
doi: 10.3319/TAO.2021.02.22.01

* Corresponding author 
E-mail: jtmacuroy@up.edu.ph

Evaluations on radar QPE using raindrop size distribution in Southern Luzon, 
Philippines

Jonathan T. Macuroy1, *, Wei-Yu Chang 2, Decibel V. Faustino-Eslava1, Patricia Ann J. Sanchez1,  
Cristino L. Tiburan Jr. 3, and Ben Jong-Dao Jou 4

1 School of Environmental Science and Management, University of the Philippines Los Baños, Los Baños, Philippines 
2 Department of Atmospheric Sciences, National Central University, Taoyuan City, Taiwan 

3 Institute of Renewable Natural Resources, College of Forestry and Natural Resources, University of the Philippines Los Baños, 
Los Baños, Philippine 

4 Department of Atmospheric Sciences, National Taiwan University, Taipei City, Taiwan

ABSTRACT

The study analyzed the raindrop size distribution (DSD) measured by an opti-
cal Parsivel disdrometer in Southern Luzon, Philippines and utilized it to generate 
dual-pol relations for the nearby Tagaytay radar. The relations were generated using 
two methods (Method 1 - gamma-based and Method 2 - linear fitting), four time-
integration steps (1-, 2-, 5-, and 10-min) and datasets from two periods (wet season 
and single event). The resulting quantitative precipitation estimates (QPEs) calcu-
lated from the generated R(Z) relations were compared to rain gauge stations near 
the disdrometer and were evaluated for the Tropical Storm Yagi Monsoon event of 
10 August (2200 UTC) to 11 August (0400 UTC) 2018 using six statistics: Pearson’s 
correlation; mean error, percent bias, Nash-Sutcliffe Efficiency, mean absolute error, 
and root-mean-square error. Results show that the area’s DSD demonstrates rela-
tively larger average raindrop diameters than some of its Asian counterparts, albeit a 
smaller number in the total number of raindrops when compared with the same areas. 
In terms of QPE evaluation, results showed a consistent pattern observed wherein the 
R(Z) relations using finer time steps (1- and 2-min) generally performed better than 
the longer ones. Moreover, Method 1 dominated Method 2 in terms of error statistics. 
As expected, Method 2 outperformed Method 1 in terms of r (as Method 2 itself is 
derived through linear fit). The best derived R(Z) relations were able to outperform 
other relations in terms of r, NSE, and RMSE. On the other hand, R(KDP) was able 
to perform the best in terms of ME, MAE, and pBIAS, reducing the bias of current 
standard method by up to 74%.
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1. INTRODUCTION

Quantifying precipitation over time constitutes a num-
ber of significant limitations due to its highly discrete and 
variable nature (Krajewski et al. 2003; Kathiravelu et al. 
2016). As a major driving force of global water cycle, pre-
cipitation data is extremely valuable in hydrology, meteo-
rology, agriculture, and weather forecasting (Trenberth et 
al. 2003; Kidd and Huffman 2011) and with the continuous 
progress of technology, the sheer availability of rainfall data 
is not enough (Jiang et al. 2012). The need for high-quality, 

comprehensive, and accurate precipitation measurements 
and estimates is becoming more and more important for 
hydrological modeling (Liu et al. 2017; Lee et al. 2019a), 
numerical weather prediction (Rossa et al. 2008; Shrestha 
et al. 2013), and other hydrometeorological applications 
(Yilmaz et al. 2005; Pappenberger et al. 2008).

Measuring rainfall is performed using three conven-
tional methods: (1) direct measurement via rain gauge; (2); 
remote sensing through satellites; and (3) use of ground-
based weather radars. Direct measurement of rainfall 
through rain gauges is widely used and is often considered 
as true and reference rainfall (Richards and Crozier 1983). 
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A major disadvantage, however, is the limited spatial range 
of a rain gauge which is highly influenced by the surround-
ing features (Rana et al. 2015; Kidd et al. 2017). The obvi-
ous solution to overcome this is the deployment of a dense 
network of rain gauges that captures rainfall over a spe-
cifically homogenous region. However, this is extremely 
costly especially in the mountainous regions where the 
density of rain gauges should theoretically be the highest. 
Furthermore, errors have the propensity to increase in mag-
nitude with respect to the degree of complexity of a ter-
rain and rainfall conditions (Daly et al. 1994). Besides the 
use of conventional rain gauges, the use of satellite prod-
ucts is also a growing field in generating precipitation data 
(Skomorowski et al. 2001). Satellite rainfall usually pro-
vides precipitation data at a global scale at various spatial 
resolutions (Xie et al. 2003; McPhee and Margulis 2005; 
Joshi et al. 2013). However, its use is limited to basins large 
enough to fit through multiple grids depending on the satel-
lite data’s resolution. Moreover, most satellite-derived rain-
fall datasets are not always available in real-time and can 
be difficult to access during flash floods where the need for 
rainfall data is at its peak significance (Grose et al. 2002). 
The use of Doppler weather radars for measuring rainfall 
not only provides a spatial range large enough to include 
several regions at a time but also offers real-time precipi-
tation information in high spatial and temporal resolution 
(Scofield and Kuligowski 2003; Germann et al. 2006; Yoon 
et al. 2012; You et al. 2018). Instead of measuring rainfall 
directly, radars retrieve rainfall data by emitting pulses of 
electromagnetic energy at microwave frequencies and mea-
suring the resulting reflectivity (Z) scattered by raindrops 
in the atmosphere within a scanning volume and is usually 
measured in decibel relative to Z or dBZ. Studies show that 
weather radars may be preferred over rain gauges for three 
major reasons (Richards and Crozier 1983; Vieux and Be-
dient 1998; Löffler-Mang and Blahak 2001; Chandrasekar 
and Cifelli 2012; Dutta et al. 2012): (1) it can include re-
mote and inaccessible regions where the installation of rain 
gauges may prove nearly impossible; (2) it can cover areas 
where the density of rain gauge is insufficient to character-
ize the region; and (3) the provision of 3-dimensional areal 
coverage eliminates the need for extrapolating point mea-
surement over an area of interest.

In the Philippines, a network of 17 weather radars is 
currently installed, with three more planned to be construct-
ed in the near future (see Fig. 1a). The network was estab-
lished in 2011 and is managed by the Philippine Atmospher-
ic, Geophysical and Astronomical Services Administration 
(PAGASA), the country’s central weather institution. The 
radar network aims to provide coverage for most parts of 
Philippines, a country that is frequented by tropical cyclones, 
monsoon rains, and thunderstorms. One of the network’s 
dual-pol C-band radar is located at the top of the Tagaytay 
Ridge at the southern portion of Luzon Island. This radar 

(a)

(b)

Fig. 1. (a) Radar network in the Philippines; and (b) Area of the study 
and location of instruments used.
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(hereby referred to as Tagaytay radar) makes a 360-degree 
scan every 10-min at 16 elevation angles. One commonly 
used method to retrieve rainfall data from radar reflectiv-
ity is the use of the rainfall rate - radar reflectivity [R(Z)] 
relation (Marshall et al. 1947; Marshall and Palmer 1948; 
Jorgensen and Willis 1982). The R(Z) relation takes the 
power form Z = aRb with different regions adapting varying 
a and b values. The performance of a specific R(Z) relation 
is influenced by the wide variability in geographic location, 
season, precipitation phase, intensity, and type of rain event 
(Rosenfeld et al. 1993; Wu et al. 2018). The application of a 
single R(Z) relation to regions with different characteristics 
risks the under- or overestimation of the actual rainfall. One 
way to calibrate R(Z) relations within a certain region is 
through the use of raindrop size distribution (DSD) which is 
the variability of number and diameter of rain drops within 
a certain volume. Various studies show that DSD measure-
ments around the world vary significantly both temporally 
and spatially, and can be linked to the type of precipitation, 
climate, atmospheric conditions, and geographical setting of 
an area (Lam et al. 2011; Marzuki et al. 2013; Hachani et 
al. 2017). In retrospect, both Z and R are highly dependent 
on DSD variability within a radar measurement, as the lat-
ter is usually assumed. Marshall and Palmer initially sug-
gested various forms of a and b coefficients and were later 
complemented and expanded by various authors (Marshall 
and Palmer 1948; Fulton et al. 1998). Globally, the most 
commonly used R(Z) relation is Z = 300R1.4 developed by 
the United States’ National Weather Service (NWS) and for 
a while was the default R(Z) relations for the United States’ 
WSR-88D radar network (Woodley and Herndon 1970; Ku-
ligowski 1997). As aforementioned, however, R(Z) is best 
calibrated within a specific region first to improve its per-
formance in rainfall retrieval.

Apart from the use of R(Z) relations, rainfall can also 
be calculated from dual-pol radars using polarimetric vari-
ables such as differential reflectivity (ZDR), differential 
phase (ΦDP), and specific differential phase (KDP) (Carey et 
al. 2000; Ryzhkov et al. 2005; Thompson et al. 2018). The 
use of these dual-pol variables has some advantages over the 
use of R(Z). For example, KDP is unaffected by partial beam 
blocking, attenuation, and wet radome effects (Chandrasek-
ar and Cifelli 2012). Moreover, studies found that R(KDP) 
usually provide the best rainfall estimation among various 
QPE relations, as KDP is proportional to the 4.24th moment of 
DSD, and is closer to the 3.67th moment (proportional to rain 
rate) than the 6th moment (proportional to Z) (Sachidananda 
and Zrnić 1986; Ryzhkov et al. 2005). As with the case of 
R(Z) relations, the use of polarimetric variables can also be 
improved when their respective relations with R are calibrat-
ed on a regional scale (Zhang et al. 2019). Commonly used 
relations are R(Z, ZDR), R(KDP), and R(KDP, ZDR) expressed 
as R = aZbZDR

c, R = aKDP
b, and R = aKDP

bZDR
c, respectively. 

Z and ZDR are expressed in mm6 m-3, KDP is in ° km-1, and R 

is in mm hr-1 while a, b, and c are derived constants (Bringi 
and Chandrasekar 2001; Montopoli et al. 2017).

