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ABSTRACT

Carbon-water cycle of terrestrial ecosystem is the important process of energy 
and mass exchanges, which is greatly influenced by changes of wet/dry conditions. 
Recently, China is experiencing frequent extreme weather events. Many concerns 
have been raised to explore how and to what extent dryness/wetness have influenced 
the carbon-water cycle in China on the regional scale. In this study, we examined the 
effects of changes of dryness/wetness on gross primary productivity (GPP), evapo-
transpiration (ET), and water use efficiency (WUE) in terrestrial ecosystems of China 
during 2001 - 2013 using standardized wet/dry anomaly index and Mann-Kendall 
method. Our analysis indicated that droughts hit extensively in 2001, 2006, 2009, and 
2011, in contrast, extremely severe floods occurred in 2002, 2003, and 2010. Spa-
tially, droughts increased obviously in south China but were alleviated in north China 
from 2001 to 2013. On average, GPP and WUE of China exhibited increasing trends 
but ET exhibited a decreasing trend. Severe dry/wet conditions (|SPEI| > 1) decreased 
GPP, ET, and WUE. Furthermore, the effect of dry stress on GPP, ET, and WUE was 
much more serious than the effect of wet stress. It was implied that the trends of GPP, 
ET, and WUE would not change greatly on the long-term scale, but extreme dry/wet 
events would enhance their change amplitudes in future.
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1. INTRODUCTION

The carbon and water cycle known as an important 
ecological coupling process is the basic biophysical process 
of surface energy exchange and material circulation (Yu 
et al. 2004). Its imbalance would further exacerbate global 
climate change. For example, the increasing CO2 concen-
tration in the atmosphere causes global warming, which 
would cause regional precipitation imbalances and enhance 
extreme weather events such as droughts and floods (Oli-
ver 2005). Droughts and floods would cause soil moisture 
anomalies that affect the supply of water to plant roots, 
which in turn affects the carbon assimilation and evapo-
transpiration (Van der Molen et al. 2011).

There are several climate-based indicators to assess 
climate dryness and wetness (Asadi Zarch et al. 2015; Zhao 
et al. 2017; Zhang et al. 2019). They can be classified as two 

types: one is using climate data and probabilistic calculation 
such as the Standardized Precipitation Index (SPI), the Stan-
dardized Precipitation Evapotranspiration Index (SPEI), 
and the other is based on water balance such as the Palmer 
Drought Severity Index (PDSI) and its variants. Under the 
background of global warming, SPEI not only needs less 
parameters and requires little computation, but it also takes 
into account temperature anomalies in drought on different 
time scales (Vicente-Serrano et al. 2012). Thus, SPEI and 
PDSI have been used widely to monitor dry and wet condi-
tions in China (Zhao et al. 2017; Li et al. 2020).

In recent years, a series of studies have been carried 
out on the effects of droughts on the carbon and water cycle 
for both global and regional scales. For instance, the study 
of Ciais et al. (2005) showed that the decrease of summer 
precipitation and the extreme heat of 2003 in Europe caused 
a significant drop in gross primary productivity (GPP). 
Droughts of China resulted in the decline of net primary 
productivity (NPP) in the northwestern and eastern regions 
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(Cheng et al. 2012; Zhao et al. 2014). Previous studies have 
shown that a much significant drier trend occurred in south-
west and northeast of China during the last thirty years (Zou 
et al. 2010), whereas the frequency and intensity of floods in 
the southeast of China were on the rise (Liu and Xia 2016). 
The question is whether the effects of dryness and wetness 
on the carbon-water fluxes are the same in different regions 
of China?

This study aims to quantify dryness and wetness and 
evaluate the effects of dryness and wetness on the carbon 
and water flux of Chinese terrestrial ecosystem. We first 
analyzed the dryness and wetness characteristics of China, 
and then explored the responses of gross primary productiv-
ity (GPP), evapotranspiration (ET), and water use efficien-
cy (WUE) to variations of dryness/wetness in China. This 
study will provide a better understanding of the feedback of 
extreme dry/wet events on the terrestrial ecosystem carbon 
and water cycle and provide a reference for the adaptation 
of ecosystem to extreme climate events.

