
593

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, 593-622, August 2007

Parallelization of the NASA Goddard Cumulus Ensemble Model
for Massively Parallel Computing

Hann-Ming Henry Juang1, *, Wei-Kuo Tao 2, Xiping Zeng 2, 3, Chung-Lin Shie 2, 3,

Stephen Lang 4, and Joanne Simpson 2

(Manuscript received 19 June 2006, in final form 3 January 2007)

ABSTRACT

1 Environmental Modeling Center, NCEP, NOAA, Washington DC, USA
2 Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, USA
3 Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County,

Baltimore, USA
4 Science Systems and Applications Inc., Lanham, USA

* Corresponding author address: Dr. Hann-Ming Henry Juang, Environmental Modeling Center, NCEP,

NOAA, Washington DC, USA; E-mail: Henry.Juang@noaa.gov

 doi: 10.3319/TAO.2007.18.3.593(A)

Massively parallel computing, using a message passing interface (MPI),
has been implemented into a three-dimensional version of the Goddard
Cumulus Ensemble (GCE) model. The implementation uses the domain-
resemble concept to design a code structure for both the whole domain and
sub-domains after decomposition. Instead of inserting a group of MPI
related statements into the model routine, these statements are packed into
a single routine. In other words, only a single call statement to the model
code is utilized once in a place, thus there is minimal impact on the original
code. Therefore, the model is easily modified and/or managed by the model
developers and/or users, who have little knowledge of massively parallel
computing.

The model decomposition is highly flexible such that the entire model
domain can be sliced into any number of partial domains in one- or two-
dimensional decomposition. Data exchange is through a halo-region, which
is overlaid with neighboring partial domains. A halo-region is also known
as a ghost-cell region. For reproducibility purposes, transposing data among
tasks into different decompositions is required, such as Fourier transform
and full domain summation.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007594

The well-behaved performance of the implemented codes with anelastic
and compressible versions on three different computing platforms indicates
a successful implementation. The parallelization of both versions has speed-
up of 99% for up to 256 tasks. The anelastic version has better speedup and
efficiency because its numerical algorithm is preferred by the parallelization
than that of the compressible version.

(Key words: Domain decomposition, Message passing interface, Massively parallel
computing, Cloud-resolving model, Numerical weather prediction)

1. INTRODUCTION

Cloud-resolving models (CRMs), which are based on the non-hydrostatic equations of
motion, have been extensively applied to cloud-scale and mesoscale processes during the past
four decades (see a brief review by Tao 2003). Table 1 lists the major foci and some (not all)
of the key contributors to CRM development over the past four decades. Because cloud-scale
dynamics are treated explicitly, uncertainties stemming from convection that have to be pa-
rameterized in large-scale models are obviated, or at least mitigated, in CRMs. Also, CRMs
solve the equations of motion with much higher spatial and temporal resolution and use more
sophisticated and physically realistic parameterizations of cloud microphysical processes. CRMs
also allow explicit interactions between clouds, radiation and surface processes. For this reason,
the Global Energy and Water Cycle Experiment (GEWEX) formed the GEWEX Cloud Sys-
tem Study (GCSS), which chose CRMs as the primary approach to improve the representation
of moist processes in large-scale models (GEWEX GCSS 1993 and Randall et al. 2003).
Global models will use a non-hydrostatic framework with horizontal resolutions of 5 - 10 km
in the next 5 years.

In recent years, exponentially increasing computer power has extended CRM integrations
from hours to months (i.e., Wu et al. 1998) and the number of computational grid points from
less than a thousand to close to ten million (Grabowski and Moncrieff 2001). Much attention
is being devoted to precipitating cloud systems where the crucial 1-km scales are resolved in
horizontal domains as large as 10000 km in two-dimensions and 1000 × 1000 km2 in three-
dimensions. Thus, many CRMs (see the review paper by Tao 2003) have to be re-coded in
order to fully utilize the fast advancement of multi-parallel computing technology.

