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ABSTRACT

Ideally echoes in radar reflectivity data correspond to precipitating particles, 
however they do not, and as a result, automated weather radar products that use these 
data are drastically affected when conditions are not ideal. Weather radar data of 
the Philippine Atmospheric, Geophysical and Astronomical Services Administration 
(PAGASA) is one such case that often suffer contamination, in particular by electro-
magnetic interference and the identification and mitigation of interference echoes is 
an ongoing problem in radar meteorology in these regions. In order to improve the 
quality of the data and consequently the automated products, especially for the radar 
quantitative precipitation estimation (QPE), a fuzzy logic algorithm is applied upon 
the radar reflectivity data to provide a probability guidance for segregating interfer-
ence-contaminated echoes from precipitating echoes. Specifically, adequate features 
to highlight interference characteristics are required for the algorithm to be effec-
tive based on prior experiences. This approach is presented in this study to derive 
membership functions and their relatively objective weights are determined based 
on the superior result of sensitivity test from interference cases. The result of which 
produced a value that quantifies the possibility of each bin being affected by interfer-
ence. Cases that highlighted the interference were examined and demonstrated the 
ability of the fuzzy logic approach to remove interference echoes from radar reflec-
tivity map. Moreover, the presented method can be feasibly implemented in real-time 
multi-radar operations as a quality control (QC) aid.
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1. INTRODUCTION

Weather radars are commonly used to estimate rainfall 
at high spatial and temporal resolution over large regions. 
However, echoes in radar reflectivity data do not always 
correspond to precipitating particles. Instead (common 
non-weather) echoes on radar may be due to biological tar-
gets such as insects, birds or wind-borne particles, due to 
anomalous propagation (AP; sometime over the sea, called 
sea clutter) or ground clutter (GC) or due to test and in-
terference patterns that inadvertently seep into the conse-
quent products. Quality control (QC) of radar data is one 
of the important issues related to improving radar quanti-

tative precipitation estimate (QPE) from radar measure-
ments, especially the challenge still exists to derive accurate 
radar quantitative precipitation forecast (QPF) on weather 
systems. Radar echoes caused by non-meteorological tar-
gets may introduce significant biases in precipitation fields, 
resulting in an abrupt rainfall accumulation gradient and 
spatial discontinuity, even rainfall nowcast. Errors in radar 
rainfall estimates have been shown to propagate nonlinearly 
in hydrologic forecasts of streamflow (e.g., Droegemeier et 
al. 2000; Ogden et al. 2000).

This study is supported and executed under the Project 
VOTE (Volcanos, Ocean, Typhoon, and Earthquake) which 
was the collaboration between CWB (Central Weather 
Bureau, Taiwan) and PAGASA (Philippine Atmospheric, 
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Geophysical and Astronomical Services Administration) 
through the TECO-MOST/MECO-DOST (Taipei Econom-
ic and Cultural Office-Ministry of Science and Technology/
Manila Economic and Cultural Office-Department of Sci-
ence and Technology). The primary purpose of this study 
is to develop a flexible approach based on fuzzy logic con-
cepts to segregate interference-contaminated echoes from 
precipitating echoes for the Philippine radar network, since 
the reflectivity map was often suffered contamination by 
electromagnetic interference. The PAGASA currently op-
erates 17 radars nationwide to survey weather events with 
locations as shown in Fig. 1. As such, they provide a criti-
cally important dataset to those living within their coverage 
area, such as during the tropical cyclone season and for the 
Radar Rainfall Warning System of PAGASA, when signifi-
cant property damages and loss of human lives can occur. 
Unfortunately, interference echoes in the radar network are 
emerging as a serious data issue, as observed in the Philip-
pine radar network (Fig. 2). Saltikoff et al. (2016) indicated 
that the threat of wireless technology to a weather radar is 
observed as a presence of an echo line oriented radially to-
ward the radar and radar data, the source of being radiation 
from nearby telecommunication links. Or radio frequency 
interference can prevent the retrieval of meteorological in-
formation by a weather radar in affected azimuthal sectors 
and present false data that might be mistaken for actual at-
mospheric observations. Accordingly, a completely auto-
mated algorithm that can remove non-weather echoes, such 
as the interference from wireless technology (Lakshmanan 
et al. 2007) or a new radio frequency interference (RFI) fil-
ter algorithm for weather radars proposed in the two-dimen-
sional (2D) range-time/sample-time domain (Cho 2017), 
would be very serviceable in decreasing contaminations in 
the radar reflectivity moment and in improving the perfor-
mance of automated weather radar processes.

Numerous researches have been devoted to improving 
radar data quality. For instance, intensity of ground clutter 
and of echoes of anomalous propagation and its elimina-
tion (Lee et al. 1995); AP Clutter Mitigation Scheme (Kes-
singer et al. 2001, 2002; Ellis et al. 2003) to improve the 
WSR-88D radar-derived rainfall estimates by enhancing the 
quality of the data through the identification and removal of 
certain contaminants; use of three-dimensional reflectivity 
structure for automated detection and removal of AP echoes 
in radar data (Steiner and Smith 2002); identification and 
removal of non-precipitation echoes using the characteris-
tics of radar echoes (Lee et al. 2005; Cho et al. 2006); uses 
statistics to highlight clutter characteristics that quantifies 
the possibility of each bin being affected by clutter to re-
move ground clutter and sea clutter (Berenguer et al. 2006), 
and so on. Many different approaches have been proposed 
to detect, mitigate, and eliminate non-precipitating echoes 
or improve radar data quality by using radar observations, 
such as threshold-based, polarimetric observations, deci-