2. MATERIALS AND METHODOLOGY
2.1 Data Sources for Assessment of Dryness and 

Wetness

We used three different datasets to distinguish dryness 
and wetness in China in this study.

Standardized Precipitation Evapotranspiration Index 
(SPEI) developed on the base of SPI by Vicente-Serrano 
et al. (2010), is widely used for drought monitoring on the 
background of global climate warming at present. The SPEI 
is characterized by multiple time-scales which can be chosen 
according to different research purposes (Zhao et al. 2017; 
Yao et al. 2018). In this study, the SPEI time series from 
2000 to 2013 with a 0.5° spatial resolution used to distin-
guish dry/wet condition of China is obtained from the Global 
SPEI database (http://spei.csic.es/database.html). The data-
base is calculated based on monthly potential evapotranspi-
ration (PET) in terms of the FAO Penman-Monteith method 
(Allen et al. 1994) using CRU TS3.2 monthly climate da-
taset from the Climatic Research Unit of the University of 
East Anglia (Harris et al. 2014). The detailed descriptions 
regarding the calculation of the SPEI database can be found 
in the study of Vicente-Serrano et al. (2010).

Self-calibrating Palmer Drought Severity Index (scP-
DSI) as a variant of the original PDSI was also developed 
based on soil water balance (Van der Schrier et al. 2013) but 
was designed more comparable for different climate regions 
relative to the original PDSI (Wells et al. 2004). On the oth-
er hand, scPDSI considers not only precipitation, tempera-
ture but also soil moisture compared with SPI and SPEI, so 
that it was also used widely for China drought studies in 
recent years (Wang et al. 2016b, 2017b). The scPDSI da-
tabase similar as SPEI at the 0.5° spatial resolution based 
on the FAO Penman-Monteith method using CRU TS3.2 

monthly climate dataset from the Climatic Research Unit of 
the University of East Anglia was also chosen to distinguish 
dry/wet conditions of China (https://crudata.uea.ac.uk/cru/
data/drought/). The details for scPDSI calculation can be 
obtained in the study of Van der Schrier et al. (2013).

A comparison study revealed that SPEIs were suitable 
for monitoring short-term and long-term droughts while 
scPDSI for mid and long-term droughts in China (Zhao et 
al. 2017). Therefore, in this study, we only chose and com-
pared the 3-month SPEI (Xu et al. 2015; Li et al. 2020) and 
scPDSI based on CRU climate datasets with China flood 
and drought disaster bulletin from Ministry of Water Re-
sources (2014) to pick up the better indicator for dryness 
and wetness of China and further used the better one to de-
scribe and quantify the dry-wet distributions of China. The 
SPEI and scPDSI values and the corresponding dry/wet 
classifications are shown in Table 1. Since there are few 
vegetation in the bare lands of west China in Fig. 1, the re-
gion with bare lands was ignored to discuss in this study.

2.2 GPP, ET, and WUE Data Sources

The moderate resolution imaging spectroradiometer 
(MODIS) is an important satellite sensor of NASA Earth 
Observation System. Its ET and GPP products at 1km spa-
tial resolution have been well validated and used widely 
across the world (Hu et al. 2015; Zeng et al. 2015). Lots 
of researches have used MODIS ET, GPP, and further cal-
culated WUE by the ratio of GPP and ET in different re-
gions of China (Mo et al. 2018; Tian and Zhang 2020). In 
this study, we used the MOD16A3 ET and MOD17A2 GPP 
from 2001 to 2013 (http://ntsg.umt.edu) and thereby calcu-
lated WUE in the corresponding period.

Another datasets of GPP, ET, and WUE from 2001 to 
2013 with 1km spatial resolution over China were obtained 
from Zhang et al. (2010, 2012, 2014). The GPP, ET, and 
WUE products were developed from a process-based daily 
BEPS model, and they had been also widely verified in Chi-
na via comparing with flux data at different sites (Zhang et 
al. 2014; Liu et al. 2015).