The programming requirement in numerical modeling for massive processor parallel
architecture comprises domain decomposition and data communication (Aoyama and Nakano
1999). The techniques in domain decomposition and data communication may depend on
particular numerical methods used in the models. Certain methods may do better with certain
decompositions. Thus, several different domain decompositions need to be performed. Since
atmospheric models are mainly three-dimensional, domain decomposition can be up to three
dimensions. However, due to domain dependent computations, such as column physics, which
require all model grids in the vertical, decomposition is used only up to two dimensions.
Therefore, we can have either one-dimensional (1D) or two-dimensional (2D) decompositions.

Juang et al. 595

Any 1D decomposition is usually simple and trivial to implement, but it limits the maximum
number of tasks to be the number in the specific direction. Two-dimensional decomposition
can have a larger number of tasks limited by the product of the two given dimensions and is
known to have less total data to transfer in terms of exchanging halo data (Johnson et al. 1994).
Two-dimensional decomposition was concluded to be more scalable than 1D decomposition
in Skalin 1997a and b. Nonetheless, it also depends on the model and the platforms used. In the
case of transposition between different decompositions, 1D was found to have the same per-
formance as 2D in an IBM-SP and was better than 2D in the VPP5000. This conclusion can be
realized because 1D has longer contiguous array lengths for vector computation on the VPP5000
(Juang and Kanamitsu 2001). However, 2D decomposition can be used to achieve high perfor-
mance if the 2D array is rearranged to be contiguous in 1D for vector computation. Two-level
parallelization with 1D decomposition and OpenMP for multi-tasking has also been done as a
hybrid approach (Estrades et al. 2001).

Table 1. Major highlights of cloud modeling development over the past four
decades.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007596

The message passing interface (MPI) is the most popular massively parallel library
binding in the meteorological community as well as parallel programming communities.
Nevertheless, there are several ways to use MPI in a numerical model. Some introduce rules
and add routines (Juang and Kanamitsu 2001), some use wrapper (Marshall et al. 1997), and
some even require re-coding the entire model, such as WRF (Michalakes et al. 2001) and the
NCEP GFS (Estrade et al. 2001). Severely modifying a model to obtain peak performance
introduces two risks: 1) the code may be hard to read for further scientific and/or numerical
improvements; and 2) it may not be reversible to a single cpu (sequential) code and difficult or
tedious to implement new packages for future advanced architectures. One solution is to use
MPI as an option to be able to run with both a single-processor and multi-processors either for
a new model being developed (Juang et al. 2003) or in an existing model (Purnell and Revell
1995). Thus, the model code without MPI can be obtained whenever required. This also retains
readability for easy future improvements.

This paper details how massively parallel programming via MPI is implemented into a
three-dimensional (3D) version of a CRM, the Goddard Cumulus Ensemble (GCE) model.
The implementation is unique, providing both the flexibility to run with any number of
processors, even a single cpu, and high performance. Note that no extra dynamics and physics
improvement are implemented, except code improvement with MPI in the current version. A
brief description of the GCE model and experimental configuration are given in section 2. The
concept of MPI implementation, along with the method of domain decomposition and data-
communication to avoid aforementioned risks, will be described in section 3. The perfor-
mance of the model with MPI, regarding the model dynamics (anelastic and compressible),
stability, speedup, efficiency, reproducibility, wall-clock time comparisons among different
decompositions by using three different computing platforms, will be given in section 4. The
summary is given in section 5 with future model developments.

2. GODDARD CUMULUS ENSEMBLE (GCE) MODEL

2.1 GCE Model Description and Applications

The GCE model has been developed and improved at NASA/Goddard Space Flight Center
over the past two decades. The development and main features of the GCE model have been
described in Tao and Simpson 1993 and Tao et al. 1993. Recent improvements and testing
were presented in Baker et al. 2001, Ferrier 1994, Lang et al. 2003, Lynn et al., 1998, Tao et al.
1996, Tao et al. 2003, and Wang et al. 2003. A Kessler-type two-category liquid water (cloud
water and rain) microphysical formulation is mainly used with a choice of two three-class ice
formulations, namely that by Lin et al. 1983 and the Lin scheme modified to adopt slower
graupel fall speeds as reported by Rutledge and Hobbs 1984. An improved four-class, multiple-
moment ice scheme has also been developed (Ferrier 1994) and tested for several convective
systems in different geographic locations (Ferrier et al. 1995). Recently, two detailed spectral-
bin microphysical schemes (Chen and Lamb 1999; Khain et al. 2000) were also implemented
into the GCE model. Significant computation is required in applying the explicit spectral-bin

Juang et al. 597

microphysics to study cloud-aerosol interactions and nucleation scavenging of aerosols, as
well as the impact of different concentrations of aerosol particles upon cloud formation.