In the Philippines, previous studies on polarimetric 
QPEs use pre-calculated relations derived from other areas 
(Fulton et al. 1998; Heistermann et al. 2013; Crisologo et 
al. 2014) and currently, there is a lack of studies aimed at 
calibrating the dual-pol rainfall relations for any part of the 
country. This study is hence the first to estimate localized 
and appropriate R(Z), R(Z, Zdr), R(KDP), and R(KDP, ZDR) 
relations that best fit the climatic regime of Southern Luzon, 
Philippines using DSD data. To achieve this objective, the 
raindrop characteristics of the area of interest was first stud-
ied using DSD data from a newly installed optical Parsivel 
disdrometer located inside the University of the Philippines 
Los Baños during the wet season of 2018 (see Fig. 1b). The 
analyzed DSD data was eventually utilized to estimate vari-
ous dual-pol rainfall relations and was evaluated using four 
nearby rain gauges within the area with the goal of improv-
ing QPEs from the Tagaytay radar. Such DSD analysis, 
along with DSD-derived radar calibration, is rarely studied 
in the Philippines.

2. METHODOLOGY
2.1 Study Area, Event of Interest, and Sources of 

Rainfall Data

The Philippines is characterized by a Tropical mon-
soon climate according to the Köppen climate classification 
system. The rainy season from June to October is dominated 
by the Southwest Monsoon, and is driven by the huge water 
mass of the Indian Ocean (Flores and Balagot 1969; Cayan-
an et al. 2011). This period is also where the majority of the 
country’s 18 to 20 tropical cyclones form annually. For this 
study, the location of the disdrometer, rain gauges, and radar 
used is around Southern Luzon (Fig. 1b). The study’s event 
of interest is the monsoonal rain event enhanced by Tropical 
Storm Yagi (hereby termed Yagi from hereon) from 10 to 
11 August 2018 UTC. The tropical storm itself formed on 
8 August 2018 UTC to the Northeast of Luzon Island with 
winds reaching up to 35 knots. Although Yagi itself did not 
make landfall in the Philippines, the storm’s peak winds of 
75 km hr-1 and continuously intensifying structure enhanced 
the southwest monsoon that caused massive flooding in 
Metro Manila and the surrounding provinces. According 
to the National Disaster Risk Reduction and Management 
Council (NDRRMC), a total of 187744 families/828462 
persons within 680 barangays in five regions (including the 
National Capital Region) were affected (National Disaster 
Risk Reduction and Management Council 2018). The mon-
soonal event brought about by Tropical Storm Yagi was 
chosen because of the following considerations: (1) con-
current availability of radar data from Tagaytay radar with 
minimal missing time slots (radar data from October 2018 
until the conduct of this study are either missing or unusable 
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due to damaged equipment); (2) availability of rainfall data 
from four rain gauges near the disdrometer for the whole pe-
riod; and (3) the event was the longest rainfall event record-
ed by the Parsivel disdrometer during the rainy season of 
2018. Four rain gauges near the disdrometer were chosen as 
reference data for QPE validation: (1) Agro-meteorological 
Station where the disdrometer is also located; (2) Institute 
of Plant Breeding Automatic Weather Station; (3) New Col-
lege of Arts and Sciences Building Automatic Weather Sta-
tion; and (4) Makiling Botanic Gardens Automatic Weather 
Station. The first gauge has a 10-min measurement interval 
while the other three stations have 15-min time intervals. 
The observational periods and number of samples from the 
instruments used in this study is summarized in Table 1.

2.2 Raindrop Size Distribution (DSD)

Raindrop size distribution (DSD) is defined as the 
number of drops within a 3-dimensional space for each di-
ameter class and is usually measured using a disdrometer. 
Marshall and Palmer initially described DSD as an expo-
nential function given by:

( ) ( )expN D N D0 K= -  (1)

where N0 (the scale parameter) = 8000 and Λ (or the slope 
parameter) = 4.1R-0.21 (Marshall and Palmer 1948). However, 
this was developed using data from mid-latitude stratiform 
rain and was observed to not be able to accurately represent 
DSDs from other climate types (Williams and Gage 2009). 
Ulbrich was the first to propose the use of gamma distribu-
tion to provide a better fit especially for very small and very 
large raindrops (Ulbrich 1983). This form is composed of 
three parameters: N0 or the intercept parameter (m-3 mm-1-µ), 
n  or the shape parameter, and Λ (mm-1) or the slope of the 
distribution and is given by the equation:

( ) ( )expN D N D D0 K= -n  (2)

Other authors such as Zhang et al. (2001) and Brandes 
et al. (2003) suggested a mathematical relation that exists 
between n  and Λ and further redefined the gamma distri-
bution by assigning specific values to N0. Despite the ex-
istence of other forms of raindrop size distribution such as 
the Log-Normal distribution (Feingold and Levin 1986), 
Scaling Law distribution (Torres et al. 1994), and Weibull 
distribution (Best 1950), Ulbrich’s three-parameter gamma 
distribution is still the most widely used form by meteorolo-
gists and atmospheric physicists for DSD modelling (Ul-
brich 1983; Wong and Chidambaram 1985; Smith 2003).

This study utilized the DSD measured by an optical 
Parsivel disdrometer located at the Agro-meteorological 

station inside the University of the Philippines Los Baños, 
Philippines. It uses a laser beam emitter and a mounted re-
ceiver, by which the signal voltage measured changes when 
passed by a hydrometeor. The Parsivel disdrometer mea-
sures the particle size and velocity of incoming precipitation 
simultaneously, groups them into 32 bins (see Table 2), and 
derive the DSD of a rainfall event using the equation:

( )N D A tV D
n

i
j i

ij

j 1

32

D D
=

=
/  (3)

where N(Di) is the drop concentration with diameters from 
Di to Di + ΔDi per unit size interval, nij is the number of 
drops within the size bin i and velocity bin j, A (m2) is the 
sampling area, Δt (s) is the sampling time, Di is the raindrop 
diameter for the size bin i (in mm), and ΔDi is the corre-
sponding diameter interval (in mm), and Vj is the fall speed 
for the velocity bin j (Löffler-Mang and Joss 2000). Parsivel 
disdrometers also calculate the type, amount, intensity, and 
kinetic energy of the precipitation and has the capability to 
identify the type of precipitation as well as to derive its rain-
water content (W), reflectivity (Z), and rainfall intensity (R) 
from those measurements using the following equations:

( )W N D D D6000 i i i
i

3

1

32r D=
=
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6

1
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=
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1
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1
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where W is the rain water content in g·m-3, R is the rain rate 
in mm·hr-1, Z is the radar-reflectivity in mm6 m-3, Di

6 is the 
6th power of the diameter of the i-th particle in mm, N(Di) 
is the number of particles of diameter Di, and Vj is the fall 
velocity for bin j in m s-1. In fitting the observed DSD to 
a gamma distribution model, the parameters N0, n , and Λ 
were first calculated in terms of DSD moments defined by 
the equation:

( )
( )M D N D dD N n 1

n
n

n0 0 1

n
K

C
= =

+ +3
n + +#  (7)

where Mn is the nth moment of N(D) and Γ(x) is the com-
plete gamma function. The three gamma parameters are cal-
culated using the following equations:

( )
( )

G G G
G

11 8 8
2 1n = -
- + +  (8)
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Instrument Measurement Interval Start of Observation End of Observation Number of Samples 
Used in the Study

Rain gauge

10-min
(collocated rain gauge with the 

disdrometer)
1 June 2018 (00:00 UTC) 31 October 2018 (23:50 UTC) 1126

30-min
(all rain gauges) 10 August 2018 (22:00 UTC) 11 August 2018 (16:00 UTC) 37

Parsivel disdrometer 1-min 1 June 2018 (00:00 UTC) 31 October 2018 (23:59 UTC) 10234

Tagaytay radar 10-min 10 August 2018 (22:00 UTC) 11 August 2018 (16:00 UTC) 98

Table 1. Summary of the datasets used in this study.

Class 
number

Classification according to volume-equivalent diameter Classification according to velocity

Class average (mm) Class spread (mm) Class average (m s-1) Class spread (m s-1)

1 0.062 0.125 0.050 0.1

2 0.187 0.125 0.150 0.1

3 0.312 0.125 0.250 0.1

4 0.437 0.125 0.350 0.1

5 0.562 0.125 0.450 0.1

6 0.687 0.125 0.550 0.1

7 0.812 0.125 0.650 0.1

8 0.937 0.125 0.750 0.1

9 1.062 0.125 0.850 0.1

10 1.187 0.125 0.950 0.1

11 1.375 0.250 1.1 0.2

12 1.625 0.250 1.3 0.2

13 1.875 0.250 1.5 0.2

14 2.125 0.250 1.7 0.2

15 2.375 0.250 1.9 0.2

16 2.750 0.5 2.2 0.4

17 3.250 0.5 2.6 0.4

18 3.750 0.5 3 0.4

19 4.250 0.5 3.4 0.4

20 4.750 0.5 3.8 0.4

21 5.5 1 4.4 0.8

22 6.5 1 5.2 0.8

23 7.5 1 6 0.8

24 8.5 1 6.8 0.8

25 9.5 1 7.6 0.8

26 11 2 8.8 1.6

27 13 2 10.4 1.6

28 15 2 12 1.6

29 17 2 13.6 1.6

30 19 2 15.2 1.6

31 21.5 3 17.6 3.2

32 24.5 3 20.8 3.2

Table 2. Drop size distribution class bins of the optical Parsivel disdrometer.
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where:

G M M
M
3
2

6
1

4
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=  (11)

Apart from these integral parameters, the mass-weight-
ed volume diameter (Dm) can also be calculated from DSD 
using the equation:

D M
M4

m
3

4n
K

=
+

=  (12)

Moreover, the normalized parameter of N0 that is not depen-
dent on the parameter n  called Nw as proposed by Testud et 
al. (2001) was also calculated using the following equation:

N D
W4 10

w
w m

4

4

3

rt= c m (13)

where wt  is the density of water (1.0 g cm-3). Although 
optical disdrometers have been widely employed by vari-
ous institutions around the globe because of its portability, 
quantitatively reliable results, and low cost, there are still 
some sources of error that may significantly affect its ac-
curacy (Caracciolo et al. 2006; Battaglia et al. 2010; Thurai 
et al. 2011; Friedrich et al. 2013). For example, Jaffrain and 
Berne (2011) found out that the total concentration drop un-
certainty and radar reflectivity uncertainty can exceed 10% 
for 1-min samples in Switzerland. Moreover, Krajewski et 
al. (2006) concluded that the instrument’s background noise 
might be the cause of a higher concentration of smaller drops 
and higher rainfall rates when compared to other instru-
ments (i.e., 2D video disdrometer and pluviometer). Wind 
can also heavily affect the reliability of the data measured 
by an optical disdrometer. Friedrich et al. (2013) found out 
that unrealistic fall velocities caused by the tilting of rain-
drops was observed when wind speed exceeds 20 m s-1 and 
with some occurrence when wind speed is as low as 10 m-1. 
Hence, various data quality correction methods and filters 
must first be employed to make sure that the disdrometer 
data to be analyzed is sound.