Observational flux databases in 6 sites of mainland 
China compiled from AsiaFlux (http://www.asiaflux.net) 
were also used in this study, which can provide GPP and ET 
data for further MODIS and BEPS product validation and 
comparison. The vegetation types in 6 sites include needle-
leaf forest, broadleaved forest, mixed forest, grassland, and 
meadow. More details about the sites can be accessed from 
the Asiaflux website. The location of these sites is shown 
in Fig. 1.

2.3 Assessment of Anomalies

The standardized anomaly index (SAI) (Hamed and Rao 
1998; Pei et al. 2013) is used to evaluate variable evolution:

http://spei.csic.es/database.html
https://crudata.uea.ac.uk/cru/data/drought/
https://crudata.uea.ac.uk/cru/data/drought/
http://ntsg.umt.edu
http://www.asiaflux.net/
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where Y(i) is the dependent variable in the i year; Mean(Y) 
and Std(Y) are mean and standard deviation during the study 
period, YSAI(i) is SAI for Y(i) in the i year. The dependent 
variables Y in this study are SPEI, scPDSI, GPP, ET, and 
WUE. For instance, a series of SPEI values were input as 
the variable Y(i) and obtained SPEISAI, and SAIs of the other 
variables were calculated in the same way. The anomalies 
are classified into 5 categories: near normal (|YSAI| ≤ 0.5), 
slightly anomalous (0.5 < |YSAI| ≤ 1), moderately anomalous 
(1 < |YSAI| ≤ 1.5), severely anomalous (1.5 < |YSAI| ≤ 2), and 
extremely anomalous |YSAI| > 2.

2.4 Mann-Kendall Test

Mann-Kendall (MK) test is easy to calculate without 
particular distribution of samples and widely used for tim-
ing sequence analysis (Zhao and Running 2010). The test 
statistic Z of variable statistic S on time series x:
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where Var(S) is the variance of time series x. If Z > 0, the 
time series x exhibited an increasing trend; if Z < 0, the time 
series x exhibited a decreasing trend. The threshold values 
of |Z| are 1.65, 1.96, and 2.57 at the significant level p of 
0.1, 0.05, 0.01.

3. RESULTS
3.1 GPP and ET Validation and Comparison

Figure 2 presented the comparisons of observed annual 
GPP and ET against the corresponding GPP and ET val-
ues compiled from the BEPS model and the MODIS prod-
ucts. The GPP simulated by BEPS model explained 93% 
of the measured GPP (R2 = 0.93, p < 0.01), while the GPP 
from MODIS products explained 95% of the measured ET 
(R2 = 0.95, p < 0.01). Compared with the observed GPP, 
both of MODIS GPP and BEPS GPP can fit 1:1 line very 
well, and the relative errors were less than 11.26%. As for 
ET, the BEPS model explained 70% of the measured ET 
(R2 = 0.70, p < 0.01), while the ET from MODIS products 
explained 77% of the measured ET (R2 = 0.77, p < 0.01). 
Compared with the observed ET, BEPS ET can fit 1:1 line 
well, but MODIS ET was overestimated at the high ET and 
underestimated at the low ET with the larger relative er-
ror of 15.18%, despite that the relative error was still in the 
reasonable bounds. Spatially, GPP and ET from BEPS and 

MODIS averaged during the period of 2001 - 2013 exhib-
ited a similar distribution pattern; however, there were still 
some differences between the two products in some regions 
(Fig. A1). MODIS GPP and ET were larger than the cor-
responding BEPS GPP and ET product in the southeast 
region (relative bias of 10 - 30%), and MODIS GPP was 
comparatively smaller in northeast region. The large rela-
tive biases between MODIS and BEPS products occurred 
in the Tibetan plateau and northwest bare region with low 
GPP and ET that was ignored in this study. Therefore, in 
order to reduce errors and make results more reasonable, we 
used the two-source GPP and ET ensembles from MODIS 
and BEPS to calculate WUE, and then the two-source-mean 
GPP, ET, and WUE were used to do further analysis.