sion trees, fuzzy logic, neural networks, or combinations of 
these therein. However, fuzzy logic algorithms have been 
widely used for the mitigation of non-meteorological echo 
due to their simplicity. For instance, the Radar Echo Clas-
sifier (REC) based on fuzzy logic was deployed on the Na-
tional Weather Service’s Weather Surveillance Radar-1988 
Doppler (WSR-88D) (Kessinger et al. 2003); fuzzy logic 
algorithm also is used to identify and filter clutter echoes 
based on the characteristics of radar echoes (Berenguer et 
al. 2006; Cho et al. 2006); identification and removal of 
non-meteorological echoes in dual-polarization radar data 
based on a fuzzy logic algorithm (Gourley et al. 2007; Ye 
et al. 2015; Kilambi et al. 2018; Overeem et al. 2020); etc. 
Through the mentioned studies, it has been proven that 
fuzzy logic method possesses the ability to separate weather 
and non-weather patches in reflectivity map to improve the 
radar data quality. Nevertheless, it is noteworthy that none 
of the reported approaches intently constructed in the case 
of interference echoes embedded in precipitation echoes, a 
problem that remains a challenge today for radar data qual-
ity control. Taking strengths and weaknesses of past ap-
proaches into consideration, a fuzzy logic QC procedure for 
interference identification and removal has been developed 
in this study that makes use of the one and two dimensional 
reflectivity structure.

An adequate tool that straightforwardly integrates ob-
servational factors is essential as well as can quantitatively 
provide the interference information in real-time opera-
tions. For example, the capability of individual factors such 
as to identify the appearance of interference can improve 
the radar data quality. The primary purpose of this study is 
to develop a flexible algorithm based on fuzzy logic con-
cepts, to provide interference-echo detection based on radar 
echo characteristics, and automate quality control focusing 
on removing interference echoes. This paper is organized 
as follows: In section 2, the radar data used and the meth-
odology of the fuzzy logic algorithm to identify interfer-
ence echoes are described. The performance of interference 
echo removal from reflectivity field and the subsequent ap-
plication, radar QPE, are presented in section 3, which are 
followed by a summary, conclusions, and suggestions for 
future work in section 4.

2. DATA AND METHODOLOGY

Of the 17 radars that make up the PAGASA network 
(Fig. 1), the Hinatuan (HINA), Mactan (MACT), and Tagay-
tay (TAGA) radars each regularly observe interference sig-
nals that result in the contamination of their weather radar 
products. In this study, the contaminated HINA radar data 
is used characterize the interference signals and, from that, 
construct the algorithms for removing these interference 
echoes. The membership functions for the fuzzy logic are 
derived from either observed or derived radar parameters, 
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Fig. 1. The weather radar network in the Philippines. Range rings of light purple and deep purple represent 480 km of surveillance mode and 120 
km of Doppler mode centered at each radar site, respectively. Radar sites are labeled with the microwave band and un-highlighted and highlighted 
circles respectively symbolize single and dual polarization.

Fig. 2. The composite radar reflectivity map from the Philippine radar network at 1630 UTC 10 November 2018.
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and the weights for these membership functions are deter-
mined based on maximizing the skill score CSI (Critical 
Success Index, Donaldson et al. 1975). Once the algorithm 
was constructed, the MACT and TAGA radar data are used 
to evaluate its performance.

2.1 Radar Data

The first weather surveillance radar of PAGASA in the 
Philippines was installed in Manila in 1963, and in 1971, 
five new radar stations were added and all were linked with 
the Manila radar station to form the country’s initial weather 
radar surveillance network. Currently, there are seventeen 
operational radars of PAGASA in the Philippines, as shown 
in Fig. 1. With the radar network, weather systems can be 
monitored even before it arrives in the Philippines. The 
Modified VCP (Volume Coverage Pattern) 11 was chosen 
by the Technical Working Group (TWG) as the primary 
scanning strategy for PAGASA radars because of its bet-
ter high and low level coverage pattern, which is better for 
tropical weather condition according to NOAA (available 
online at https://www.roc.noaa.gov/WSR88D/PublicDocs/
NewTechnology/New_VCP_Paradigm_Public_Oct_2015.
pdf). The horizontal range of the Modified VCP 11 Scan-
ning Strategy Doppler mode was set to 120 km as a com-
promise between the maximum Nyquist velocity and cover-
age range. In addition to the coverage pattern, the lowest 
two-elevation scans of 0.5 degree and 1.5 degree having low 
pulse repetition frequency (PRF) and long pulse width were 
added to the scanning strategy in order to provide longer 

ranges up to 480 km.
Radar data utilized in this study for developing the 

approach to remove the non-precipitation echoes, interfer-
ences, is primary from the HINA radar of PAGASA. Tech-
nical specifications of the HINA radar are summarized in 
Table 1. Other radar data, such as the MACT and TAGA 
radars, which has high occurrence of interferences are also 
used to validate the improvement of data quality using de-
veloped fuzzy logic QC algorithm. In this study, a total of 
1000 observational radar 0.0° PPI (Plan Position Indicator) 
files (listed in Table 2) from the HINA radar are collected as 
a dataset, including 500 files of distinct interference patterns 
without obvious precipitation events and the other 500 files 
of only precipitation patches. In particular, the algorithm 
was developed and executed in polar coordinates so that the 
data recording remains in the same format. While Interpola-
tion of the data could have been converted to a Cartesian 
grid which could have simplified data management and 
processing, undesired range-dependent artifacts would have 
been introduced (e.g., Trapp and Doswell III 2000). They 
are meticulously analyzed to produce 6 feature curves as 
described in section 2.2.