The study utilized the Parsivel DSD measurements 
from 00:00 UTC 1 June 2018 to 23:59 UTC 31 October 
2018 to evaluate the rainfall characteristics of the region 
during the wet season. Data using 1-, 2-, 5-, and 10-min 

integration intervals (Δt) were evaluated for the duration of 
the study. The higher time steps involve the averaging of the 
1-min variables over the longer time step (e.g., R). To make 
sure that the DSD data are sound, the following quality con-
trol procedures were applied: (1) Rainfall events character-
ized with less than 0.1 mm hr-1 and/or having less than 10 
droplets were considered noise and were discarded from the 
analysis; (2) Removal of data when the observed velocity 
has greater than 40% bias compared to the ideal velocity; 
and (3) Data are only logged when wind conditions does not 
exceed 10 m s-1 (Friedrich et al. 2013).

The calculation of radar variables was done using the 
T-matrix/Mueller method initially proposed by Waterman 
(1965, 1971). This method calculates electromagnetic scat-
tering by single non-spherical raindrops and are defined by 
radio frequency, temperature, type of hydrometeor, canting 
angle, and axis ratio. The radar specifications used in T-
Matrix/Mueller method are shown in Table 3. The assumed 
axis ratio is from the study by Brandes et al. (2002) from 
numerical simulations and wind tunnel tests employing a 
fourth-order polynomial equation:

. . .

. .
D D

D D
0 9951 0 0251 0 03644
0 005303 0 0002492

2

3 4

c = + - +
-

 (14)

where c  is the axis ratio and D is the raindrop diameter. 
Reflections are assumed to exhibit the “Mirror” reflections 
symmetry about a plane as defined by Bringi and Chan-
drasekar (2001).

2.3 Radar Data Processing Overview

The study made use of data retrieved from PAGASA’s 
dual-polarized C-Band Tagaytay radar located at the high-
est peak of the Tagaytay ridge (14.123°N, 120.974°E at 752 
masl) in Southern Luzon, Philippines (see Fig. 1). It was 
installed in April 2012 and originally gathers a full volu-
metric scan every 15 min and currently scans every 10 min. 
Table 4 provides the technical specifications of the Tagay-
tay C-band radar. The radar is about 25 km away from the 
Parsivel disdrometer, where the lowest available data is at 
about 1 km above the surface. The dataset used in this study 
is from 22:00 UTC 10 August 2018 to 16:00 UTC 11 Au-
gust 2018, where 10-min scans from 09:10 UTC to 10:50 
UTC at 11 August 2018 were missing. The processing of 
radar data is as follows:
(1)  Clutter detection and removal using co-polar cross cor-

relation coefficient (ρ);
(2)  Differential phase (ΦDP) processing and Derivation of 

Specific Differential Phase (KDP);
(3)  Attenuation correction using Specific Differential Phase 

(KDP);
(4)  Systematic bias calculation and correction via weak 
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echo region (for differential reflectivity ZDR) and using 
theoretical KDP values (for reflectivity ZHH); and

(5)  Interpolation of plan position indicator (PPI) variable 
values into constant altitude plan position indicator 
(CAPPI), 3-D gridding, and eventual retrieval of Quan-
titative Precipitation Estimate (QPE) or rainfall rate (R).

Each section’s details and specifications are also outlined 
in this section.

2.3.1 Clutter Detection and Removal Using Co-Polar 
Cross Correlation Coefficient (ρ)

The removal of non-meteorological echoes is a crucial 
prerequisite in radar data quality control. In this study, the 
co-polar cross-correlation coefficient ( HVt  or simply t), 
which is the correlation between the horizontal and vertical 
co-polar echoes, was used for clutter detection and removal. 
It is defined as:

( ) ( ) ( ) ( )

( ) ( )

M V m V m M V m V m

M V m V m

1 1

1

HV

H vm
M

H vm
M

H vm
M

1 1

1

t =
= =

=

/ /

/
  (15)

where V is the complex echo signal sample received from 
h(v) as the horizontally polarized echo sample, m is the echo 
sample number, and M is the total number of samples (Li et 
al. 2014). Figure 2 shows an example image of HVt -based 
clutter detection and removal dated 08:30 UTC 11 August 
2018 using the minimum threshold HVt  = 0.95. Notice the 
removal of non-red signals after filtering.

2.3.2 Differential Phase (ΦDP) Processing and 
Derivation of Specific Differential Phase (KDP)

As the differential propagation phase ΦDP tends to in-
crease as the range distance increases, phase folding can 
occur when it exceeds a certain maximum unambiguous 
value (in this case is equal to 180°). Hence, unfolding is 
the first step that was executed in differential phase pro-
cessing. In this study, the algorithm described by Wang and 
Chandrasekar (2009) was applied. In addition to unfolding, 
subtraction of the initial beam phase was also done to re-
move the system offset. For this study, the initial ΦDP was 
calculated as the mean ΦDP from each volume scan. Figure 3 
shows the results of differential phase processing. Note that 
the initial values beyond 180° were removed after subtrac-
tion. Specific differential phase KDP was derived using the 
smoothed ΦDP data by least squares fit of multiple differ-
ences within 25 bins centered at the range bin.

2.3.3 Attenuation Correction Using Specific Differential 
Phase (KDP)

One of the most common methods to calculate polari-

metric radar attenuation (AH) is through the use of the spe-
cific differential phase (KDP) which has a linear proportion-
ality to cumulative attenuation in common radar frequencies 
(Bringi et al. 1990). Bringi et al. (2001) proposed a self-
consistent method, in which an optimal proportionality of 
horizontal attenuation is estimated by comparing calculated 
(or theoretical) KDP with the measured KDP. In this study, 
the coefficients are derived by fitting lines for AH and ADP 
(differential attenuation) versus KDP derived from 2018 wet 
season’s DSD data (see Fig. 4). These variables were calcu-
lated from DSD using the following equations:

. ( ) ( )A Q D N D dD0 4343, ,H V H V=  (16)

A A ADP H V= -  (17)

( ) ( ) ( )K f D f D N D dD180 RDP H Vr
m= -6 @#  (18)

where AH,V is the horizontal and vertical attenuation (dB 
km-1), QH,V(D) are the extinction cross sections for H and 
V polarized waves, ADP is the differential attenuation (dB 
km-1), KDP is the specific differential phase (in degree km-1), 
λ is the wavelength, and fH and fV are the forward scattering 
amplitudes for horizontally and vertically polarized waves 
(Bringi et al. 1990). Figure 4 shows the fitted AH and ADP 
versus KDP which derived the following relations:

.A K0 0625H DP=  (19)

.A K0 0093DP DP=  (20)

Figure 5 shows ZHH images before and after attenuation cor-
rection using data from 08:30 UTC 11 August 2018 of the 
Tagaytay radar.

2.3.4 Systematic Bias Correction

After attenuation correction, the determination and 
correction of systematic bias was executed for differential 
reflectivity (ZDR) and reflectivity (ZHH). ZDR bias is usually 
determined through the use of a vertically pointing radar, 
wherein the shape of the raindrops as seen at 90° elevation 
angle is assumed to be nearly circular (Gorgucci et al. 1995; 
Vivekanandan et al. 2003). In the absence of vertical mea-
surements as is the case of this study, the use of reflectivity 
data from light rain is suggested by Smyth and Illingworth 
(1998) who pointed out that rain drops in very light rainfall 
regions are almost spherical. In order to calculate the bias, 
gates with the following characteristics were utilized and 
classified as light rain:
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Parameter Value

Frequency (wavelength) 5.61 GHz (5.34375 cm)

Temperature 20°C (Ray 1972)

Hydrometeor Type Rain

Canting Angle Distribution Gaussian (µ = 0, σ = 1)

Axis Ratio Oblate

Diameter Range 0.1 to 8 mm

Diameter Interval 0.1 mm

Elevation Angle 0.5°

Table 3. Specific parameter values used to retrieve 
polarimetric variables from Parsivel disdrometer.

Specification Value

Polarization Dual-Pol

Position (lat/lon) 14.123°N, 120.974°E

Elevation (masl) 752

Maximum Range 120 km

Azimuth Resolution 1°

Gate Length 500 m

Elevation angles (in °) 0.5, 1.5, 2.4, 3.4, 4.3, 5.3, 6.2, 7.5, 8.7, 10, 12, 14, 16.7, 19.5

Volume Cycle Interval 10 min

Transmission Simultaneous

Peak Power 250 kW

Wavelength 5.34375 cm

Length of Observation for the Study 22:00 UTC 10 August 2018 to 16:00 UTC 11 August 2018

Table 4. Technical specifications of the Tagaytay C-band radar.

(a) (b)

Fig. 2. Radar images (a) before and (b) after clutter removal using a ρHV threshold of 0.95 from radar sample dated 08:30 11 August 2018 UTC at 
0.5° elevation angle.
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(a) (b)

(c)

Fig. 3. Radar images of (a) ΦDP initial values (b) ΦDP after unfolding and (c) ΦDP and after subtraction from radar sample dated 08:30 11 August 
2018 UTC at 0.5° elevation angle.

(a) (b)

Fig. 4. Fitted lines between (a) AH and (b) ADP (in db km-1) versus KDP (in degree km-1) and their respective derived relationships.
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(1) ΔΦDP < 10° km-1;
(2) 10 dBZ < ZHH < 20 dBZ;
(3) ρHV > 0.98; and
(4) altitude < 3.5 km (to avoid freezing height).
The value of ZDR bias was calculated as the average of de-
rived bias values of all beams from all elevation angles from 
each radar sample as shown in supplementary Fig. 1a. The 
calculated mean ZDR bias value for all samples is 0.61 dB.

For ZHH bias calculation, the self-consistency approach 
proposed by Scarchilli et al. (1996) wherein ZHH bias is de-
fined as the discrepancy between calculated and theoretical 
KDP values and is calculated as:

log K
K10Z

DP
observed
DP
theoretical

10HH
bias = c m (21)

For this study, DSD-derived ZHH (mm6 m-3) and ZDR 
(linear units) data were fitted with KDP (deg km-1) for the 
whole 2018 wet season which resulted to the following 
model calculations:

.K 0 000051178Z ZDP HH
0.9754

DR
0.2114= - -  (22)

.K 0 00086836ZDP HH
0.9099=  (23)

Parsivel disdrometers calculate ZDR as log Z
Z10Z
V

H
DR = c m in 

dBZ. ZHH bias was calculated for each radar sample as dif-
ference between the first 5 and last 5 gates and were aver-
aged over all elevation angles and azimuthal angles. Supple-
mentary Fig. S1b shows the different ZHH bias values for 
each radar sample, as well as the final ZHH bias (-0.333 dB) 
which is calculated as the mean of all the ZHH bias values.