3.2 Variations of Dryness/Wetness in China

According to SAI of the two drought indices used, both 
of SPEI and scPDSI had similar time trends (Figs. 3a and b). 
Both of the average annual SPEI and scPDSI were decreas-
ing from 2002 to 2009 and then increasing, which showed 
China experienced wetting from the dry period after 2009. 
China was on average relatively dry in years of 2001, 2006, 
2009, and 2011 but was relatively wet in years of 2002, 2003, 
2010, 2012, and 2013. The wetness in 2003 and 2010 and the 
dryness in 2001 and 2011 were the most serious (|SPEISAI| > 
1) and widespread during the period of the study (Fig. 3e).

SPEI and scPDSI not only had obvious inter-annual 
variations, but also had significant spatial characteristics 
(Figs. A2 and A3). Generally, the spatial dry/wet changes 
based on SPEI were more consistent with actual dry/wet 
records from China flood and drought disaster bulletin of 
Ministry of Water Resources (2014). However, the dry/wet 
distribution based on scPDSI was shown much drier in Chi-
na relative to the actual dry/wet records. For instance, 2010 
was a typical wet year, SPEI can quickly capture dry/wet 
signals (|SPEISAI| > 1), but due to autoregressive character-
istics, scPDSI was affected by the previous years (Guttman 
1998), so it was still exhibiting drier in this wet year of 2010 
(Figs. A2, A3, and A5). Therefore, we chose SPEI as the 
better indicator for dry and wet conditions of China to do 
further analysis in this study.

Spatially as shown in Fig. A2 based on SPEI, there 
were wide droughts in China especially in northern and 
middle regions in 2001 and 2006 but severe droughts wide-
ly distributed in south region in 2009 and 2011. For 2003, 
severe wetness occurred in the northwest and the middle-
north areas of southeast China, but droughts occurred in 
the southwest China. For 2005, the north central areas of 
China (e.g., middle of Inner Mongolia) also suffered heavy 
droughts. Several moderate droughts occurred in south Chi-
na in 2007 but a normal condition followed in 2008. In 2010 
and 2012, it was relatively wet in most region of China but 
drought patches scattered in southeast and southwest China. 
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In general, the decreased SPEIs in some regions of south-
east and east central China showed the drying trends with 
a 0.05 significance level (orange and red colors in Fig. 4a). 
In contrast, the increased SPEIs in regions of northeast of 
China showed the wetting trends with a significant increase 
(p < 0.05) (blue colors in Fig. 4a).

3.3 Patterns of GPP, ET, and WUE and Responses to 
Dryness/Wetness

The annual average GPP and ET were 718 ± 51 gC m-2 
yr-1, and 529 ± 18 mm yr-1, respectively. They were higher 

in the southeast China and smaller in the southwest China 
(Fig. A4). Temporally on the national scale, GPP showed 
a decreasing trend from 2002 to 2011 and then increased 
greatly with a rate of 30 gC m-2 yr-1. The annual average 
GPP increased with a small rate of 2.3 gC m-2 yr-1 during the 
13 years due to significant decrease of GPP in 2001, 2010, 
2011 (GPPSAI < -0.9) (Fig. 3e). As for ET, its change pattern 
was similar to GPP (Fig. 3d); however, it decreased slightly 
with a rate of -0.3 mm yr-1 during the study period due to the 
smaller increase after 2011 compared to GPP and signifi-
cant decreases in 2001, 2006, 2009, and 2011 (ETSAI < -1.0).

The national annual average WUE was 0.07 gC mm-1. 

Category Severely dry Moderately dry Slightly dry Normal Slightly wet Moderately wet Severely wet

dry/wet level -3 -2 -1 1 2 3

SPEI value < -1.5 -1.5 ~ -1.0 -1.0 ~ -0.5 -0.5 ~ 0.5 0.5 ~ 1.0 1.0 ~ 1.5 > 1.5

scPDSI value < -3.0 -3.0 ~ -2.0 -2.0 ~ -1.0 -1.0 ~ 1.0 1.0 ~ 2.0 2.0 ~ 3.0 > 3.0

Table 1. Dry/wet classification based on SPEI and scPDSI values (Alley 1984; Wang et al. 2018).