2.2 Features for Interference Removal

The fuzzy logic algorithm developed in this study is 
to remove interference observed from the HINA radar. The 
features decided to be used in the fuzzy logic approach are 
dominantly referred from Steiner and Smith (2002), Kes-
singer et al. (2003), Berenguer et al. (2006), and Gourley et 

Radar HINA MACT TAGA

Coordinates 8°22'02.37"N
126°20'18.73"E

10°19'21.80"N
123°58'49.1"E

14°08'31.7"N
121°01'20.2"E

Manufacturer/Model EEC/DWSR-8501S EEC/DWSR-2501C EEC/DWSR-2501C

Bandwidth/Polarization S-band/Single polarization C-band/Dual polarization C-band/Dual polarization

Peak power/Frequency 850 kW/2705 MHz 250 kW/5610 MHz 250 kW/5610 MHz

Pulse width (Surveillance/Doppler Mode) 2/0.8 ms 2/0.8 ms 2/0.8 ms

Antenna Speed 12°/sec 12°/sec 12°/sec

Elevation 37 m 46 m 782 m

Beam width/Range resolution 1°/500 m 1°/500 m 1°/500 m

Number of angles/Elevation angles 
(degrees)

Surveillance Mode

2/0, 1.5 2/0.5, 1.5 2/0.5, 1.0

Doppler Mode
14/1.0, 2.0, 2.4, 3.4, 4.3, 5.3, 6.2, 

7.8, 8.7, 10.0, 12.0, 14.0, 16.7, 
19.5

14/0.5, 1.5 2.4, 3.4, 4.3, 5.3, 6.2, 
7.8, 8.7, 10.0, 12.0, 14.0, 16.7, 

19.5

14/0.5, 1.5, 2.4, 3.4, 4.3, 5.3, 6.2, 
7.8, 8.7, 10.0, 12.0, 14.0, 16.7, 

19.5
Maximum range (Surveillance/Doppler 

Mode) 480/120 km 480/120 km 480/120 km

Volume cycle interval 10 minutes 10 minutes 10 minutes

Table 1. Technical specifications of the HINA, MACT, and TAGA radars in Philippines.

https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/New_VCP_Paradigm_Public_Oct_2015.pdf
https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/New_VCP_Paradigm_Public_Oct_2015.pdf
https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/New_VCP_Paradigm_Public_Oct_2015.pdf
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Interference Weather

Year/Month day Number of files Year/Month date Number of files

2017.10 06 22 2017.10 02 5

07 36 29 7

08 3 30 11

09 14 2017.11 07 11

10 33 08 5

11 38 10 12

12 32 11 22

2017.11 01 3 12 1

02 2 14 12

03 1 15 28

08 3 16 21

09 3 28 15

12 4 30 9

14 3 2017.12 02 8

15 33 05 8

28 2 11 12

29 4 12 10

30 7 13 18

2017.12 01 17 14 21

02 13 15 9

03 16 19 6

04 13 20 44

05 5 21 82

06 16 22 34

07 13 23 17

08 11 25 26

11 1 27 41

12 2 31 5

16 13

17 23

18 7

19 9

20 3

22 2

24 31

25 21

26 8

27 1

28 1

29 16

30 15

Total 500 Total 500

Table 2. The files observed from the HINA radar of PAGASA used in deriving 
the feature curves.
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al. (2007), and their relatively proper weights are determined 
based on the superior result of sensitivity test (not shown) 
(Berenguer et al. 2006) from 500 obvious interference files. 
For the specific characteristics of interference echoes, the 
basic radial velocity (VEL) moment was the first feature uti-
lized in the study since many (Kessinger et al. 2003; Beren-
guer et al. 2006; Gourley et al. 2007) can successfully be 
used to characterize non-precipitation echoes. The other 5 
features derived from the base data fields also used in this 
study to represent a subjective choice of the characteris-
tics which are expected would distinguish interference and 
weather echoes. The purpose of the 5 features is to focus 
on extracting interference characteristics (Saltikoff et al. 
2016): (1) When the radar receiver receives an interfering 
signal from a continuously radiating source, such as from 
telecommunication links, the interference observed as lines 
that generally oriented radially in the radar image; (2) If the 
interfering transmitter is near the radar, the disturbance will 
be observed as a sector that can be as much as several tens of 
degrees wide; (3) Some of these echoes have reflectivities 
that are stronger than the strongest typical weather-related 
echoes, and can have rapid changes radially. Therefore, the 
algorithms rely on the shape of the echoes which are a few 
rays wide, and the texture of neighborhood helps separate 
interferences from weather echoes. The overall procedure of 
developing the fuzzy logic approach for identifying interfer-
ence is illustrated in Fig. 3, which will be stated in section 
2.3. The 6 features are the following.

Features Coverage Ratio in Radial (CR) and Azimuth-
al Ratio (AZR) are to calculate the percentage of valid gates 
in radial and azimuthal directions (Kessinger et al. 2003), 
respectively. In a real weather echo map, it’s infrequent that 
the high percentage of covering by a weather system in a 
whole beam. Feature CR is calculated as follows:

%CR N
N

100( )y
total gates

valid gates
,a b

#=  (1)

where a and b are the ordinal number of gate and beam, re-
spectively; y(a, b) is the echo value at ath gate and bth beam; 
Nvalid gates is the number of echo values greater than 0 dBZ 
and Ntotal gates is the total number of gates in a ray. If consider-
ing the N is the total number of gates in azimuthal direction, 
the CR( )y ,a b  will be AZR( )y ,a b .