These new microphysics, however, require the use of a multi-dimensional Positive Definite
Advection Transport Algorithm (Smolarkiewicz and Grabowski 1990) to avoid “decoupling”
between mass and number concentration of cloud species. The positive definite advection
scheme also produces more light precipitation, which is in better agreement with observations
(Johnson et al. 2002). Solar and infrared radiative transfer processes (Chou et al. 1999; Chou
and Suarez 1999) have been included (Tao et al. 1996). A sophisticated seven-layer soil/
vegetation land process model has also been implemented into the GCE model (Lynn et al.
1998; Lynn et al. 2001; Lynn and Tao 2001). Subgrid-scale (turbulent) processes in the GCE
model are parameterized using a scheme based on Klemp and Wilhelmson 1978, and the
effects of both dry and moist processes on the generation of subgrid-scale kinetic energy have
been incorporated (Soong and Ogura 1980). Table 2 shows the major characteristics of the
GCE model.

Table 2. The main characteristics of the Goddard Cumulus Ensemble (GCE)
model.

* indicates for the processes implemented into 2-D version only;
** for testing

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007598

Furthermore, several national and international universities and research institutions (i.e.,
University of Maryland, University of Virginia, Columbia University, University of New York
at Albany, Seoul National University) are using the GCE model and its results in their research.
In addition, the GCE microphysical processes, land processes and cloud-radiation interactive
processes were implemented into three community mesoscale models (Penn State U/NCAR
MM5, WRF and Advanced Regional Prediction System, ARPS). More than 90 referred journal
papers were published by using the GCE model.

2.2 Anelastic and Compressible Versions

The GCE model flow can be either anelastic (Ogura and Phillips 1962), filtering out sound
waves, or compressible (Klemp and Wilhelmson 1978), which allows the presence of sound
waves. The sound waves are not important in thermal convections, but their processes can
place severe restrictions on the time step in numerical integrations. For this reason, most cloud
modelers use an anelastic system of equations in which sound waves have been removed by
neglecting the local variation of air density with time in the mass continuity equation. A 3D
diagnostic (elliptic) pressure equation can be solved using direct (e.g., Fast Fourier Transform,
FFT) or iterative methods. For current implementation, we used FFT, which will be described
more in section 3.4.

In the compressible system, the pressure-equation is derived both by taking the derivative
of thermodynamic equation and by using the compressible continuity equation. Due to the
presence of sound waves, a very small time step (2 sec for a 1000 m spatial resolution) is
needed for time integration. However, Klemp and Wilhelmson 1978 developed a semi-
implicit time-splitting scheme, in which the equations are split into sound-wave and gravity-
wave components, to achieve computational efficiency. One advantage of the compressible
system is its computational simplicity and flexibility. The numerical code then remains a set of
explicit prognostic equations and alterations such as stretched or nested grids, surface terrain
and boundary conditions (e.g., radiative upper boundary) can be incorporated into the numerical
model without complicating the solution procedure.

Anderson et al. 1985 has tested an anelastic system using a 4-sec time step against the
results from a fully compressible system without using the time-splitting technique (which
needs a 0.3-sec time step). They found that the anelastic system produced essentially identical
results to those of the compressible system for 2-D cool pool experiments lasting 500 sec.
Ikawa 1988 also found that both simulated systems are similar if sound waves are damped
enough in the compressible system for a 2D case involving orography. A pair of sensitivity
tests, anelastic versus compressible, were also performed with a mid-latitude squall line using
the GCE model (Tao and Simpson 1993). All model physics were activated in these two runs
for a 12-h time simulation in order to maximize the possibility of differences. It showed that
the GCE model does not produce identical results with the two different systems. The differ-
ences between the anelastic and compressible systems are much smaller, however, than those
obtained by changing microphysical processes and advection schemes (Tao and Simpson 1993,
see their Table 3 and Fig. 7).