Both the calculated ZDR and ZHH bias values (0.61 and 
-0.333 dB, respectively) are significantly smaller than the 
values obtained by one of the recent studies of Crisologo et 
al. (2014) using 2012 data from the Tagaytay C-Band Radar 
(ZDR bias = 1.2 dB and ZHH bias = -8.5 dB). However, it 
must be noted that the radar has undergone several damage, 
repair, and calibration cycles over the years which may have 
positively affected the quality of the radar data itself.

2.3.5 Gridding and Parameter Retrieval

To obtain gridded values, data were interpolated from 
Plan Position Indicator (PPI) spherical coordinates into 
constant altitude plan position indicator (CAPPI) 3-dimen-
sional Cartesian coordinates with a horizontal resolution of 
1 × 1 km and a vertical resolution of 0.5 km. Rainfall rate 
(R) in mm hr-1 was obtained using the power law Z = aRb 
where a and b were set from either: (1) standard values from 
literature; or (2) obtained from this study (see section 2.5). 
All R values were calculated in spherical form before grid-
ding. The final R value for a certain point was calculated 
as the median value between a 3 × 3 grid-area around the 
location of interest.

2.4 Estimation of R(Z), R-Z-ZDR, R-KDP, and R-KDP-ZDR 
Relation Parameters

R(Z, ZDR), R(KDP), and R(KDP, ZDR) relations were cal-
culated using least-squares nonlinear fitting of 1-min data 
from the Parsivel disdrometer. On the other hand, two meth-
ods were used to calculate R(Z) relations in the form Z = 
aRb. The first method (herein named as Method 1) is the use 
of DSD gamma distribution while the second method (here-
in named as Method 2) utilizes linear fitting of log-trans-
formed R(Z) pairs to extract a and b values. For Method 1, 

(a) (b)

Fig. 5. Reflectivity (dBZ) data (a) before and (b) after attenuation correction from sample dated 08:30 11 August 2018 UTC at 0.5° elevation angle. 
The red circles highlight some visual difference between the two images.
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parameters a and b was calculated as proposed by Ulbrich 
and Atlas (2007) using the following equations:

. ( . )
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where the parameters N0 and n  are computed using vari-
ous DSD moments. a and b were derived for each sample 
and were averaged to represent the final a and b values in 
the power law form Z = aRb. The natural logarithms of a 
values were first retrieved to filter unrealistic values. The 
second method includes fitting a linear regression equation 
between R(Z) pairs. To fit their power law form, however, 
the values were first converted to their natural logarithmic 
forms. From the equation:

aZ Rb=  (26)

where R is in in mm hr-1 and Z is in mm6 m-3,

( ) ( )ln ln aZ Rb=  (27)

( ) ( ) ( )ln ln lna bZ R$= +  (28)

( ) ( ) ( )ln ln ln
b b

aR Z= -  (29)

Equation (29) can be further simplified by assigning 
new variables:

( ) ( )ln lnb aR Z$= +l l (30)

where b b
1=l  and ( )lna b

a= -l . Z is then expressed to ZdBZ 
using the following:

( )log10Z ZdBZ )=  (31)

( )log 10Z ZdBZ=  (32)

10 10Z ( )log 10Z ZdBZ
= =  (33)

( ) ( )ln ln ln10 10 10Z Z
10
Z dBZdBZ

$= =^ h  (34)

From Eq. (34), the following equation to calculate R 
was generated:

( ) ( )ln lnb a10
10R ZdBZ

$= +
l

l (35)

which is linear in nature. Hence, simple linear regression 
(Freedman 2009) was applied and a and b were extracted 
from the resulting linear equation using the following  
equations:

a e eintercept b a b= =)- - l  (36)

( )lnb slope b
1

10
10
$

= =
l

 (37)

As with the first method, the natural logarithms of a values 
were also first retrieved to filter unrealistic values.

2.5 Evaluation of the Derived Relations

Rainfall values derived from various relations and ag-
gregated into 30-min interval time step were compared us-
ing six statistical validation variables: Pearson’s correlation 
coefficient (r), mean error (ME), Nash-Sutcliffe efficiency 
(NSE), mean absolute error (MAE), percent bias (pBIAS), 
and root-mean-square error (RMSE). Pearson’s r measures 
the goodness of fit and linear association between the QPE 
(P) and the gauge data (G), and is given by the following 
equation:

( ) ( )
( ) ( )r
G G P P
G G P P
i i

i i
2 2

=
- -
- -

/ /
/

 (38)

where P  and G  are the mean values of the QPE product and 
gauge data. Values of r range from -1 to 1, where a positive 
r value denotes positive correlation while a negative r value 
implies negative correlation between the datasets (Pearson 
1895). A zero r denotes that the datasets exhibit no linear 
correlation while a -1 or 1 r value means a perfect linear re-
lationship. Mean error (ME) is the mean value of the differ-
ence between the QPE (P) and the gauge data (G), as given 
by the following equation:

( )
n
P G

ME i ii
n
1=

-=/  (39)

A zero ME value denotes the absence of error. A nega-
tive value implies underestimation while a positive value 
means an overestimation of the observed dataset. The abso-
lute value of ME is given by the mean absolute error (MAE):
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P
n
G

MAE i ii
n
1=

-=/  (40)

Percent bias (pBIAS) measures the mean error of the 
observed data against the reference data expressed in per-
centage and is computed as:

( )
( )

%
G
P G

100pBIAS
ii

n
i ii

n
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=

=

/
/

 (41)

The Nash-Sutcliffe efficiency (NSE) is a normalized 
statistic that determines the magnitude of the residual vari-
ance in comparison with measured data variance (Nash 
and Sutcliffe 1970). NSE is calculated using the following 
equation:

( )
( )
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where NSE can be anywhere within the range (-inf, 1). An 
NSE value of zero indicates a perfect match of the datasets 
without any errors while a value of 1 indicates that the mod-
elled data is as accurate as the mean of the observed data. 
Values between 0 and 1 denote some deviations from the 
observed dataset. A negative NSE value indicates poor qual-
ity of the modeled data and implies that it is not fit as an es-
timator for the observed dataset (Grunwald and Frede 1999).

The root-mean-square error (RMSE) is the square root 
of the mean squared differences (errors) between QPE (P) 
and gauge data (G), and is given by the following equation:

( )
n
P G

RMSE i ii
n 2
1=

-=/  (43)

3. RESULTS
3.1 Raindrop Size Distribution
3.1.1 DSD-Derived Rainfall (RDSD)

Figure 6a shows the relationship between observed 
rainfall from rain gauge (RRG), and DSD-derived rainfall 
(RDSD) in mm. A total of 1126 pairs of co-available 10-min 
datapoints were used for this plot. On the other hand, Fig. 6b 
shows the comparison between the accumulated rain for the 
whole wet season (mm), respectively. The observed total 
rainfall for the whole period is 833 and 816.12 mm for rain 
gauge and Parsivel, respectively. These values agree with 
the report of Bagtasa (2019), wherein the authors found out 
that out of the approximately 2000 mm of annual rain fall 
within the Philippines, 43% (860 mm) is derived from the 
southwest monsoon. Results show that a generally good 

agreement is exhibited by RDSD and RRG (r = 0.86). However, 
this correlation is comparatively low and can be attributed 
to the low data resolution of rain gauge (with a minimum 
detection of 0.5 mm in comparison to modern rain gauges 
with 0.1 to 0.25 mm limit of detection). In addition, there 
are also some datapoints where the rain gauge registered 
zero rainfall while the disdrometer measured high rain-
fall, which can be caused by instrument error in the tipping 
bucket rain gauge. Nevertheless, the accumulated rainfall 
data shows very high agreement, with only 2% (16.88 mm) 
discrepancy and suggests that the data derived from the Par-
sivel disdrometer can be utilized for further processing. The 
composition of the DSD-derived rainfall products was also 
analyzed for the whole period and for Yagi (supplementary 
Fig. S2 shows exemplary R distribution in terms of 1-min 
Δt) while Table 5 shows the general statistics of the datasets 
at various integration time steps. Results show that the wet 
season has an average of 4.08 to 4.79 mm hr-1 rainfall rate 
for different time integration steps. From the table, it can 
also be observed that Yagi has less mean and maximum R 
values than the whole of wet season, which states that the 
general rainfall rate in this particular event is less than that 
of the season it belongs to. Overall, 82% of all the DSD-
derived rainfall data throughout the wet season is character-
ized by rainfall events below 5 mm hr-1 for 1-, 2-, and 5-min 
Δt and 83% for 10-min Δt.

3.1.2 Drop Size Distribution and Normalized Gamma 
Parameters

Figure 7 shows the average raindrop diameter (D in 
mm) for the whole wet season and for Yagi at various in-
tegration time steps against the average drop number [N(D) 
in m-3 mm-1] in log-scale. Results show that the data for wet 
season at 1-min Δt exhibits the widest range of observed 
raindrop diameter with samples exhibiting diameters beyond 
8 mm, as well as the highest average number of drops for 
each bin size. On the other hand, the samples observed for 
Yagi for all integration time steps exhibit smaller average 
diameters and fewer number of drops than the overall mean. 
It can be observed from the plot that the number of raindrops 
generally increases and have peaks at around 1 mm diameter 
and then gradually decreases from thereon. These are the 
same results as with the study in some neighboring regions 
such as Singapore (Kumar et al. 2010), Malaysia (Lam et 
al. 2015), and East China (Chen et al. 2013). It can also be 
observed in the plot that the short time steps include larger 
rain drops than the long time steps, which can be attributed 
to the averaging effect of using longer measuring periods.

The general statistics of the calculated normalized 
gamma parameters (Dm, log10Nw, n , and Λ) are summa-
rized in Table 6. Skewness and kurtosis are calculated re-
spectively as:
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(a) (b)

Fig. 6. Comparison between observed rainfall (R in mm) measured by the rain gauge (x-axis) and values calculated from the Parsivel disdrometer 
(y-axis) and their accumulated rainfall (mm) for the whole wet season, shown in terms of: (a) scatter plot of rainfall values; and (b) accumulated 
rainfall.