While Feature Texture of Reflectivity (RTEX) (Kess-
inger et al. 2003; Berenguer et al. 2006; Gourley et al. 2007) 
is the sum of the differences between the data bin and the 
adjacent data bins within the analysis box, also called spa-
tial variability. Feature RTEX is expressed as a root-mean-
square difference of the input field reflectivity within a 3 
rays by 3 gates pix window to take into consideration for 
both of radial and azimuthal directions. This pixel window 
increases with range; thus, the texture variable will have a 
range dependence. Feature RTEX can also indicate the chap 
structure in an interference rays. Feature RTEX is defined 
as the following:

( )
RTEX m n

y y
( )

, ,( )/
( )/

( )/
( )/

y
a b a i b jj n

j n
i m
i m 2

1 2
1 2

1 2
1 2

,a b #=
- + += - -

= -
= - -
= - //
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where a and b are the ordinal number of gate and beam, re-
spectively; y(a, b) is the echo value at ath gate and bth beam; 
i is the index along radial and j is the index along azimuth; 
m and n are set to be 3.

The feature Spin Change (SC), which was proposed 
by Smith et al. (1996) and has been used by Grecu and Kra-
jewski (2000), Steiner and Smith (2002), Kessinger et al. 
(2003), and Berenguer et al. (2006). Feature SC indicates 

Fig. 3. Schematic diagram of the fuzzy logic algorithm for identifying interference echoes.
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the number of reflectivity fluctuations larger than 2 dBZ 
within an in a 5rays by 5gates pixel window, expressed as 
a percentage of all possible ‘‘spin’’ changes. A reflectiv-
ity increase (decrease) in radial direction from one pixel 
to the next by more than 2 dBZ would cause the spin to 
point up (down), whereas reflectivity fluctuations smaller 
than 2 dBZ are deemed insignificant and thus have no ef-
fect on the spin setting. Feature SC can be regarded as a 
data roughness.

,
( ) ( ) %SC

g y y
m n2 1 2 1 100( )

( , ) ( , )

y
a b a i b jj n

n
i m
m

1

,a b #
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+ + -= -= - 6 @//
 (3)

,
,
,

g y y
abs y y dBZ1

0
2if

else
>

( , ) ( , )

( , ) ( , )

ba a i b j

a b a i b j

1

1= -
+ + -

+ + -

6
6

@
@'  (4)

where m and n are set to be 2, and other parameters are the 
same definitions as above.

Feature Pixel-based Azimuth Continuity (PAC) (Stein-
er and Smith 2002; Berenguer et al. 2006; Gourley et al. 
2007) focuses on calculating the percentage of isolated pix-
els. It aims to detect interference rays by getting the per-
centage of continuity and smoothness of neighbor gates less 
than or equal to 15 dBZ in azimuthal direction. The expres-
sion of PAC is:

%PAC m
1
1 100( )

( )/

( )/

y
if y yi m

i m
151 2

1 2

,

, ,

a b

a b a b1

#= -
#-= - -

= -
+^ h" ,/

 (5)

where m is equal to 11 and other parameters are the same 
definitions as above.

Many studies based on fuzzy logic algorithms showed 
dual-polarization radar parameters, such as differential re-
flectivity (ZDR), cross-correlation ( HVt ), and specific differ-
ential phase (KDP), can be utilized for removing interference 
echoes embedded in meteorological echoes (Gourley et al. 
2007; Ye et al. 2015; Kilambi et al. 2018; Radhakrishna et 
al. 2019; Overeem et al. 2020). However, the PAGASA net-
work is not fully dual-pol (Fig. 1), only the features derived 
from single-pol radar parameters are employed in this study.

2.3 Fuzzy Logic

The overall procedure of developing the fuzzy logic 
approach for segregating interference-contaminated echoes 
from precipitating echoes is now presented; the procedure is 
also illustrated in Fig. 3. The more detailed explanations on 
each step will be stated in the following sections. The steps 
in Fig. 3 are:
(1)  Frequency distribution functions (Step 2) – For each of 

the 6 features used (Step 1) determine its frequency of 

feature values separately for the interference and pre-
cipitation echoes (see section 2.3.1 and Fig. 4).

(2)  Conditional probability curves (Step 3) – For the inter-
ference echoes, convert the above frequency distribu-
tion functions to conditional probability curves with 
values between 0 and 1 (see section 2.3.2 and Fig. 5). 
Simultaneously, subtract the probability of interference 
echoes from 1 to obtain the probability for the precipita-
tion echoes.

(3)  Membership functions (Step 4) – convert the conditional 
probability curves for each feature to membership func-
tions (section 2.3.3 and Fig. 6), via a simple piecewise 
linear transformation.

(4)  Feature weight (Step 5) – Determine weights for each of 
the feature membership functions based on the weights 
that give the maximum skill score (CSI) for discriminat-
ing interference echoes from weather echoes (see sec-
tion 2.3.3 and Fig. 7).

(5)  Fuzzy QC (Step 6) – From Step 5 use the weights to 
obtain a total likelihood value for interferences. For this 
purpose, a resulted total likelihood of > 0.5 is considered 
a yes for removing interferences (see section 3).

2.3.1 Frequency Distribution Functions

The following is to identify the feature curves from 
the dataset. For each feature Fk, conditional to echo type t 
(weather or interference echoes) can be expressed as follow 
(Berenguer et al. 2006),

( )

( )

F x p F x echo type t

n echo type t
n F x echo type t

,k t k

k +
= = =

= =
= =

^
^

h
h  (6)

where Fk,t(x) is frequency, subscript k indicates the different 
features, n F x echo type tk += =^ h stands for the number of 
data bins where Fk = x and the echo has been classified as 
type t; n(echo type = t) is the total number of echo classified 
as echo type t; p is the probability to be the echo type t at a 
data bin with a x value.

