. 9a. Nevertheless, 
the constrained uncertainty ranges in Fig. 8a are generally 
smaller than those in Fig. 9a. An obvious exception is those 
in the Antarctic region where the constrained uncertainty 
ranges in Fig. 8a are larger than those in Fig. 9a. The cor-
responding spatial distributions of differences between the 
constrained and the original 5 - 95 uncertainty ranges shown 
in both Figs. 8c and 9c reveal that most of these differences 
are negative. Similarly, an obvious exception is those in the 
Antarctic region where the differences are positive. Further-
more, the magnitudes of these differences (regardless their 
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(a) (b)

(c) (d)

Fig. 5. The 2081 - 2100 averaged spatial distributions of the original (a) and the constrained (c) surface temperature projections from the RCP85-
clim MME medians. (b) and (d) are the corresponding spatial patterns for precipitation projections.

(a) (b)

(c) (d)

Fig. 6. The 1988 - 2017 mean and standard deviation fields of the HadCRUT4.6 surface temperature anomalies and the CMAP precipitation,  
respectively.



Shih-Chung Tai & Yung-An Lee658

(a) (b)

(c) (d)

Fig. 7. The same as Fig. 5, except for results from the RCP85-individual MME.

(a) (b)

(c) (d)

Fig. 8. The 2081 - 2100 averaged spatial distributions of the constrained 5 - 95 uncertainty ranges for surface temperature (a) and precipitation (b) 
fields from the RCP85-clim MME. The corresponding spatial distributions of differences between the constrained and the original 5 - 95 uncertainty 
ranges are shown in (c) and (d). Negative values in both panels indicate that the constrained 5 - 95 uncertainty ranges are less than original ranges 
in those places.
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signs) in Fig. 8c are generally larger than those in Fig. 9c. 
These results demonstrate that the rank adjustment proce-
dure can indeed reduce uncertainty ranges of surface tem-
perature projections at most places. Furthermore, the rank 
adjustment procedure is more effective in constraining fu-
ture projections from the RCP85-clim MME than from the 
RCP85-individual MME. However, the results also show 
there are places where the rank adjustment procedure is 
unable to reduce the uncertainty range. Although the exact 
causes for this failure are yet to be explored, the spread of the 
given MME being under-dispersive or severely biased may 
be one of the possible reasons. In this respect, regions where 
this rank adjustment procedure failed may also provide valu-
able clues for model improvements.

As for the precipitation field, one notes that the spatial 
distribution of the constrained 5 - 95 uncertainty ranges in 
both Figs. 8b and 9b are quite similar to the 1988 - 2017 
standard deviation field of the CMAP (shown in Fig. 6d). 
The constrained uncertainty ranges in Fig. 8b are also gen-
erally smaller than those in Fig. 9b. The corresponding 
spatial distributions of differences between the constrained 
and the original 5 - 95 uncertainty ranges shown in both 
Figs. 8d and 9d reveal that most of these differences are 
negative. Furthermore, the magnitudes of these negative 
differences in Fig. 8d are generally larger than those in  
Fig. 9d. These results further confirm that the rank adjust-
ment procedure can indeed be used to constrain future pro-
jections of a given MME at most places on the earth.

5. DISCUSSION AND CONCLUSION

In this study, we introduce a three steps rank adjustment 
procedure to explore the feasibility of using the rank distri-
butions of a given MME to establish nonparametric present-
future relations to be used in constraining the correspond-
ing future projections. The first step is applying the perfect 
model approach to examine rank differences between future 
projection and historical periods as a function of percentiles 
from a given MME. It is noted that these rank differences 
can be viewed as the corresponding nonparametric trends 
of each member at these percentiles. This implies that the 
medians of rank differences of all members of a given MME 
can be viewed as an optimal estimation of the nonparamet-
ric trends of the given MME at these percentiles. Therefore, 
median of rank differences from each examined percentile 
is the desired nonparametric present-future relation we want 
to establish. The second step is to construct the rank distri-
bution of the observations in the same historical period to be 
used to constrain the corresponding future projections. The 
third step is to adjust the rank distribution of the observa-
tions in the future projection period using the established 
present-future relationships to constrain the ‘best-guess’ 
and uncertainty ranges of future projections from the cor-
responding MME.

Afterward, we applied the rank adjustment procedure 
to gmsta from both RCP85-clim and RCP85-individual 
MMEs. The rank adjustment constrained results from the 

(a) (b)

(c) (d)

Fig. 9. The same as Fig. 8, except for results from the RCP85-individual MME.
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RCP85-clim gmsta show that the adjustment indeed has the 
capability to reduce the biases and uncertainty ranges of 
gmsta’s future projections, while those from the RCP85-in-
dividual indicate that the adjustment tends to yield over-cal-
ibrated consequence. Then we applied the rank adjustment 
procedure to constrain future projections of surface tem-
perature and precipitation fields. For surface temperature 
and precipitation fields, spatial patterns of the constrained 
medians averaged over 2081 - 2100 from the RCP85-clim 
MME are quite similar to that of the 1988 - 2017 mean field 
of the HadCRUT4.6 and the CMAP, respectively. These re-
semblances suggest that the rank adjustment procedure is 
capable of properly constraining the corresponding future 
projections by selecting a subset of ranks that are consis-
tent with those of observations from the RCP85-clim MME. 
More interestingly, this resemblance in precipitation field 
implies that the constrained medians of precipitation pro-
jections are completely free from the long-standing double 
ITCZ bias. Furthermore, differences between the con-
strained and the original 5 - 95 uncertainty ranges of surface 
temperature and precipitation fields are mostly negative. 
These results confirm that the application of rank adjust-
ment procedure can indeed reduce biases and uncertainty 
range of the corresponding future projections at most loca-
tions on the earth.

As for results from the RCP85-individual MME, the 
corresponding spatial patterns of the original and the con-
strained future projection results for both surface temper-
ature and precipitation fields are quite similar. In particu-
lar, although being rank adjusted, the constrained medians 
of precipitation projections are still contaminated by the 
double ITCZ bias. These results indicate that the rank ad-
justment procedure has only insignificant impact on future 
projections derived from the RCP85-individual MME. 
Compare to results from the RCP85-clim MME, it appears 
that the combination of the rank adjustment procedure and 
the RCP85 MME generally yields more consistent future 
projections than other combinations.

We have demonstrated the feasibility of using the rank 
adjustment procedure to constrain the corresponding future 
projections from a given MME. Although results are encour-
aging, more studies and comparison with other related works 
are needed to improve the methodology, implementation, and 
applicability of the rank adjustment procedure. Nevertheless, 
because this procedure is based on nonparametric present-
future relationships of a given MME, its ranges of applicabil-
ity are believed to be wider than previously identified and 
proposed emergent constraints. As global warming is accel-
erating, we believe that this rank adjustment procedure can 
play an important role in providing more consistent future 
projections of surface temperature, precipitation fields and 
other related variables from the forthcoming CMIP6 (Eyring 
et al. 2016) MME to convince policy maker and public to 
take stronger actions to prevent foreseeable catastrophes.
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