Covered Period Δt No. of samples Rav (mm hr-1) Rmax (mm hr-1) SD (mm hr-1)

wet season

1 10234 4.79 263.34 14.76

2 5319 4.61 246.34 14.17

5 2238 4.38 223.60 13.28

10 1199 4.08 207.16 11.99

Yagi

1 675 2.90 90.05 8.36

2 346 2.82 83.78 7.87

5 149 2.63 61.39 6.97

10 78 2.51 41.89 6.10

Table 5. General statistics of RDSD (mm hr-1).

Fig. 7. Composite raindrop spectra or raindrop concentration [log10N(D) in m-3 mm-1] vs. raindrop diameter (D in mm) for the wet season (solid lines) 
and Yagi (broken lines) using 1-, 2-, 5-, and 10-min Δt.



Macuroy et al.706

SK E x x 3

v= -c m  (44)

( )
KT

x x
NI

N

4

1

v
=

-
=/

 (45)

where SK is skewness, x is the sample, x  is the sample 
mean, E is the expectation of (x - μ), KT is kurtosis, and 
N is the sample number. In addition, the histograms of Dm 
(blue, in mm) and log10Nw (red, in mm-1 m-3) are shown for 
the wet season and Yagi using all four integration time steps 

in Figs. 8a and b. Lastly, the values of the gamma param-
eters were compared with the results of studies conducted 
by some neighboring countries (see Table 7). In terms of 
Dm, results show that the average (1.36 to 1.48 mm) and 
standard deviation (0.31 to 0.46 mm) values are close to 
each other for the whole wet season and Yagi on all time 
integration values. Additionally, all datasets have positive 
skewness (or skewed to the left) which denotes that the 
number of occurring small raindrops are higher than the 
large ones. Positive kurtosis values for all datasets show 
that the number of occurrences of raindrop Dm values are 
near the overall mean. Comparing the mean Dm with other 
studies, results show that the mean raindrop diameter in the 

Parameter Covered period Δt Mean SD SK KT

Dm (mm)

wet season 1-min 1.41 0.46 1.30 7.59

wet season 2-min 1.43 0.46 1.35 7.87

wet season 5-min 1.45 0.46 1.20 6.62

wet season 10-min 1.48 0.46 1.15 6.22

Yagi 1-min 1.36 0.36 1.64 11.16

Yagi 2-min 1.38 0.35 1.36 8.03

Yagi 5-min 1.39 0.33 1.23 6.70

Yagi 10-min 1.41 0.31 1.27 5.61

log10Nw (m-3 mm-1)

wet season 1-min 3.18 0.53 -0.19 2.72

wet season 2-min 3.14 0.55 -0.37 3.03

wet season 5-min 3.09 0.55 -0.47 3.12

wet season 10-min 3.05 0.54 -0.49 3.20

Yagi 1-min 3.04 0.50 0.02 2.75

Yagi 2-min 3.02 0.49 -0.01 2.65

Yagi 5-min 2.98 0.47 0.02 2.60

Yagi 10-min 2.94 0.45 0.11 2.52

µ

wet season 1-min 11.20 9.75 2.67 14.49

wet season 2-min 9.59 7.81 2.40 12.65

wet season 5-min 7.76 5.91 2.16 11.39

wet season 10-min 6.47 4.74 1.93 9.95

Yagi 1-min 9.52 5.36 1.25 5.70

Yagi 2-min 7.91 3.98 1.26 5.83

Yagi 5-min 6.33 2.88 0.62 4.21

Yagi 10-min 5.39 1.93 -0.49 3.44

Λ (mm-1)

wet season 1-min 13.04 11.82 2.77 14.88

wet season 2-min 11.36 9.56 2.59 13.43

wet season 5-min 9.53 7.26 2.23 9.74

wet season 10-min 8.23 5.85 2.16 9.09

Yagi 1-min 11.05 6.50 1.60 6.36

Yagi 2-min 9.54 5.07 1.64 6.33

Yagi 5-min 8.05 3.72 1.65 7.18

Yagi 10-min 7.05 2.26 0.42 3.51

Table 6. General statistics of rainfall rates (mm hr-1) derived from DSD.
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(a)

(b)

(c)

(d)

Fig. 8. Histograms of Dm (blue, in mm) and log10Nw (red, in mm-1 m-3) for (a) the wet season and (b) Yagiand the Distribution of log10Nw (in mm-1 
m-3) and Dm (in mm) for (c) the wet season and (d) Yagi using 1-min Δt. Also shown are the stratiform-convection separation line and the range 
values of maritime and continental convection from the study of Bringi et al. (2003, 2009).

Country Δt Mean R Dm Log (Nw) µ Λ

Philippines (this study) 1-min 4.79 1.41 3.18 11.20 13.04

Philippines (this study) 10-min 4.08 1.48 3.05 6.47 8.23

Taiwan (Seela et al. 2017) 1-min 4.94 1.24 4.22 6.72 9.80

Taiwan (Lee et al. 2019b) 10-min 1 1.16 4.36 5.6 9.82

Malaysia (Lam et al. 2015) 1-min 1 1.74 3.52 6.76 7.34

East China (Chen et al. 2013) 1-min 5.50 1.66 3.42 3.51 4.52

Palau (Seela et al. 2017) 1-min 5.02 1.11 4.56 8.37 12.19

Table 7. Comparison between gamma parameter values of this study and studies from 
neighboring countries.

Note: 1: not stated in their respective published studies.
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Philippines for the wet season (at 1-min Δt) is the same as 
the value observed by Tokay and Short (1996) for the tropi-
cal ocean (1.41 mm). However, the mean Dm in this study 
is observed to be lower than the study by Lam et al. (2015) 
in Malaysia (1.74 mm), and from the results of Chen et al. 
(2013) in Eastern China (1.66 mm), but is observably high-
er than that from the study of Lee et al. (2019b) in Northern 
Taiwan (1.16 mm), from the study by Seela et al. (2017) in 
Palau (1.11 mm) and from 1-min DSD results in Taiwan 
from the same study (1.24 mm). These results imply that 
raindrops in the Southern Luzon, Philippines is generally 
smaller than that from Malaysia and Eastern China but are 
larger than those from Taiwan and Palau. For log10Nw val-
ues, the mean and standard deviation values from both pe-
riods of all integration time steps have minimal differences 
(2.94 to 3.18 m-3 mm-1 for mean, 0.45 to 0.55 m-3 mm-1 for 
SD). Significant differences, however, was observed for the 
two dataset periods in terms of skewness. For the whole 
wet season, the log10Nw values tend to be negatively skewed 
(the frequency of occurrence is toward the higher values) 
while for Yagi, they were observed to be positively skewed 
(the frequency of occurrence is toward the higher values). 
This denotes that there are fewer number of raindrops for 
each class in Yagi than for the wet season in general. It was 
noted that the maximum log10Nw values for the whole wet 
season (3.18 m-3 mm-1 at 1-min Δt) is observably less than 
that from Taiwan (4.22 and 4.36 m-3 mm-1 for 1- and 10-
min, respectively) as well as Palau (4.56 m-3 mm-1), and less 
by a small amount in comparison with that from Malaysia 
(3.52 m-3 mm-1), and East China (3.42 m-3 mm-1). This im-
plies that compared to these areas, the number of raindrops 
is less in Southern Luzon, Philippines than its neighboring 
regions. It must be noted, however, that the mean R from 
this study is observably less than the aforementioned stud-
ies (see Table 7).

The shape parameter µ gives an idea of how spread the 
distribution of raindrops is across the DSD classes. A big 
difference was observed between the µ values from the 1-, 
2-, 5-, and 10-min integration time steps for all time periods. 
The value of µ is significantly higher for 1-min integration 
time step (11.20 for wet season, 9.52 for Yagi) than for 10-
min integration time step data (6.47 for wet season, 5.39 for 
Yagi), with in-between values using 2- and 5-min integra-
tion time steps. This denotes that the data from 1-min inte-
gration time steps covers a wider range of size distribution 
than the data from 10-min integration time step. However, 
a reason for such high distribution might be the presence of 
outlying number of drops on larger diameters that affects the 
value of µ. Moreover, the average µ value for 1-min data for 
the wet season (µ = 11.20) is also significantly higher than 
the µ values of China (µ = 3.51, 1-min Δt), Palau (µ = 8.37, 
1-min Δt), Taiwan (µ = 6.72 and 5.60 for 1- and 10-min 
Δt, respectively), and Malaysia (µ = 6.76, 1-min Δt) (Chen 
et al. 2013; Lam et al. 2015; Seela et al. 2017; Lee et al. 

2019b). However, when using longer time-steps (> 1-min), 
the values of µ appears to be closer to the aforementioned 
areas of comparison, albeit still a little higher in magnitude. 
Nevertheless, it can be concluded that rainfall in South Lu-
zon is more widely distributed across DSD classes than the 
aforementioned neighboring areas. Significant differences 
were also observed between the four integration time steps 
in terms of the slope parameter Λ (mm-1). In gamma distri-
bution, a higher slope parameter signifies a gentler slope of 
the gamma curve. Data using 1-min Δt (wet season = 13.04 
mm-1, Yagi = 11.05 mm-1) achieved significantly higher Λ 
values compared to those using 10-min Δt (wet season = 
8.23 mm-1, Yagi = 7.05 mm-1), with in-between values using 
2- and 5-min integration time steps. Compared to nearby 
areas, the achieved Λ using 1-min Δt from the study area is 
also significantly higher than those from China (Λ = 4.52 
mm-1), Malaysia (Λ = 7.34 mm-1), and Taiwan (Λ = 9.82 
mm-1) but is close to the results in Palau (Λ = 12.19 mm-1). 
As with the case of µ, the use of longer time steps achieved 
Λ values closer to that of its neighbors.

The scatter plots of the normalized parameters log10Nw 
(in mm-1 m-3) and Dm (in mm) are shown in Figs. 8c and d. 
Comparing the scatter plots of wet season and Yagi for both 
integration time reveals a generally common mean, with the 
major difference only on the number of samples plotted. 
The blue and red squares in the plot are the range of mari-
time convection and continental convection (respectively) 
as reported by Bringi et al. (2003, 2009) by studying DSDs 
across various climatic regimes. In addition, the study also 
reported the separation between convective and stratiform 
rain DSDs which is shown in dashed line in the plots. Re-
sults of the study showed that the mean and most of the 
plotted data are overwhelmingly on the stratiform-class side 
of the dashed line, which denotes that most of the rainfall 
that occurred during the wet season and Yagi are stratiform 
in nature. It was also observed that in Southern Luzon, Phil-
ippines the convective rains are closer to continental than 
maritime in terms of origin.