Fig. 1. The land cover map of China in 2013 from MODIS with 6 flux sites.

(a) (b)

Fig. 2. Comparisons of measured annual GPP and ET with the corresponding GPP and ET compiled from MODIS and BEPS products.
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Time trends and anomalies of annual mean SPEI, scPDSI, GPP (gC m-2 yr-1), ET (mm yr-1), and WUE (gC mm-1) during 2001 - 2013.

(a) (b)

(c) (d)

Fig. 4. Trends of SPEI (a), GPP (b), ET (c), and WUE (d) during 2001 - 2013 based on Mann-Kendall (MK) method (the colored areas passed the 
0.05 significance level).
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Since ET decreased larger than GPP when SPEI decreased, 
but GPP increased larger than ET when SPEI increased dur-
ing the study period, WUE exhibited a significantly increas-
ing trend with the rate of 0.0075 gC mm-1 yr-1 (R2 = 0.62, p 
< 0.01) and WUESAI was greater than 1.0 in 2006, 2009, and 
2013 (Figs. 3c and e).

Comparison of GPP and ET with SPEI averaged on the 
national average scale (Fig. 3) showed that when SPEI was 
abnormal (i.e., under drought/wet conditions), both GPP 
and ET were relatively lower than average values. When 
|SPEISAI| < 1.5, the averaged GPP and ET decreased with 
the decrease of SPEI, e.g., for the period of 2003 - 2009; or 
they increased with the increase of SPEI, e.g., for the period 
of 2001 - 2003 and 2011 - 2013. At the same time, GPP was 
more sensitive than ET when SPEI increased (Fig. 3e).

Spatially, changes of GPP and WUE had the similar 
patterns (Figs. 4b and d). Areas with decreasing trends of 
GPP and WUE were distributed in the south China, and ar-
eas with increasing trends of GPP and WUE were distributed 
in the north China, especially in center-western China (p < 
0.05) (blue colors in Figs. 4b and d). On the other hand, ET 
did not have a significant change in most of China, with only 
decreased in patchy areas of west and center-east China but 
increased in the patchy areas of center-south and northeast 
China with passing the 0.05 significant level (Fig. 4c). Basi-
cally, the change magnitude of ET was smaller than GPP. 
Compared with changes of SPEI on the long-term scale, 
changes of GPP and ET were positively related to changes 
of SPEI in most areas of China (Figs. 4a, b, and d); however, 
the relationship of GPP and SPEI was stronger than that of 

ET and SPEI. Since WUE was directly determined by GPP 
and ET rather than SPEI, changes of WUE were not well 
correlated to changes of SPEI. The larger changes of GPP 
than ET made the spatial distribution of WUE trend more 
similar to GPP.

On the other hand, we found that relationships of GPP, 
ET, and WUE with SPEI differed at different SPEI ranges. 
Table 2 depicted the coefficients of GPP, ET, and WUE 
with SPEI based on SPEI values for the drought/wetness 
classification. They were negatively related to SPEI when 
SPEI was greater than 1.0 (i.e., under moderate and severe 
wet conditions), but positively related to SPEI when SPEI 
was less than 1.0. In other words, moderate and severe wet 
conditions can cause GPP (p < 0.05) and ET reduced, fur-
ther on WUE (p < 0.05). In addition, moderate and severe 
dry condition can also reduce GPP, ET, and WUE greatly (p 
< 0.05). The influence of SPEI on GPP, ET, and WUE was 
not significant as a whole and did not pass the 0.05 signifi-
cance level when |SPEI| < 1.0. Generally, it suggests that 
the impact of moderate-above droughts was more severe 
than moderate-above wet condition to GPP and ET, but the 
moderate-above effects cannot be ignored.