Figure 4 presents the feature curves (also called fre-
quency distribution functions) for each feature by a total of 
1000 0.0° PPI files (where equal interference and precipita-
tion files are used) from the HINA radar. Each of these fea-
tures were selected because they exhibit an obvious poten-
tial to be used for separating precipitation and interference 
echoes, however they are not fully successful when used 
separately. For example, the feature curve for radial veloc-
ity (Fig. 4a) shows that the interference signal can be clearly 
identified at 0 m s-1, but, in the same region, precipitation 
echoes also exists. This means radial velocity, with some 
other features, will have an ability to distinguish interfer-
ence echoes from precipitation echoes. Similarly, the curves 
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of the other 5 features (Figs. 4b - f) also exhibit features that 
imply good separation between interference and precipita-
tion. None of these features by themselves can discriminate 
between precipitating and non-precipitating areas. Feature 
curves of RTEX, SC, and PAC come with two higher fre-
quency peaks at different value range from interference and 
precipitation dataset. It is believed that the more dataset for 
interference cases is collected, the smoother the curve ten-
dency will become.

2.3.2 Conditional Probability Curves

After the normalized frequency distributions for each 
feature Fk, convert the above feature curves to conditional 
probability curves with value between 0 and 1. The condi-
tional probability curve of a data bin is affected by a cer-
tain echo type t when Fk = x, the expression is (Berenguer 
et al. 2006):

( )

( )

p x p
n x echo type t
echo type t X x

n X x
X

,k t

k

k

k

+
= = =

= =
= =

^
^

h
h  (7)

where pk,t(x) is probability, n(Xk = x) is the total number of 
echo type t when Xk = x. The conditional probability curves 
could be calculated with different value x. In this study, 
pk,t(x) indicates the conditional probability curve for inter-
ference echo. 1 - pk,t(x) exhibits the conditional probability 
curve for precipitation echo. If pk,t(x) or 1 - pk,t(x) is close to 
0.5, it means this feature have no the capability of recogniz-
ing an echo is interference or weather echo.

Figure 5 presents the conditional probability curves for 
each feature from the feature curves as shown in Fig. 4. Sim-
ilarly, the conditional probability curve of the observation 
field VEL (Fig. 5a) shows it exhibits different occurrence 
probabilities between weather and interference echoes. For 
the conditional probability curves of the other 5 features 
(Figs. 5b - f), display the remarkable peak value window of 
interference to distinguish interference echoes from weather 
echoes. The conditionally probability curves for all 6 fea-
tures indicate interference signals similar to those of the 
feature curves. As stated above, feature VEL of observation 
moments, and the derived features CR, AZR RTEX, SC, 
and PAC can be adequately selected as the features for the 
identification and removal of interference echoes from the 
HINA radar by using fuzzy logic algorithm.

These 6 conditional probability curves are utilized to 
develop an algorithm to discriminate the interference char-
acteristics from radar data, with the favorable interference 
conditions for each feature defined as when the probability 
is above 0.5. These probability values are then used to deter-
mine potential candidates and these selected candidates are 
then combined, with the object of reducing the overall un-

certainties and improving discrimination success, in an algo-
rithm based on fuzzy logic concepts (Berenguer et al. 2006).

2.3.3 Membership Functions and Weightings

In general, radar data QC procedures in this study are 
that radar data pixels are processed to classify weather and 
interference signals with either exact true or false. However, 
fuzzy logic assigns continuous values in between 0 and 1 as 
likelihood that represents the definable degree of a phenom-
enon by combining features which probably exhibit its char-
acteristics. Membership functions of fuzzy logic are used to 
convert feature values in order to get the likelihood and sum 
up these likelihoods with respective weights.

In this study, the feature values were defined through 
artificially classified radar dataset as interference radar data, 
and followed by deriving the conditional probability and 
membership functions. Best weights for each membership 
functions were determined by optimization of CSI record, 
that will be described as follow.

The fuzzy logic approach is composed of three basic 
processes: (1) Determination of membership functions for 
each conditional probability curve (Cornman et al. 1998). 
The membership function is a simple piecewise linear func-
tions based on the conditional probability curves from col-
lected data. (2) Determination of the weights to be assigned 
to each membership function (e.g., Heske and Heske 1996; 
Liu and Chandrasekar 2000; Berenguer et al. 2006; Lin et al. 
2012). (3) Producing a final likelihood value by summing of 
up these likelihoods with and their respective weights.

The shape of membership functions should be simi-
lar to the shape of conditional probability curves. Because 
there is some degree of subjectivity involved in producing 
membership functions, they are usually defined as simple 
piecewise linear curves (e.g., Lakshmanan 2000; Beren-
guer et al. 2006; Lin et al. 2012). Membership functions 
perform the conversion of measurement data into scaled, 
unitless numbers that indicate the correspondence or mem-
bership level of the data to the interference echoes. Val-
ues of membership functions are converted into a likeli-
hood Lk,t(xk) between 0 (lowest grade of membership) and 
1 (highest grade of membership). Figure 6 presents these 
membership functions subjectively determined by linear-
izing in a piecewise manner the conditional probability 
curve of Fig. 5.

After establishing the membership functions, the next 
step is to assign weights to each membership function. In 
this step, the values from individual membership functions 
for a given file are weighted and summed to produce a total 
likelihood value (TLt) for a data bin. This is expressed by the 
equation below,

( )TL W
L x W

,

, ,
t

k t

k t k k t#= /
/

 (8)
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where Lk,t(xk) is the likelihood of membership function for 
each feature xk, and its Wk,t is the membership function 
weight for interference echoes.