Juang et al. 599

2.3 Experimental Design

The model is very flexible and no limitation in terms of domain size and resolution be-
cause it is non-hydrostatic. Typically, a 3D version of the GCE model can have 256 × 256 or
512 × 512 horizontal grid points using 1 - 2 km resolution or better, and 40 - 60 vertical layers
with stretched grids (up to 10 - 50 mb top). It can have either open or cyclic lateral boundary
condition. In this manuscript, an arbitrary initial condition is selected to test the performance
of this implementation. Three-dimensional configuration with 256 × 256 computational grid
points in horizontal (260 × 260 if lateral boundary grids are included) and 34 grid-points in the
vertical is used for all tests, except two cases of 512 × 512 × 34 and 1024 × 1024 × 34 grid-
points used for examining larger dimension without increasing resolution. Both anelastic and
compressible options of the model are included in all tests with cyclic boundary condition.
Full model physics and statistical outputs are included in the test. The model integration time
length is 4 hours, except for the long-period (3-day) stability runs. The time-step is 12 seconds
in all cases for two different versions of the model. Table 3 shows the summary of the experi-
mental designs. Three clusters are available for this test. They are HALEM (a Dec alpha cluster),
the IBM-SP (a Power4 cluster), and CHAPMAN (a SGI Origin 2000 cluster). Note that, plat-
forms used depend on availability, they are not chosen for comparison but for demonstrating
the flexibility of MPI implementation into GCE.

3. MASSIVELY PARALLEL IMPLEMENTATION

In this section, it will illustrate how MPI can be implemented into a model (GCE model)
without excessive code modification. The concept of adding MPI or grid-decomposition with-

Table 3. Summary of experimental design.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007600

out disturbing the existing model structure and computation will be introduced. The decompo-
sition and addition of the halo region will be described. The method used to exchange data
among all the halo regions and to transpose data for FFT will also be shown. The basic and
common MPI technical method such as decomposition can be found in Aoyama and Nakano
1999 and in Gropp et al. 1999a. However, the concept and more details related to current
model implementation are in the following sub-sections.

3.1 Concept and Method of Parallelization and Its Flexibility

As mentioned, a major requirement when parallelizing a numerical model is to preserve
readability for further scientific development and be reversible to be able to recover the original
code for future computer architectures. This leads to some bottom-line solutions for
parallelization. First, all the model structures, array indices and computations will be kept
original so the code is more readable for further scientific development. Secondly, parallelization
will be an add-on package containing all of the necessary MPI calls in one call at one place and
not added throughout the code. A preprocessor is used to provide options as well as the ability
to recover the original single-processor code.

This concept is different from most community or operational models. For example, the
WRF model is written mainly in a structure for MPI with embedded model dynamics and
physics (Michalakes et al. 2001); the NCEP GFS has been recoded several times mainly due to
the arrangement of the data structure for MPI machines (Estrade et al. 2001). In the case of
future platforms that are non-MPI, both codes have to be rewritten. The current implementa-
tion is based on sequential code with an option to add in MPI, which is close to the approach in
MIT GCM (Marshall et al. 1997), though the methods are different. Thus, the sequential code
can be obtained at anytime for future machines. Also the code can be used for full domain as
well as partial domain without losing its readability and ease of scientific implementation.
Together these features make the current implementation unique.

3.2 Methods of Decomposition

Following the main concept in the previous sub-section, the decomposition in grid-point
space is illustrated in Fig. 1 with an example of 12 tasks in terms of three columns and four
rows. The upper cube shown by the solid line represents the entire domain of the GCE model;
the lower cube also shown by the solid line represents a single partial model domain for any
task. The dashed lines form the inner portion of the entire model and partial model domains for
the upper and lower cubes. The remaining outer portions (between the solid lines and dashed
lines) are called lateral boundaries for the entire model domain in the upper cube and halo for
the partial domain in the lower cube. The decomposition is based on the number of the inner
grid in the upper cube. The number of east-west (north-south) grid is divided by the number of
columns (rows); the remainders after division are the number of columns (rows) to have one
more grid (more detail is given in the following paragraph). After each task obtains its portion
of the model domain shown by the dotted lines from the upper cube, it also gets its halo grids
to form the lower cube in Fig. 1. The shape between the entire domain (upper cube in Fig.1)
and the partial domain (lower cube) may be different, but both have an inner portion and an

Juang et al. 601

outer portion, again, which form a lateral boundary for the entire domain and either a halo or
lateral boundary for the partial domain.