3.4 Comparisons of GPP and ET Changes in Two 
Extreme Years

To further testify the influences of severe dry/wet con-
dition on the spatial distribution of GPP and ET, we took 
the typical wet year of 2010 and the typical dry year of 
2011 as examples (Figs. 5 and A5). According to anomalies 

SPEI < -1.0 -1.0 ~ -0.5 -0.5 ~ 0 0 ~ 0.5 0.5 ~ 1.0 > 1.0

GPP 0.43** 0.04 -0.02 0.05 0.09 -0.14**

ET 0.46** 0.05 0.01 0.04 0.04 -0.05

WUE 0.32** 0.03 0.02 0.04 0.11** -0.14**

Table 2. Correlation coefficients of SPEI with GPP, ET, and WUE.

Note: “*” represents significance at the 0.05 level, “**” represents significance at the 0.01 level.

(a) (b)

Fig. 5. Spatial distribution of SPEISAI in 2010 (a) and 2011 (b).
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of SPEI, GPP, ET, and WUE in 2010 and 2011 compared 
to the average of 2001 - 2013, results shows that extreme 
drought/wetness with significant anomalies of SPEI (|SPEI| 
> 1, |SPEISAI| > 1) indeed trimmed GPP, ET, and WUE. 
However, the influence differed region by region.

As for the wet year of 2010, GPP decrease significantly 
(GPPSAI < -1) in most of the extreme wetting areas with sig-
nificant anomalies of SPEI (SPEISAI > 1) such as northwest, 
northeast, and southeast China (Figs. 5a and 6a1). Howev-
er, the decreased magnitude of ET (ETSAI) in the northeast 
and northwest China was lower than in the southeast China  
(Fig. 6b1). Therefore, the decrease magnitude of (WUESAI) 
in the southeast China was not as noticeable as in the north-
east and northwest China (Fig. 6c1). Meanwhile, the patchy 
severe droughts (SPEI < -1, SPEISAI < -1) in southwest Chi-
na also reduced GPP, ET, and WUE in 2010 (black box in 

Figs. 6a1, b1, and c1).
As for the dry year of 2011, the novel droughts with 

significant anomalies centered in most of south China and 
scattered in areas of northeast China (Figs. 5 and A2). The 
effect of droughts caused GPP, ET, and WUE decrease sig-
nificantly (p < 0.01) in south China. However, it caused 
GPP decrease smaller that ET (Figs. 6a and b), so that WUE 
did not decrease in all drought areas such as areas in black 
box of Fig. 6c2.

4. DISCUSSION
4.1 Evaluation of Dryness/Wetness in China

There are lots of factors influencing dry and wet pat-
terns of a region over a period. In general, the most impor-
tant factor is associate with precipitation from a climatic 

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 6. Spatial distribution of GPPSAI (a), ETSAI (b), and WUESAI (c) in 2010 (left panel) and 2011 (right panel).
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perspective. In order to quantify and monitor the dry/wet 
conditions, many indices have been developed (Vicente-
Serrano et al. 2010; Dai 2011; Zhuang et al. 2013; Wang 
et al. 2016a; Yang et al. 2017). In the context of climate 
change, some of indices have been used widely to study the 
spatial and temporal patterns of dryness/wetness over the 
world. However, most of research focused on patterns of 
droughts (Xu et al. 2015; Huang et al. 2018) but only sev-
eral previous research studied the evolution of dryness and 
wetness. Based on 1-month SPEI, Lou et al. (2018) stud-
ied the temporal and spatial dryness and wetness patterns 
of Zhejiang Province over 1971 - 2015. Huang et al. (2017) 
and Wang et al. (2017a) investigated the variation of dry-
ness and wetness in southeast costal region of China and 
Sichuan Province based on SPI, respectively. In this study, 
we used CRU 3-month SPEI and scPDSI datasets to investi-
gate the temporal and spatial variations of dryness and wet-
ness across China from 2001 to 2013. We found that CRU 
3-month SPEI dataset was better to describe the dry and wet 
conditions of China. The finding was well consistent with 
the statistics in the bulletin of flood and drought disasters in 
China released by the Ministry of Water Resources (Minis-
try of Water Resources 2014).