In other words, the determination is obtained by con-
verting the features to dimensionless likelihood values us-
ing the membership functions shown in Fig. 6, weighting 
the importance of each likelihood value and summing. The 
total likelihood value of interference varies from 0 to 1. 
In this study, a total likelihood value > 0.5 is treated as a 
threshold for interference-contaminated data bin, and this 
data bin will be removed from a radar map.

The weights selected for each membership function 
were based on assigning weights between 5 to 30%, in-
creasing every 5%, to each membership function until a 
maximum CSI score for the set of features was obtained. In 
this study, 4221 weight combination for the 6 features are 
gained. The assigned weights for each 6 features for HINA 
radar is shown in Fig. 7.

The CSI, also known as the threat score (TS, Bermow-
itz and Zurndorfer 1979), has been used in many method 
assessments. The other two skill scores, the probability of 
detection (POD) and the false alarm rate (FAR), were also 
calculated as follows (Panofsky and Brier 1965):

( )

( )

( )

CSI h m f
h

POD h m
h

FAR h f
f

= + +
= +

= +

 (9)

where h, m, and f are defined as hits, misses, and false 
alarms, respectively. The hits represents correctly identified 
interference echoes, misses represents incorrectly identified 
interference echoes, and false alarms are weather echoes in-
correctly considered as interference echoes.

In this study, hits, misses, and false alarms counted 
by files, not data bins. In this study, each data bin in each 
file was flagged as interference or precipitation echo arti-
ficially (flagartfc), and also flagged by fuzzy logic QC ap-
proach (flagfuzzy). A hit, miss, or false alarm for each file 
dominated the residue of data bin flags after fuzzy logic QC 
algorithms. These flags were then counted before (NunQC 
by flagartfc) and after (NQCed by flagfuzzy). To limit, the num-
ber of the total data bins only those with reflectivity > 0 
dBZ were counted. The resulted NQCed was then divided 
by NunQC to obtain the error percentage. For an interfer-
ence file, if the percentage of data bins kept (flagartfc is inter-
ference, but flagfuzzy is precipitation) was less than or equal 
to Errorthreshold%, then this file will be considered a hit. In 
contrast, the constraint is NQCed/NunQC should be greater 
than or equal to (1-Errorthreshold) to be considered a hit for 
a weather file. This methodology is described in detail in 
Table 3. From this experience, using higher error threshold, 

result in less efficacy of the fuzzy logic QC in removing 
interference echoes. In this study, the error threshold 10% 
in Table 3 was chosen to assess the fuzzy logic as the results 
obtained using this threshold contain a high efficacy factor.

3. EVALUATIONS

In the strictest sense, an ideal fuzzy logic QCed result 
means while interferences overlapped with precipitation 
reflectivities are removed, and precipitation reflectivities 
are still kept. In this section, five representative cases are 
presented that illustrates the performance of the fuzzy logic 
algorithm to remove interference echoes with success from 
radar reflectivity map data. Moreover, some characteristic 
examples that demonstrate the finer features of the fuzzy 
logic algorithms are individually analyzed. There are two 
observed datasets used in the evaluation. One is the cali-
bration dataset, which are observations made by the HINA 
radar of PAGASA that is used to develop the fuzzy logic 
algorithm. Besides the HINA radar, interference echoes are 
also frequently observed by Tagaytay (TAGA) and Mactan 
(MACT) radars of PAGASA (the technical specifications of 
the TAGA and MACT radars are summarized in Table 1). 
Consequently, the other dataset from these two radar is the 
validation dataset, and is used for the performance evalu-
ation of the fuzzy logic algorithm on the interference re-
moval. These will be shown in the following sub-sections. 
Afterward, each of the 6 membership function likelihoods 
and the results obtained for each case will be addressed, 
and followed by their effects on radar QPE from unQC and 
QCed reflectivity.

3.1 Calibration Dataset

The first case to be examined is an interference 
case of the calibration dataset that was observed at 0130 
UTC 01 November 2017 from the HINA radar, shown in  
Fig. 8. There are only line-pattern interference echoes in the 
radar reflectivity map under a clear weather pattern. After 
weighting and summing to obtain the final likelihood value 
(Fig. 8b), the total likelihood field is applied and is able to 
completely identify the interference bins and, thus, remove 
them from the reflectivity map (Figs. 8a and c). The fuzzy 
logic QC approach is expected to further refine the interfer-
ences identification process, but the most important point 
is the approach is not allowed to eliminate weather echoes. 
Therefore, a weather case without any interference echo is 
selected to examine the performance of the fuzzy logic QC 
algorithm. As shown in Fig. 9, at the eastern side of the ra-
dar HINA, a weather system without any interference echo 
was observed. The total likelihood (Fig. 9b) indicates the 
weather system is characterized by low likelihood of inter-
ference echo except at the periphery of the weather system, 
where some fragmentary echoes, with likelihood > 0.5, and 
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Frequency distribution functions of 6 features corresponding for the precipitation echoes (blue) and interference echoes (orange) derived 
from the 500 cases as listed in Table 2. (a) Radial velocity (VEL), (b) Coverage Ratio in Radial (CR), (c) Azimuthal Ratio (AZR), (d) Texture of 
Reflectivity (RTEX), (e) Spin Change (SC), and (f) Pixel-based Azimuth Continuity (PAC).
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Conditional probability curves corresponding to precipitation and interference echoes derived from the frequency distribution functions of 
Fig. 4.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Fuzzy membership functions corresponding to interference echoes derived from the conditional probability curves of Fig. 5.
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Fig. 7. For the HINA, MACT, and TAGA radars, weights of the 6 features for discriminating interference data bins associated with optimum CSI 
values were obtained from the fuzzy logic approach. Thin lines indicate all weight combinations. The bold-solid black line are the weights assigned 
for the 6 features for HINA and MACT radars, and the bold-dotted black line is for TAGA radar.