In order to illustrate decomposition in quantity, the following formula is introduced to
define dimensions for any given directions:

N INT
F L

M
Ls

s s

s
s= − −

+ +

2 1
1 2 , (1)

where N, F, M, and L are all integers, and INT followed by brackets indicates the result in the
brackets is round to be an integer as in FORTRAN. F is the number of full grid points in any
given direction. L is the number of lateral boundary and/or halo grid points. N is the number of
partial grid points, and M is the number of decomposition slices. The subscript s can be used
for any direction. In the case of a single cpu, M = 1, then N = F. For 1-D decomposition, then
either Mcol or Mrow equals one. For 2-D decomposition, both Mcol and Mrow are larger than one.
F-2L may not be divisible by M without a remainder. The remainder R (always less than M) is
distributed to tasks by adding one to each task for R tasks, as illustrated. Thus N is the maxi-
mum dimension for any partial domain. Any given task may have a grid number of N or N-1.
For example, if total grid number in an east-west direction is given as 516 (F), the lateral
boundary grid number is 2 (L), then the number of the inner grid is 512. If there are 3 (M)
columns as in Fig. 1, to have equal grid number for each column, we divide 512 by 3, the
outcome is 170 with 2 remaining. The number of the remainder, 2, is given to columns, one
grid point by one column, so the final grid number distribution for these columns is 171, 171,
and 170. Adding lateral boundary points to form a partial domain, we have 175, 175, and 174.
Using formula (1), we have N = INT [(516 - 2 × 2 - 1) / 3] + 1 + 2 × 2 = 175. The same
approach is used for north-south and vertical decompositions.

Fig. 1. Schematic diagram showing
decomposition in grid-point
space for an example using 12
tasks over the entire model
domain and a partial domain
with a halo for task 4. It shows
a similar structure between
the entire and partial domains
if the dotted lines and num-
bers are eliminated from the
entire domain.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007602

3.3 Data Exchange for Halo Regions and Lateral Boundaries

Since the GCE model is a finite difference model, any given point requires neighboring
points in order to compute its derivative. After one complete time step, the lateral boundary
(halo portion) of the partial domain has to be updated. Each partial domain is assigned initially
knowing its lateral boundary and/or halo regions. If the halo region is a lateral boundary con-
dition for the model domain, the halo update will apply either an open boundary condition or
a cyclic boundary condition. If the halo region is not a boundary condition of the model domain,
the halo portion has to be updated by the neighboring partial domain. For example, task 5 in
Fig. 1 has lateral boundary conditions on the east side but halo boundary conditions on the
west, north and south sides. It needs to exchange data with tasks 8, 4, and 2 (side neighbors)
and tasks 1 and 7 (corner neighbors) to update its halo. It also needs to exchange data with side
neighbor task 3 and corner neighbor tasks 0 and 6 for cyclical boundary conditions.

Except for open lateral boundary conditions, all lateral and halo portions have to be up-
dated by exchanging data among neighboring grids or grids related to the cyclical boundary
condition from the related partial domain. Figure 2 illustrates data exchange in two steps with
side neighbors. Data exchange illustrated in Fig. 2 is a completed data exchange including
corner points. Shaded areas indicate updated data. The base of the arrow indicates where data
is ready to be sent out, and the point of the arrow indicates where data are to be received and
updated. First the data is exchanged in the x-direction as shown in Fig. 2a. After updating in
the x-direction, the data is exchanged in the y-direction as shown in Fig. 2b. After Fig. 2b, all
halo-portions should be updated. The lateral boundary has two arrows: the short one repre-
sents an open boundary condition that is updated by internal data, and the long one for cyclical
boundary conditions, which is updated by the task at the furthest end of the model domain.

Fig. 2. Schematic diagram showing data ex-
change in a) the east-west direction and
b) the north-south direction for grid-
point space. The dashed lines indicate
the inner-border of the halo regions, and
the arrows indicate the direction of data
movement. The thin solid lines show the
area of data with other lines indicating
where it is to be moved. The lateral
boundary conditions determine which
data to move and where by using two
arrows at the lateral boundaries.