4.2 Effects of Dryness/Wetness on GPP, ET, and WUE

A significant decreasing trend in GPP and ET with 
dryness/wetness was found, mostly at severe dryness/wet-
ness conditions. The experiment on the rice by Liang et al. 
(2000) and on 6 maize types of Chen et al. (2005) showed 
WUE of crop increased under slight drought or water stress 
but significantly reduced under severe drought or water 
stress. Vicente-Serrano et al. (2013) found that plant biol-
ogy change is sensitive to short-term drought in arid and 
humid areas, but sensitive to long drought in semi-arid 
and sub-humid areas (Vicente-Serrano et al. 2013). When 
drought happens, the top soil is dry and the deep soil is still 
humid. Hence, plants can absorb water from the soil and 
continue to assimilate carbon. Meanwhile, because of less 
of surface water, heterotrophic respiration is restricted. In 
this situation carbon assimilation will not be reduced but 
the reverse will occur. Chen et al. (2013) found SPEI and 
NPP were positively related in arid regions, but negatively 
in boreal regions. As the drought continued, the deep water 
gradually diminished and GPP, ET decreased significantly 
(Ju et al. 2006; Barr et al. 2009). Chen et al. (2013) indicated 
the influence of drought on NPP mostly occurred at areas 
with the most severe drought condition or after that, which 
is similar to our conclusion.

4.3 Comparison of MODIS and BEPS Datasets in 
China

GPP and ET from BEPS and MODIS showed the 

similar spatial distribution pattern, respectively; however, 
differences still existed in some regions (Fig. A1). MODIS 
GPP on the Tibetan plateau area was relatively smaller than 
BEPS GPP, but MODIS GPP was larger in the northwest 
China and southwest China. The large differences of ET oc-
curred in the Tibetan plateau region, and MODIS ET was 
relatively larger. Comparatively speaking, MODIS ET was 
smaller than BEPS ET on grassland ecosystem with low 
vegetation coverage in the arid areas. On the whole, relative 
biases of annual ET and GPP from BEPS and MODIS most-
ly concentrated in ±30% in the most regions of China except 
the bare lands and Tibetan plateau region in west China. In 
order to reduce the uncertainties arising from different mod-
els and driving forces, thus we used a multi-model ensemble 
GPP and ET products to do analysis in this study.

4.4 Applicability of SPEI and scPDSI in China

Due to spatial comparability and rationality for moni-
toring dryness/wetness events, SPEI and scPDSI are the 
most widely used for the drought monitoring indices (Heim 
2002; Zhuang et al. 2013). scPDSI is essentially based on a 
two-layer soil water balance model and is sensitive to soil 
moisture supply (Hao and Singh 2015). SPEI regarded as 
the combination of precipitation and PET can reflect cli-
matic water balance (Hao and Singh 2015). It was shown 
that SPEI is better for humid region while PDSI and its vari-
ants for the arid and semiarid regions (Yang et al. 2017; 
Zhao et al. 2017). SPEI is also sensitive to the PET cal-
culation schemes and the sensitivity differed with regions 
(Yang et al. 2017; Yao et al. 2018). For example, in the 
arid region such as Xinjiang, SPEI was mainly determined 
by PET (Yao et al. 2018) and a drier result was obtained 
using Thornthwaite method compared to the FAO Penman-
Monteith method (Yang et al. 2017). Another study further 
revealed that it is more suitable to use scPDSI for long-term 
drought monitor due to the strong lagged autocorrelation 
(Zhao et al. 2017) since the calculation method of scPDSI 
considered the accumulated drought conditions in the previ-
ous months (Guttman 1998). scPDSI was suggested more 
comparable with 9-month to 19-month SPEI in China (Zhao 
et al. 2017). Our study used 3-month SPEI and scPDSI 
based on the FAO Penman-Monteith method in terms of 
CRU TS3.2 monthly climate datasets showed that the two 
indices had similar trends in the study period but fluctua-
tions of SPEI were more pronounced and close to the actual 
wet/dry conditions in China (Figs. 3 and A2).