To further investigate the variability of log10(Nw) and 
Dm with respect to rain rates, scatter plots of the two param-
eters vs R (mm hr-1) are also shown in Fig. 9. In addition, 
the plots also show the fitted power law curve and relation-
ship equation derived using least-squares method. A gen-
eral positive trend of the curve’s exponent can be observed 
for all the plotted data in terms of log10(Nw) and Dm. This 
denotes that for all the datasets, both parameters increase 
with heavier rainfall intensity, owing to more efficient co-
alescence and breakup mechanisms (Hu and Srivastava 
1995). In terms of log10(Nw), the coefficients of datasets 
using 1-min time integration steps (3.1369 for wet season, 
3.0663 for Yagi) are higher than the datasets utilizing 10-
min integration time steps (3.0112 for wet season, 2.9792 
for Yagi), with in-between magnitudes using 2- and 5-min 
integration time steps. However, the inverse is observed in 
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the curve exponents, wherein 1-min integration time steps 
have lower exponent values (0.054 for wet season, 0.071 for 
Yagi) than 10-min integration time steps exponents (0.0627 
for wet season, 0.0774 for Yagi). This denotes that although 
log10(Nw) in 1-min Δt have a higher intercept, the rate of 
growth as R increases is lower compared to that of 10-min 
Δt. In the case of R vs Dm, however, all coefficients and 
their respective exponents are relatively close to each other 
in terms of integration time steps.

3.1.3 DSD-Derived Reflectivity (ZDSD)

The histograms of the calculated reflectivity Z values 
in dBZ for are shown in Fig. 10. Results show that for the 
wet season, most of the measured reflectivities are mostly 
within the 20 - 30 dBZ range for the data using 1-, 2-, and 
5-min Δt (figures are not shown for 2- and 5-min data). On 
the other hand, data using 10-min Δt has observably lower 
measured Z, with most of the data included in the 18 - 22 

dBZ range (figure for 10-min is not shown). In terms of the 
results for Yagi, the histograms for all integration time steps 
show that most of the data are within the 18 - 25 dBZ range, 
and are hence considered to have lower reflectivities than 
the overall average for the wet season. It was also observed 
that the data have close kurtosis values (with a range of 3.04 
to 3.35) and are all observably skewed to the left (positive 
skewness), which indicates that the majority of the data are 
within the lower range of Z. To illustrate the relationship 
between RDSD and ZDSD, scatter plots for log10R (mm hr-1) vs. 
Z (dBZ) are shown in Fig. 11. Included in the plots are the 
mean (black dot) and the standard deviations (black lines 
propagating from the black dot) of the data. Also shown 
in the plots is the separation line between convective and 
stratiform rain events in terms of R and Z by Bringi et al. 
(2003, 2009). Results show that an overwhelming majority 
of the rain events measured by the Parsivel were of strati-
form origin in terms of both R and Z. This pattern can be 
observed in all datasets during the wet season and for Yagi, 

(a) (c)

(b) (d)

Fig. 9. Scatter plots of Nw (103 mm-1 m-3) and R (mm hr-1) for (a) wet season and (b) Yagi as well as for Dm (mm) and R (mm hr-1) for (c) wet season 
and (d) Yagi using 1-min Δt. The solid line and the equation represent the fitted power-law curve using least-squares method.
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and for both 1- and 10-min integration time steps. These re-
sults agree with the result observed from the Dm vs. log10Nw 
plots shown in Figs. 8c and d.

3.2 Radar Reflectivity Retrieval

The time-series comparison of ZDSD and reflectiv-
ity measured by the Tagaytay radar (ZRADAR) is shown in 
Fig. 12a while the scatter plot is shown in Fig. 12b. Results 
show varying trends in the agreement between ZRADAR and 
ZDSD with respect to its magnitude. For example, between 
22:00 UTC 10 August and 00:00 UTC 11 August, as well 
as between 11:00 and 16:00 UTC 11 August, the agreement 
between the two datasets is generally good, with values 
ranging from 15 to 33 dBZ. However, the discrepancy be-
tween the two datasets increases towards the main rainfall 

event, which is the period between 4:00 and 10:00 UTC 11 
August (where the peak rainfall for Yagi occurs). Although 
the patterns of peaks and troughs of the time series plots 
for both datasets are still comparable, their differences are 
more pronounced in this period, with the highest radar bias 
of 15.87 dBZ at 5:30 UTC 11 August. Nevertheless, in the 
period with the highest burst rainfall (between 08:00 and 
09:00 UTC 11 August), the two datasets have a generally 
good agreement and minimal bias values. Overall, the ZDSD 
provided an acceptable agreement with the ZRADAR and were 
hence used to calculate QPEs using different R(Z) relations.

3.3 Derived Polarimetric Rainfall Relations

The generated a and b values for R(Z) relations are 
summarized in Table 8. The R(Z) Code column refers to the 

(a) (b)

Fig. 10. Histograms of the DSD-derived Z (dBZ) for (a) the wet season and (b) Yagi using 1-min Δt.

Fig. 11. Scatter plots of DSD-derived log10R (mm hr-1) and DSD-derived Z (dBZ) for (a) the wet season and (b) Yagi at 1-min Δt. The broken lines 
are the separation thresholds for stratiform and convective classification in terms of R (yellow) and Z (red). The black dot represents the mean value 
while the black lines represent the standard deviation in terms of Z (vertical) and R (horizontal).

(a) (b)
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codename given to each R(Z) relation and shall be used to 
refer to the 16 generated relations from hereon. In general, 
the values of a using Method 1 (339 to 421 for wet season, 
363 to 453 for Yagi) are higher than those from Method 2 
(251 to 332 for wet season, 297 to 355 for Yagi) for both 
time periods. However, the values of b appear to have an 
opposite pattern as results show that b values using Method 
1 (1.19 to 1.24 for wet season, 1.19 to 1.24 for Yagi) are 
smaller compared to b values derived from Method 2 (1.5 to 
1.54 for wet season, 1.34 to 1.41 for Yagi). The final values 
of a ranges from 252 (A5) to 421 (A4) for the wet season 
while for Yagi, the final values are between 297 (Y5) and 
453 (Y4). It can be observed that Method 1 produces the 
maximum a values for both time periods, which indicate 
that Method 1 is more sensitive to the presence of larger 
rain drops in its R(Z) relations compared to that of Method 
2. For parameter b, the final values are between 1.19 (A1) 
and 1.54 (A5) for wet season, and between 1.19 (Y1) and 
1.41 (Y5) for Yagi.

The calculated values of a and b from the gamma pa-
rameters µ and N0 are shown in Fig. 13. The black broken 
lines represent the mean value of the plot that are used as 
final coefficients and exponents. For the whole wet season, 
results show a decreasing variability in magnitudes of a as 
the time increment increases while values of b have no dis-
cerning pattern. This also holds true for the case of Yagi. 
In terms of magnitude, the values of a and b increases as 
time increment increases for both the wet season and for 
Yagi. The occurrence of a constant pattern for magnitudes 
of both a and b can be attributed to the fact that both vari-
ables are calculated as a function of µ, which has shown 
to have a consistent decreasing pattern as the time integra-
tion step increases. For linear fitting, the scatter plots of 
ln10/10 × Z (dBZ) and lnR (mm hr-1) are shown in Fig. 14 
for both time periods using all four integration time steps. 
Results show similar trends with the a values from Method 
1, wherein the magnitude of a values increases as Δt in-
creases for both the wet season and Yagi. However, a main 
difference from Method 1 is that there is an inverse relation-
ship for the observed magnitudes of b and time increments 
when using Method 2 for both wet season and Yagi. One 
important observation from the derived R(Z) linear fits is 
that the residual variance remains stable as time increment 
increases. The same results were observed by Chapon et al. 
(2008) from their study of Mediterranean rainfall in France. 
According to the authors, such a pattern is unexpected given 
that time integration from 1- to 10-min has the potential to 
bring sample noise reduction from the data.

The generated R(Z, ZDR), R(KDP), and R(KDP, ZDR) re-
lations from wet season and for Yagi (accompanied by a 
subscript A and Y, respectively) are also shown in Table 8, 
while the fitted lines are shown in Fig. 15. Results show that 
the coefficient a of R(KDP) and R(KDP, ZDR) tend to be larger 
for the Yagi event than the wet season while it is the op-

posite in terms of R(Z, ZDR). As the DSD values were used 
for the derivation of these relations, the results indicate that 
Yagi has less concentration of small raindrops and a lower 
proportion of large raindrops because the coefficient val-
ues of a is larger for R(KDP) and R(KDP, ZDR). On the other 
hand, R(Z, ZDR) relations show Yagi has a lower propor-
tion of large raindrops but a higher concentration of small 
raindrops, which is why the coefficient a is smaller than the 
in the wet season. The results implies that rainfall based on 
R(Z, ZDR) is more sensitive to the number of small raindrops 
than the proportion of large raindrops.

3.4 Evaluation and Comparative Analysis of Rainfall 
Products

3.4.1 Initial Comparison Between RDSD, RRADAR, and RRG 
during Yagi

To determine the variability between the datasets de-
rived from the three instruments used in this study (rain 
gauge, disdrometer, and radar), their respective datasets 
at 10-min time interval during Yagi were first compared. 
Figure 16 shows the time series plots of R derived from 
rain gauge, disdrometer, and from Tagaytay Radar using 
the standard WSR-88D relation Z = 300R1.4 relation (will 
be referred to as SR from hereon). In addition, the stan-
dard R(Z) relation for neighboring Taiwan from the study 
of Seela et al. (2017) (Z = 283.35R1.35 and will be referred 
to as ST) was also compared to the results of the study. Re-
sults show generally similar peaks and troughs between the 
datasets throughout the study period. However, the discrep-
ancies between the three instruments are more pronounced 
during peak periods (between 05:00 and 09:00 UTC 11 
August) with a maximum absolute bias of 11.88 mm hr-1 
(+) for RDSD (at 08:30 UTC 11 August), 13.68 mm hr-1 (-) 
for RRADAR-SR (at 08:10 UTC 11 August), and 13.02 mm hr-1 
for RRADAR-ST (at 08:10 UTC 11 August). In terms of linear 
regression, the fitted lines show a higher average R for dis-
drometer compared to that of rain gauge (r = 0.97). On the 
other hand, an even higher deviation from the rain gauge 
data was observed for the RRADAR-SR and RRADAR-ST (both 
have an approximate r of 0.85), albeit unlike the RDSD, both 
radar products are observed to be characterized by under-
estimation. The underestimation of RRADAR and overestima-
tion of RDSD is further emphasized through the time series 
of accumulated rain plots. In comparison with the gauge-
measured total Yagi rainfall (23 mm), RDSD overestimated it 
by 39% (32 or 9 mm difference) while the RRADAR-SR under-
estimated the total rainfall by 26% (17 mm) and RRADAR-ST 
by 27% (18 mm).