Juang et al. 603

Since all tasks work together, assuming the start-up time (latency) for MPI communica-
tion is negligible, the wall clock time can be related to the amount of data exchanged in one
complete data exchange (Fig. 2) by the task that has the longest running time. The amount of
data exchanged can be measured by using Eq. 1 and Fig. 2. From Fig. 2a, the data exchanged
along x are:

2
2 1

1L
F L

Mx
y y

row

− −
+

 , (2)

where Lx is the data depth and the quantity in the brackets is the data length. Then from Fig. 2b,
the data exchanged along y are:

2
2 1

1 2L
F L

M
Ly

x x

col
x

− − + +

 , (3)

where, again, Ly is data depth, and the quantity inside the brackets is the data length, which
includes lateral boundary grids. For simplicity, assume Lx = Ly so that combining Eqs. 2 and 3
together gives:

2
2 1 2 1

4 42L
F L

M

F L

M
L Ly

row

x

col

− −
+ − −

+ + , (4)

where the values inside the bracket determine the variation of data exchange. The two terms in
the brackets indicate the number of inner grid points in the y and x directions of the partial
domain, respectively. This shows that minimizing the value in the brackets requires minimiz-
ing the values of both terms, and it indicates that the larger the M, the smaller the value of each
term will be. Thus, 2-D decomposition results in less data exchange than 1-D decomposition.
For example, let L = 2 and F be 165 for both directions with 16 cpus. For 16 cpus, we can have
1 × 16, 2 × 8, and 4 × 4. In case of 1 × 16, the value in the brackets is 160 + 160 / 16 = 170.
In case of 2 × 8, the value in the brackets is 160 / 2 + 160 / 8 = 100. In 4 × 4 case, the value is
the brackets is 160 / 4 + 160 / 4 = 80. Thus, 4 × 4 has the smallest value in the brackets. Some
evidence will be shown in section 4.

3.4 Transposing Data for FFT

In an anelastic system, FFT is used to solve the diagnostic pressure equation (Ogura and
Phillips 1962). For FFT in the horizontal x and y directions, grid point values of the entire
domain are needed. In this case, the model domain should not be sliced in x and y directions,
only the z-direction can be sliced. The consequence of this is that only 1D decomposition in
the z-direction is possible for FFT. The number of tasks is thus limited to the dimension of the

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007604

vertical direction. Fortunately, the FFT in the original design of the GCE model is a 1D FFT.
In other words, it does FFT in the x-direction first, called FFTX, then FFT in the y-direction,
called FFTY, to obtain grid-point values (spectral coefficients) from spectral coefficients (grid-
point values). Thus, an MPI transpose can be used between FFTX and FFTY transformations
to provide entire grid-point values or spectral coefficients from one direction to the other. In
this case, 2D decomposition can be used because only one direction cannot be sliced due to
transformation; another direction and the vertical direction can be sliced. Therefore, a larger
number of tasks can be used in 2D decomposition than that in 1D decomposition, because 2D
decomposition is limited by the multiplication of two minima grid point numbers instead of
one minima grid point number among three directions.

Figure 3 shows the entire process for FFT in an example of 12 tasks using 2D decomposi-
tion with 3 columns and 4 rows. In the case of 1D decomposition, the entire process is redone
without the three transposes marked by the hollow arrows and with no slicing for the 3 columns,
only for the 4 rows. The four thin arrows indicate the transformation between grid-point values
and spectral coefficients, and the three thick arrows indicate transposes for either 1D or 2D
decomposition. Starting from the bottom left cube in grid-point space, the process follows the
arrows to spectral space in the second row from the left of the bottom cube. Then, after spectral
computations, it follows the arrows back to the top cube on the left in grid-point space.

Figure 4 shows a schematic diagram illustrating the MPI transpose for a 2D decomposition.
The 1D MPI transpose is illustrated in Fig. 2 of section 3 of Juang et al. 2003. The 2D trans-
pose can be described here in the same fashion. The solid lines indicate the existing decomposi-
tion for the upper cube after transposing in the bottom cube. The dashed lines indicate the
slicing for each task (large-font numbers) before the sliced data is sent out to the tasks (small-
font numbers) in the upper cube. The dashed lines in the bottom cube for each task (large
numbers) indicate the portion of sliced data received from other tasks (small numbers). This
example shows the transpose in x and y directions over the entire grid for FFT in either x or y
direction.