Interference files Weather files

Hit NQCed/NunQC ≤ Errorthreshold NQCed/NunQC ≥ 1–Errorthreshold

Miss NQCed/NunQC > Errorthreshold none

False none NQCed/NunQC < 1–Errorthreshold

QC threshold

Errorthreshold (%) 10 5 4 3 2 1 0

CSI 0.986 0.924 0.862 0.780 0.657 0.585 0.364

Table 3. The identifications for hit, miss, and false and the associated error threshold values used in 
calculating CSI score. NQCed and NunQC are counted by the number of reflectivity > 0 dBZ in a radar 
file before and after the QC procedures of the fuzzy logic approach. Error threshold used in fuzzy logic 
algorithm is in bold.

(a) (b) (c)

Fig. 8. For the observation from the HINA radar reflectivities at 0 degree elevation at 0130 UTC 01 November 2017, (a) reflectivity field before 
QCed by fuzzy logic approach; (b) summed likelihood from all 6 membership functions; (c) same as (a) but after QCed. The radar position is indi-
cated by a red dot.
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are consequently removed (Figs. 9a and c). From these two 
cases, the total likelihood can be used to circumscribe most 
of the interference pattern and then remove them from the 
reflectivity map.

3.2 Validation Dataset

In this sub-section, three representative validation cases 
will be examined here: one is observed by the HINA radar, 
while the fuzzy logic algorithm also is utilized to remove 
interference echoes in the other two cases from the MACT 
and TAGA radars. Incidentally, the fuzzy logic algorithm is 
developed based on the pure interference and pure weather 
cases (as listed in Table 2), but the three validation cases are 
examples of interference embedded in precipitation echoes 
that are used to evaluate its performance.

The first validation case, observed by the HINA ra-
dar, is a line-pattern interference case embedded in weather 
patches. The respective likelihoods values of the features 
VEL, RTEX, and PAC (Figs. 10a, d, and f) followed by 
their membership functions (Figs. 6a, d, and f) as imple-
ment the definitions of interference in radar bins are shown. 
These are three features that contribute to the likelihood 
value and possess the ability to differentiate interference 
from precipitating reflectivities. After the fuzzy logic QC 
procedure, most interferences are removed while precipita-
tion data are kept (Figs. 10g and i) as shown by the total 
likelihood (Fig. 10h), nevertheless some reflectivity spots 
from interference remain, which can then be filtered via a 
sequential despeckling procedure.

Another representative interference case is a case with 
some striking linear interferences that was observed by the 
MACT radar. These interferences are labeled using features 
AZR, SC, and PAC (Figs. 11c, e, and f). Compared to the 
prior case, this scenario produce better likelihood fields to 
define the interference pattern and remove them within the 
reflectivity map (see Figs. 11g and i), and, additionally, the 

weather patches in the east of the MACT radar are kept af-
ter the fuzzy logic QC algorithm. Incidentally, identifying 
interference using the feature values, or likelihood values, 
is more defined (and hence more likely) if these values ex-
ists within a narrow range. For this interference case, the 
feature value ranges are shown in features AZR, SC, and 
PAC (Figs. 11c, e, and f) and are narrow. Therefore, after 
weighting and summing to obtain the final likelihood value 
(Fig. 11h), the total likelihood is able to be used to iden-
tify the interference bins within the reflectivity map (see  
Figs. 11g and i).

The last interference case explored here, is the ty-
phoon Doksuri (2017) case observed by the TAGA radar 
with interference lines embedded in precipitation echoes 
as shown in Fig. 12g. The TAGA radar used a different 
set of weights (Fig. 7) gotten from 100 weather cases 
and 100 interference echo cases, due to the weights from 
HINA employed in TAGA radar having a low CSI rate 
(not shown). It is speculated that the big altitude difference 
between HINA and TAGA (Table 1) caused the observa-
tional features changed, and thus the low effective score. 
The calculated likelihood in Figs. 12a to f shows that ex-
cept the feature PAC (Fig. 12f), other features can be used 
to identify the interference area, especially features CR and 
AZR (Figs. 12b and c) which show separable interference 
and precipitation value ranges. Features CR and AZR more 
accurately assign high likelihoods in interference patterns 
than that of VEL, RTEX, and SC (Figs. 12a, d, and e), which 
identify some parts of precipitation data points as interfer-
ences. All of the likelihood values are multiplied with each 
own weight and summed up to produce an overall likeli-
hood value as shown in Fig. 12h. Data bins having total 
likelihood larger than 50% are identified as interference-
contaminated gates and were discarded (Figs. 12g and i).  
Based on these results, the fuzzy logic algorithm QC per-
forms effectively in this complex scenario at keeping the 
precipitation patches.