The overestimation of DSD rain rate from an opti-
cal Parsivel disdrometer has also been observed in other 
studies (Lanza and Vuerich 2009; Thurai et al. 2011; To-
kay et al. 2013, 2014; Zhang et al. 2015). The authors of 
these various studies all found out that the optical Parsivel 
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(a) (b)

Fig. 12. (a) Comparison between the ZRADAR and ZDSD and (b) their scatter plots Also shown in the figure is the rainfall rate (bars) from rain gauge 
co-located with the disdrometer.

Relation Covered period Δt (min) Code Equivalent equation

R(Z) (Method 1)

wet season 1 A1 Z = 339R1.19

wet season 2 A2 Z = 361R1.20

wet season 5 A3 Z = 390R1.22

wet season 10 A4 Z = 421R1.24

Yagi 1 Y1 Z = 363R1.19

Yagi 2 Y2 Z = 384R1.20

Yagi 5 Y3 Z = 422R1.23

Yagi 10 Y4 Z = 453R1.24

R(Z) (Method 2)

wet season 1 A5 Z = 251R1.54

wet season 2 A6 Z = 279R1.51

wet season 5 A7 Z = 302R1.50

wet season 10 A8 Z = 332R1.50

Yagi 1 Y5 Z = 297R1.41

Yagi 2 Y6 Z = 308R1.41

Yagi 5 Y7 Z = 335R1.37

Yagi 10 Y8 Z = 355R1.34

R(Z,ZDR)
wet season 1 R(Z, ZDR)A R = 0.0025Z0.9340ZDR

-0.8632

Yagi 1 R(Z, ZDR)Y R = 0.0020Z0.9661ZDR
-0.9141

R(KDP)
wet season 1 R(KDP)A R = 21.1873KDP

0.7112

Yagi 1 R(KDP)Y R = 23.6010KDP
0.7634

R(KDP,ZDR)
wet season 1 R(KDP, ZDR)A R = 31.2748KDP

0.9562ZDR
-0.7037

Yagi 1 R(KDP, ZDR)Y R = 31.9715KDP
0.9749ZDR

-0.7340

Table 8. Generated a and b values and their corresponding equations.
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(a) (b)

(c) (d)

Fig. 13. Sample derived values of (a) a from wet season, (b) a from Yagi, (c) b from wet season, and (d) b from Yagi using 1-min DSD data. The 
black broken line represents the overall mean value.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14. Scatter plots of ln10/10 × Z (dBZ) vs lnR (mm hr-1) using various integration time steps for the wet season (a), (b), (c), and (d), and for Yagi 
(e), (f), (g), and (h).
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(a) (b)

(c) (d)

(e) (f)

Fig. 15. Fitted relations between various dual-pol parameters for the wet season (a), (c), and (e), and for Yagi (b), (d), and (f).
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disdrometer has a tendency to underestimate smaller rain 
drops and overestimate larger ones, even in solid forms of 
precipitation (Battaglia et al. 2010). This also explains why 
the R derived from the Parsivel disdrometer exhibited a 
significant amount of overestimation for Yagi (with mul-
tiple rainfall bursts) but only a minimal overestimation for 
the whole duration of the study (which is characterized by 
moderate to high rainfall stratiform rainfall). Moreover, it 
was also observed that there is a wide range of raindrop size 
diameters that is characteristic of the study area as com-
pared to other nearby countries such as Malaysia (Lam et 
al. 2015) and Taiwan (Lee et al. 2019b). This presence of 
larger raindrops can further exacerbate the overestimation 
of the Parsivel disdrometer. In the case of Radar QPE, us-
ing the default WSR-88D relation Z = 300R1.4 was shown 
to generally create an underestimation within areas outside 
the area of origin Miami, Florida (Vieux and Bedient 1998; 
Ulbrich and Lee 1999; Jayakrishnan et al. 2004; Yang et al. 
2016). Further analysis by Legates (2000) suggests that this 
standard R(Z) relation tend to overestimate light rainfall and 
underestimate heavy rainfall, which can explain why Yagi 
(which is characterized by multiple bursts of heavy rainfall) 
was significantly underestimated in this study. As R(Z) rela-
tions can vary significantly over a number of factors such as 

prevailing climate, geography, and other characteristics of 
a certain region, this trend of underestimation through the 
use of the standard R(Z) relation is proof that its use is not 
suitable for Southern Luzon, Philippines.

3.4.2 Statistical Validation of Generated QPEs Using 
Various R(Z) Relations

As the robustness of a specific R(Z) relation cannot be 
defined by linear fit and difference in accumulated rainfall 
alone, six statistical validation tools (Pearson’s correlation 
coefficient or r, mean error or ME, percent bias or pBIAS, 
Nash-Sutcliffe efficiency coefficient or NSE, mean absolute 
error or MAE, and root-mean-square error or RMSE) were 
also calculated for each derived QPE dataset to analyze their 
respective performances with reference to rain gauge data. 
Exact values of all the statistical variables from all QPEs 
and stations are shown in Table 9. There is a highly variable 
set of results of QPE statistical validation in terms of the six 
statistical tests applied. QPEs calculated from Method 2 out-
performed those from Method 1 in terms of linear relation-
ship r. Chapon et al. (2008) also reported the same results 
in his study, and stated that it was only natural as regression 
techniques work directly with DSD moments of interest For 

(a) (b)

(c)

Fig. 16. Comparison between the (a) time series, (b) accumulated rainfall and (c) scatter plots (C) of R derived from rain gauge, Parsivel, and two 
Standard R(Z) relations (Z = 300R1.4 and Z = 283.35R1.35).
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r, there is no observed trend when it comes to time inte-
gration step and as expected, the highest linear correlation 
values were observed in the collocated rainfall station, theo-
retically because both Z and R were calibrated in that area. 
For ME, all QPEs were observed to underestimate the actual 
rainfall and hence were all negative values. An interesting 
observation is that the two parameters increase in magni-
tude as the time integration step increases, a pattern which 
holds true for both methods and from all stations. This can 
be explained by the increasing magnitude of accumulated 
rain if the time step is longer. In terms of ME and pBIAS, 
ST performed better than SR by a significant amount for 
each individual station and all stations combined. Addition-
ally, Method 1 overwhelmingly outperforms Method 2 for 
all individual stations as well as the general analysis of all 
four stations, and 5 QPEs derived from Method 1 were able 
to outperform SR. In addition to ME and pBIAS, MAE is 
also a measure of the actual error and is closely related to 
the two aforementioned parameters. Hence, the results were 
highly similar with that from ME and pBIAS. MAE was 
also observed to increase as time integration step increases 
- potentially because of the same reasons as ME and MAE. 
In addition, Method 1 also outperformed Method 2 for all 
individual stations and as a whole. Five QPEs from Meth-
od 1 also were able to outperform SR in terms of ME and 

MAE. Results of NSE analysis show highly similar trends 
as the ME, MAE, and PBIAS, as expected because all these 
variables measure the degree of deviation/error from the ob-
served data. Results show that ST achieved the best NSE 
value (0.678), followed by A3 (0.673) and Y2 (0.671). This 
is also the same result that was observed in terms of RMSE, 
and denotes that ST has the capability to perform well in 
radar QPE in terms of NSE and RMSE. In comparison to 
the study by Crisologo et al. (2014) for the Tagaytay Radar 
using the R(Z) relation Z = 250R1.25 for hourly rain accumu-
lation for the wet season of 2012, the top-performing QPEs 
of this study yielded significantly better results in terms of 
all six statistics and suggests that the derived R(Z) relations 
has the potential to outperform commonly used relations 
for radar QPEs (see Table 9, last row). To summarize the 
results, the QPEs from four derived R(Z) relations which 
performed consistently well in terms of statistical validation 
are: A1 (Z = 339R1.19), A2 (Z = 361R1.20), Y1 (Z = 363R1.19), 
and Y2 (Z = 384R1.20). It must be noted however, that the 
best QPEs in terms of r was not considered because of very 
low discrepancies between the r values for all QPEs. SR was 
not able to perform well at all in terms of any statistics for 
all the station combined. In fact, even ST outperformed SR 
for all but 1 statistic (r). This denotes that SR wasn’t able to 
acceptably model the real rainfall for this particular event.

QPE r ME pBIAS NSE MAE RMSE

A1 0.826 -0.218 -17.065 0.655 0.218 1.809

A2 0.827 -0.287 -22.458 0.670 0.287 1.769

A3 0.829 -0.373 -29.196 0.672 0.373 1.764

A4 0.830 -0.448 -35.075 0.656 0.448 1.804

A5 0.842 -0.360 -28.223 0.633 0.360 1.863

A6 0.842 -0.403 -31.551 0.623 0.403 1.889

A7 0.842 -0.441 -34.591 0.608 0.441 1.926

A8 0.842 -0.492 -38.593 0.583 0.492 1.988

Y1 0.826 -0.277 -21.698 0.665 0.277 1.781

Y2 0.827 -0.336 -26.348 0.671 0.336 1.765

Y3 0.829 -0.439 -34.430 0.659 0.439 1.797

Y4 0.830 -0.495 -38.800 0.641 0.495 1.844

Y5 0.839 -0.369 -28.899 0.658 0.369 1.799

Y6 0.839 -0.392 -30.709 0.650 0.392 1.820

Y7 0.838 -0.413 -32.384 0.650 0.413 1.820

Y8 0.836 -0.426 -33.352 0.651 0.426 1.818

SR 0.839 -0.403 -31.575 0.645 0.403 1.833

ST 0.836 -0.318 -24.923 0.678 0.318 1.746

Crisologo et al. (2014) 0.70 -0.28 -45.70 0.45 0.47 2.14

Table 9. Validation statistics of QPEs from various R(Z) relations.
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3.4.3 Comparison Between Generated QPEs using 
Dual-Pol Relations