There are some parallel FFT packages available, but they are not used in the current
implementation. Since regular FFT is already used in the code for a single cpu, and the data is
transported so as to have a full grid in one direction for regular FFT, then having a full grid in
another direction works efficiently enough without the necessity of implementing a parallel
FFT package.

4. PERFORMANCE

This section contains several sub-sections. First, the stability of repeat runs and one long
continuous run and the performance of different decompositions have to be examined to estab-
lish a benchmark for evaluating the performance of single and short-period runs. Next, the
performance of different tasks in terms of wall-clock time, speedup and efficiency, for versions
with and without Fourier transforms, different resolutions, and different platforms are shown.

Performance in terms of wall-clock-time in this section is based on experimental design
described in section 2.3. Since in-line statistics option in the model is useful and used as a
default, all results hereafter are run with in-line statistics for a complete performance test.

Juang et al. 605

Fig. 3. Transpose of data between different decompositions for different grid-
point and spectral spaces for Fourier transform in the anelastic version of
the model. Thin arrows indicate Fast Fourier Transforms between grid
and spectral spaces, thick arrows MPI transposes needed in any
decomposition, and hollow arrows MPI transposes when 2-D decompo-
sition is used.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007606

4.1 Performance Stability

Before showing results for single runs under all conditions, the stability of the perfor-
mance has to be examined. Table 4 gives the wall-clock times for five arbitrary runs on HALEM
and the IBM-SP using the same model configuration and decomposition of 8 × 8 (64 tasks).
The same model configuration on CHAPMAN but for 1-hour integration is also listed with
four members. The maximal time differences among different runs vary by 25 seconds on
HALEM, and about 2.9% of the mean of 866 seconds. For the IBM-SP, the maximal time
difference among different runs is 74 seconds, about 6.6% of the mean of 1121 seconds. For
CHAPMAN, there is an 8-second possible difference, which is about 2.3% of the mean of 339
seconds. These percentages are needed to measure the possible variation of all the results
shown hereafter since there is only one run for each condition. In other words, results shown
hereafter can be variated around these percentages.

Table 5 lists the wall-clock times for 3-day and 4-hour integrations using the same con-
figuration (256 × 256 × 34 grid points) and 128 tasks on HALEM. The amount of wall-clock
time with respect to the model integration time is about the same between the short-period
4-hour run and the long-period 3-day run. This indicates there is no need to conduct long integra-
tions for performance evaluations.

Fig. 4. Schematic diagram showing an MPI
transpose using 2-D decomposition.

Juang et al. 607

4.2 Different Decompositions

As mentioned, the design of the decomposition that was implemented can be integrated
with any number of tasks, whether the number is a prime number or not. If it is a prime
number, the model will run 1-D decomposition only by itself; otherwise it runs either a 1-D or
2-D decomposition. Since any given non-prime number can have several decompositions, it
would be good to know the performances for an optimal decomposition.

Figure 5 gives examples of the performance for several different possible decompositions
on the HALEM, the IBM-SP, and the CHAPMAN. There are 7 different decompositions for
64 tasks: 1 × 64, 2 × 32, 4 × 16, 8 × 8, 16 × 4, 32 × 2, and 64 × 1 given as the number of slices
in the x-direction times the number of slices in the y-direction. Note that, 1 × 64 and 64 × 1 are
1-D decomposition and others are 2-D decomposition. In the figure, the seven groups of bars
represent the seven decompositions. Each group of bar plots has three parts, the left part of
each bar is for HALEM, the central part for the IBM-SP, and the right part for CHAPMAN.
From these platforms, there are two major conclusions: 1) The closer the numbers of the two
slices are, the better the performance; and 2) a decomposition using a smaller number of slices
in x than in y is better than the reverse. Hence, 8 × 8 is the best then 4 × 16 followed by 2 × 32,
and finally 1 × 64. And 4 × 16 is better than 16 × 4; 2 × 32 is better than 32 × 2; and 1 × 64
is better than 64 × 1. These results may depend on models and machines, but current results
seem to be common to others.