(a) (b) (c)

Fig. 9. Same as Fig. 8, but at 0315 UTC 11 December 2017.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Observation from the HINA radar at 0 degree elevation at 2216 UTC 31 December 2017. (a) Doppler velocity (VEL), (b) Coverage Ratio in 
Radial (CR), (c) Azimuthal Ratio (AZR), (d) Texture of Reflectivity (RTEX), (e) Spin Change (SC), and (f) Pixel-based Azimuth Continuity (PAC) 
likelihood images from the corresponding membership functions; (g) reflectivities before QC by fuzzy logic approach; (h) summed likelihood from 
all 6 membership functions, (i) same as (g) but after QC. The radar position is indicated by a red dot.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Same as Fig. 10, but for the MACT radar reflectivities at 0.5 degree elevation at 0514 UTC 16 January 2018.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Same as Fig. 10, but for the TAGA radar reflectivities at 0.5 degree elevation at 0100 UTC 12 September 2017.
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3.3 Effect on Radar QPE

Radar precipitation estimates are usually computed 
from reflectivity observations on the so-called hybrid scans. 
The hybrid scan of a radar is the lowest radar bins that do 
not have significant blockages or clutter contaminations 
(O’Bannon 1997; Maddox et al. 2002; Chang et al. 2009) 
and also for improving quantitative precipitation estimation 
in complex orography (Morin and Gabella 2007; Chang et 
al. 2009). To evaluate the impact of interference echoes, 
the hybrid scan table is constructed for the radar TAGA as 
shown in Fig. 13. Figure 13a shows that there are two nar-
row beam blockage wedges to the east and the south of the 
radar resulted from topography, the highest tilt is the third 
elevation, 1.5°. The hybrid scan heights (Fig. 13b) display 
the nearly concentric circle pattern, which means the block-
age effect is insignificant for the TAGA radar. Based on the 
hybrid scans, the lowest radar bins of the radar data are ob-
tained, and taken into counting the 1 hour accumulated QPE 
through the Z-R relationship Z = 32.5R1.65 (Xin et al. 1997), 
and presented in Fig. 14. In this instance (Fig. 14a), inter-
ference echoes are detected, hence any attempt to estimate 
accumulate precipitation is severely compromised. There-
fore, interference problems such as those in this scenario 
that are created by one single interference file can suddenly 
appear in any QPE file and can propagate for an indetermi-
nate time. After the developed fuzzy logic QC procedures, 
the error caused by the interference echoes can be identified 
and thus eliminated from ever propagating (Fig. 14b).

Hybrid scan heights from all radars are mosaiced to as-
sess the radar coverage in the Philippines area (Fig. 15). At 
any given location within the radar map, the lowest hybrid 
scan height among all radars is chosen. In the Philippines, 
the hybrid scan height is mostly under 4 km above ground 
level (AGL). The result in Fig. 15 suggests that the current 

weather radar network in Philippines is can be improved for 
QPE, but it is acceptable under the current circumstances. 
Figure 16 is the mosaiced 1-hour radar QPE used to evalu-
ate the impact of the fuzzy logic QC procedure. It shows 
advantages of using fuzzy logic QC algorithm in reducing 
the impact of interference echoes. It is remarkable that the 
extremely severe contamination which manifests as QPE 
with > 200 mm hr-1 was caused by the non-precipitation 
echoes (not shown) such as sea clutter or ground clutter. 
These echoes are perhaps eliminated by selectively adjust-
ing features or weights that suppresses these echo types.

4. SUMMARY AND CONCLUSION

Despite elaborate and sophisticated efforts in radar 
data quality assurance for AP and GC, the challenges of 
contamination by interference remain a serious problem, 
especially for situations where interference echoes are em-
bedded in precipitation echoes and, consequently, precipita-
tion accumulation algorithms and even downstream appli-
cations. Therefore, in this study, the membership functions 
were calculated using comprehensively objective diagnoses 
approach, e.g., producing conditional probability curves 
from feature curves of interference echoes. The weights 
for each membership function to differentiate between in-
terference and precipitation echoes were also objectively 
determined. To create an operational algorithm for elimi-
nating interference echoes, a fuzzy logic QC approach is  
advantageous, as the algorithm as simple while the inherent 
performance is acceptable.

This study focused on removing the root cause issue, 
the interference, and has presented a thorough analysis of 
the fuzzy logic QC algorithm for doing so in section 3. In 
this study, the performance of fuzzy logic QC approach are 
evaluated based on different radars in the Philippines, and 

(a) (b)

Fig. 13. (a) Hybrid scans and (b) the corresponding hybrid scan heights for the TAGA radar. The radar position is indicated by a cyan dot.
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(a) (b)

Fig. 14. The radar one hour QPE from the hybrid reflectivities of the TAGA radar at 0200 UTC 12 September 2017, (a) before and (b) after QC by 
fuzzy logic approach. The radar position is indicated by a red dot.

Fig. 15. Mosaiced hybrid scan heights from the 17 radars in Philippines area. Radar sites are marked using cyan dots and labeled with their abbrevi-
ated symbol identifier. The coastal area is contoured by white line.
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has shown an efficient ability to discriminate interference-
contaminated gates from precipitation patches and then re-
move them. The algorithm appears to work effectively in 
situations in both situations where interference echoes are 
either separated from or embedded within precipitation 
echoes. It truly improves the radar quantitative precipitation 
estimate (QPE).

The performance of the fuzzy logic QC showed recog-
nizable improvement in the quality of reflectivity map, while 
the objective approach helps to systematically decrease the 
interference targets. Incidentally, a despeckling procedure 
can be added to remove small or isolated noises that remain. 
Beyond these refinements, methods for improving the fuzzy 
logic QC algorithm exists if needed, such as adjustments in 
feature weights for different radar are perhaps necessary, 
by including more membership functions that may include 
their own trained weights and even to other non-precipita-
tion echo contaminated like ground or sea clutter.

Acknowledgements  In partnership of Central Weather 
Bureau (CWB) and PAGASA under VOTE (Volcanos, 
Ocean, Typhoon, and Earthquake) meteorological pro-
gram, fuzzy logic approach was developed to remove inter-
ference patterns from weather echoes to improve PAGASA 
weather operations.
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