The best performing R(Z) relations (A1, A2, Y1, and 
Y2) were compared with the other derived dual-pol rela-
tions to determine the most useful dual-pol relation/s for 
the study area, and the results are shown in Table 10. For 
this section of the discussion, the aforementioned relations 
will be referred to as R(Z)A1, R(Z)A2, R(Z)Y1, and R(Z)Y2, 
respectively. Additionally, the dual-pol relations have the 
subscripts A and Y which corresponds to wet season and 
Yagi, respectively. As shown in the previous section, R(Z) 
relations underestimated rainfall during Yagi, with varying 
degrees depending on the specific relation used. When com-
pared with other dual-pol relations, results show that the 
use of R(KDP) further reduced this underestimation. In fact, 
R(KDP) values outperforms all the other QPEs by a high de-
gree in terms of ME [-0.106 mm hr-1 for R(KDP)A and -0.133 
mm hr-1 for R(KDP)Y], MAE [-0.106 mm hr-1 for R(KDP)A 
and 0.133 mm hr-1 for R(KDP)Y], and pBIAS [-8.314% for 
R(KDP)A and -10.400 mm hr-1 for R(KDP)Y]. The results in 
the study agrees with various dual-pol QPE comparative 
analyses in literature (e.g., Crisologo et al. 2014; Chen et 
al. 2017; Gou et al. 2018; Voormansik et al. 2020) and can 
be attributed to KDP’s immunity to radar calibration and at-
tenuation (Chandrasekar and Cifelli 2012). However, R(Z) 
relations, were still able to outperform the others in terms of 
NSE [0.665 for R(Z)Y1 and 0.658 for R(Z)Y2], RMSE [1.809 
for R(Z)A1 and 1.781 for R(Z)A2], and r [0.842 for R(Z)A2 and 
0.839 for R(Z)Y2], although the difference is only minimal 
compared with R(KDP) in terms of NSE, and with R(Z, ZDR) 
in terms of r. Other studies such as Gou et al. (2018) and 
Voormansik et al. (2020) show that R(Z) has the potential 
to outperform other dual-pol relations with proper bias and 
attenuation correction. On the other hand, R(Z, ZDR) per-
formed poorly for ME, pBIAS, and MAE while R(KDP, ZDR) 
performed poorly in terms of NSE and RMSE. This can be 

attributed to the residual effects such as resonance and noise 
to ZDR values, which explains why the combination of ZDR 
with Z and KDP resulted to lower accuracy (Ryzhkov and 
Zrnić 2019). As the equation constants derived from wet 
season data and Yagi data have close values, results show 
that there are minimal differences with their R values (< 5% 
difference in statistics). Major differences (20 - 21%) were 
observed only in terms of ME, MAE and pBIAS for R(Z)
A1, Y1, and R(KDP)A, Y, wherein the use of wet season-based R 
performed better than Yagi-based R. Overall, results show 
that R(KDP) performed the best in representing the rain-
fall of Yagi event when compared to R(Z), R(Z, ZDR), and 
R(KDP, ZDR).

4. DISCUSSION AND CONCLUSIONS

The present study aims to derive robust and suitable 
dual-pol relations that can provide acceptable agreement 
with reference gauge data for the wet season in the Philip-
pines, a country frequented by tropical storms and flooding. 
The study utilized the DSD data measured by the Parsivel 
disdrometer at Southern Luzon, Philippines to derive paired 
rainfall rate - radar reflectivity data using the T-matrix/
Mueller method, and reflectivity data from the Tagaytay 
Radar to analyze the Yagi Event Monsoon (Yagi) in terms 
of rainfall and DSD at ground level. The effects of time 
integration step in DSD data were also analyzed by using 
1-, 2-, 5-, and 10-min Δt as inputs for deriving R(Z) re-
lations. Results show that the area’s DSD demonstrates a 
highly variable distribution in rain drop diameter size and is 
further confirmed by the relatively higher shape parameter 
µ in its gamma distribution when compared to neighbor-
ing countries such as Malaysia, China, Taiwan and Palau 
(Chen et al. 2013; Lam et al. 2015; Seela et al. 2017; Lee 
et al. 2019b). It was also observed that on the basis of the 
normalized DSD parameters Nw and Dm, the area of interest 
has a relatively larger average raindrop diameters than its 

QPE r ME pBIAS NSE MAE RMSE

R(Z)A1 0.826 -0.218 -17.065 0.655 0.218 1.809

R(Z)A2 0.842 -0.360 -28.223 0.633 0.360 1.863

R(Z)Y1 0.826 -0.277 -21.698 0.665 0.277 1.781

R(Z)Y2 0.839 -0.369 -28.899 0.658 0.369 1.799

R(Z, ZDR)A 0.828 -0.735 -57.566 0.551 0.735 2.063

R(Z, ZDR)Y 0.825 -0.720 -56.398 0.571 0.720 2.017

R(KDP)A 0.779 -0.106 -8.314 0.596 0.106 1.956

R(KDP)Y 0.776 -0.133 -10.400 0.598 0.133 1.951

R(KDP, ZDR)A 0.748 -0.346 -27.125 0.544 0.346 2.078

R(KDP, ZDR)Y 0.744 -0.363 -28.471 0.537 0.363 2.094

Table 10. Comparison between dual-pol relations’ statistics.
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neighboring Asian counterparts, albeit a smaller number in 
the total number of raindrops in comparison with the same 
areas. This is supported by the derived slope parameter Λ 
which is observed to exhibit higher magnitude (flatter slope 
which denotes a wider truncated gamma curve) than other 
neighboring countries.

R(Z) parameters a and b were derived using three sets 
of partitions: covered period (wet season and Yagi); time 
integration step (1-, 2-, 5-, and 10-min); and method used 
(Method 1 and Method 2) which generated a total of 16 R(Z) 
relations. Method 1 makes use of the relationship between 
the gamma parameters µ and N0 to calculate a and b for each 
time step while Method 2 derives the two parameters by 
linear fitting the log-transformed Z and R datasets. Results 
show that there is a high variability between the calculated 
a and b in terms of all three partitions. For method type, 
Method 1 derived relatively higher a values than Method 2, 
which is likely due to the sensitivity of Method 1 to larger 
rain drops (as a is calculated from each and every time step). 
On the other hand, Method 2 utilizes the least squares meth-
od, which reduces its sensitivity to outliers in drop size data. 
However, the calculated b values exhibit an opposite trend, 
wherein Method 2 consistently achieved higher b values for 
all combinations that those from Method 1. There is also 
an observable pattern in a and b values in terms of Δt used. 
Values of coefficient a increase as the time integration step 
increases, which can be due to the inclusion of larger rain 
drops in a greater proportion of DSD data in longer time 
steps than in shorter ones. On the other hand, b increases 
as time step increases for Method 1, while the opposite is 
observed for Method 2. Lastly, the a values derived from 
the wet season were relatively smaller than the ones derived 
from Yagi, which can be attributed to the fact that all weak 
and strong rainfall events were considered during the wet 
season while Yagi is considered as a relatively strong event 
and is therefore more inclusive of larger raindrops. An in-
teresting result on this section is that there is no increase in 
linear agreement between Z and R as Δt increases, which 
implies that the aggregation of datasets into larger values 
does not improve the quality of data despite its expected 
noise reduction effect (Chapon et al. 2008).

Six validation statistics were used to analyze the per-
formance of the 16 derived QPEs: Pearson’s correlation co-
efficient (r); mean error (ME); percent bias (pBIAS); Nash-
Sutcliffe efficiency (NSE); mean absolute error (MAE); and 
root-mean-square error (RMSE). Besides the 16 derived 
QPEs, the standard relation Z = 300R1.4 (SR) and Taiwan’s 
relation Z = 283.35R1.35 (ST) were also used and compared 
with reference rain gauge (RG) data. Results for QPE sta-
tistical validation varies greatly in terms of the Method 
used, time integration step, temporal period, and the statis-
tic itself. In terms of simple error statistics (ME, MAE, and 
pBIAS), Method 1 overwhelmingly outperformed Method 
2 for individual stations and for all stations analyzed as a 

whole. In fact, all five QPEs that were able to outperform 
SR were derived using Method 1 (with A1 and A2 con-
sistently performed best in terms of these three statistics). 
However, these errors appear to grow larger in magnitude 
as Δt increases which is likely due to the higher aggregated 
rainfall caused by longer aggregation time. On the other 
hand, Method 2 performed better in terms of linear agree-
ment r, which implies that the general trend of Method 2 
mirrors the linear trends of RG better than Method 1. Being 
based on linear regression itself, this performance of Meth-
od 2 can be attributed to the fact that regression techniques 
work directly with the DSD moments of interest (Chapon 
et al. 2008). It is important to note that SR was not able to 
perform well in terms of all computed statistics, while ST 
was able to rank first in terms of NSE and RMSE. Four R(Z) 
relations consistently performed well for all the statistics: 
A1 (Z = 339R1.19), A2 (Z = 361R1.20), Y1 (Z = 363R1.19), and 
Y2 (Z = 384R1.20). These relations were able to reduce the 
QPE bias by up to 61% when compared to SR. In addition 
to the determination of best R(Z) relations, the study also 
generated R(KDP), R(Z, ZDR), and R(KDP, ZDR) relations and 
analyzed their intercomparison. Results show that R(KDP) 
produced the best results in terms of ME, MAE, and pBIAS. 
The use of R(KDP) was also shown to exhibit the most accu-
racy in many studies (e.g., Crisologo et al. 2014; Chen et al. 
2017; Gou et al. 2018; Voormansik et al. 2020) and is usual-
ly attributed to the immunity of KDP to radar calibration and 
attenuation. Nevertheless, the R(Z) relations were still able 
to perform well in terms of r, NSE, and RMSE. As stud-
ies such as Gou et al. (2018) and Voormansik et al. (2020) 
stated, R(Z) has the potential to outperform other dual-pol 
relations when bias and attenuation are properly corrected.

The results of the study’s intercomparison between 
standard relations and the derived relations present a sig-
nificant improvement over the Philippines’ general rainfall 
weather radar rainfall retrieval from single- and dual-pol 
radars alike. This significance is further emphasized by the 
strategic location of Tagaytay radar, which is according to 
Crisologo et al. (2014): (1) provides coverage for the Bataan 
Peninsula, which is covered by an S-band radar that is se-
verely affected by beam blockage; (2) covers the area of 
Metropolitan Manila’s basins, the country’s densest region; 
and (3) is the only source of data for a number of provinces 
in Southern Luzon. Additionally, the comprehensive de-
scription of the region’s DSD also furthers the understand-
ing of the country’s rainfall characteristics. Nevertheless, 
the localized region of the study does not necessarily reflect 
the DSD characteristics and optimal QPE relations of the 
other regions of the country, and it will be very interesting 
to analyze the intercomparison between the archipelago’s 
other radars representing various regions of the country.
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