4.5 Uncertainty and Limitations

Due to the rapid economic growth and the launch of 
ecological conservation and restoration projects in China 
during the study period (Xiao 2014), urbanization and the 
establishment of ecological reserves may cause the change 
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of GPP, ET, and WUE in regional and national terrestrial 
ecosystems (Shao et al. 2015), but these impacts were not 
included in this study. Over-wet phenomena would lead 
flooding and droughts might trigger other disasters such 
as plant diseases and insects. All of these indirect effects 
on GPP, ET, and WUE were also not to be considered. In 
addition, a study mentioned that the CRU dataset might 
overestimate the PET results compared with the China Me-
teorological Forcing Dataset (CMFD) and further can bring 
uncertainties to SPEI when using CRU dataset for SPEI (Li 
et al. 2020). However, we only compared the comprehen-
sive performances of 3-month SPEI and scPDSI in China 
based on the FAO Penman-Monteith method using CRU 
dataset in this study. Different input drivers also can intro-
duce biases to SPEI or scPDSI and cause different conclu-
sions for wet and dry analysis (Li et al. 2020). Thus, more 
attention should be paid to not only the calculation methods 
but also the inputs when objective drought indices are cho-
sen to use in the future.

5. CONCLUSION

We evaluated the dry/wet changes of China using SPEI 
and scPDSI based on the FAO Penman-Monteith method in 
terms of CRU TS3.2 monthly climate datasets, and further 
examined effects of dry/wet conditions on GPP, ET, and 
WUE in ecosystems of China during 2001 to 2013. In order 
to reduce the uncertainty caused by model assumptions and 
driving forces, we also used two-source GPP and ET from 
MODIS and BEPS for comparison.

In general, CRU SPEI can roughly delineate better than 
CRU scPDSI for dry/wet conditions in China compared 
with China flood and drought disaster bulletin from Min-
istry of Water Resources. CRU SPEI and CRU scPDSI had 
the similar trends but CRU SPEI tended to identify the fre-
quent drought events and approach to the actual conditions 
while CRU scPDSI was likely overestimate drought events 
due to the strong lagged autocorrelation. Given the fact that 
the fluctuation of climate change becomes more frequent 
in the future, CRU SPEI may be more suitable widely used 
for the dry/wet monitoring in China. Based on CRU SPEI, 
severe droughts occurred in 2001, 2006, 2009, and 2011, 
in contrast, extremely severe wet events occurred in 2002, 
2003, and 2010. Spatially, droughts were enhanced obvi-
ously in areas of the southwest China whereas they were 
alleviated in areas of the northeast China.

Changes of GPP and ET were positively related to 
changes of SPEI in most areas of China; however, the re-
sponses of GPP and ET to SPEI differed with SPEI magni-
tudes, resulting that changes of WUE were not well corre-
lated to changes of SPEI. In summary, moderate and severe 
dry and wet conditions had an adverse effect on GPP, ET, 
and WUE, and the influence of drought stress was much 
more than water stress as a whole; however, the influence of 

water stress should not be ignored.
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(a) (b)

(c) (d)

Fig. A1. Comparison of spatial patterns of 13-year-mean annual GPP (gC m-2 yr-1) and ET (mm yr-1) of MODIS and BEPS.
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Fig. A2. Spatial patterns of SPEI during 2001 - 2013. The scalar value represents 6 dry/wet level classifications from severe dry to severe wet in 
Table 1.
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Fig. A3. Spatial patterns of scPDSI during 2001 - 2013. The scalar value represents 6 dry/wet level classifications from severe dry to severe wet in 
Table 1.
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(a) (b)

Fig. A4. Spatial patterns of two-source GPP (gC m-2 yr-1) and ET (mm yr-1) averaged from MODIS and BEPS.

(a1) (a2)

(b1) (b2)

Fig. A5. Comparison of spatial distributions of SPEISAI in 2010 (a1) and 2011 (a2) and Spatial distributions of scPDSISAI in 2010 (b1) and 2011 (b2).