The difference between the best decomposition (8 × 8) and the worst decomposition (64 × 1)
here is significant. Hence, having the best decomposition for any given number of tasks should

Table 4. Wall-clock times from repeated runs.

Table 5. Wall-clock times for 3-day and 4-hour runs.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007608

be the default configuration, though the model is designed to be flexible. The reason for the
significant differences comes from the combination of array indices and loops for computations,
the amount of data communication (see Eq. 4), and the architecture of the scalar machine. For
cache type of scalar machine, the array length should not be too large, so the data can be reused
in cache with time-saving instead of accessing from memory. 2-D decomposition with about
an equal task number in 2-D provides not only less data to communicate with a sub-group but
also a short length of array to take advantage of the cache type scalar machine. Nevertheless,
this conclusion may not be valid for a vector cluster such as the VPP5000 vector machine as
shown in Fig. 3 in Juang and Kanamitsu 2001. In a vector machine, array can be operated at
the one time in length, the fewer the contiguous arrays to be computed, the shorter the total
wall-clock time for a given domain. So it can be expected that 1 × 64 will achieve the best
performance among vector machines. Thus, the decomposition design is platform dependent.

Fig. 5. Bar plot for different decompositions using the compressible version of
the model. The left bar is for results on HALEM, the central bar on the
IBM-SP, and the right bar on CHAPMAN. The numbers on the x-axis
indicate the decomposition in terms of the number of columns times the
number of rows.

Juang et al. 609

4.3 Wall-Clock Times for Different Tasks, Platforms, and Versions

Following the previous two sub-sections, a short integration period using the best decomposi-
tion can be used to evaluate the performance of a number of different tasks, platforms, and
versions of the model. Figures 6, 7, and 8 show the wall-clock time with respect to the number
of tasks for model dimensions of 256 × 256 × 34 using (a) compressible, and (b) anelastic
versions of the GCE model. Due to geometric increments in the number of tasks, a logarithmic
scale is applied to both axes. The number of tasks along with their decomposition used in these
figures are 1, 4 (2 × 2), 16 (4 × 4), 32 (4 × 8), 64 (8 × 8), 128 (8 × 16), 256 (16 × 16), and 512
(16 × 32). The symbol “X” in the figure indicates the location of the wall-clock time for each
number of tasks, and the number beneath the symbol “X” is the value of the wall-clock time.
In order to show the relative performance, one solid line, one dotted curve, and one dashed
curve are drawn in each plot along with the individual runs. They represent the theoretical
wall-clock time for the number of tasks between 1 and 512. The solid line represents perfect
performance, which is a line based on wall-clock time for a single task divided by the given
number of tasks (Amdahl’s law) between 1 and 512. The dotted and dashed curves indicate
99% and 95% parallelization, respectively. They can be obtained from:

T n T p
T p

n
c n() ()()

()
()= − + +1 1

1
 , (5)

where c(n) is the communication cost (which is neglected to simplify discussion), T(n) is wall-
clock time for n number of tasks, T(1) is wall-clock time for a single task (which is the largest
value shown on the y axis for each plot), and p is the percentage of all computation, which can
be parallelizing. When p equals 100%, T(n) is a solid line; when p equals to 99%, T(n) is a
dotted curve; and when p equals 95% , T(n) is dashed curve. The perfect line and curves here
are drawn for the case of c (n) = 0.

Figure 6 shows the wall-clock time results for HALEM for (a) the compressible version,
and (b) the anelastic version of the GCE model. The results show a similar trend. The perfor-
mance is close to 95% for 4 tasks, 99% for 16 tasks, almost perfect parallelization for 128
tasks, then returns to 99%. Figure 7 is the same as Fig. 6 except that it is for the IBM-SP. Wall-
clock times are 99% parallelization. Strictly speaking, two versions performed similarly; close
to 95% for 4 tasks, 99% for 64 tasks, and less than 99% for up to 512 tasks. Figure 8 is the
same as Fig. 6 except for CHAPMAN. The results show both versions of the model perform
excellently in parallelization between 16 and 256 tasks.

Comparing different versions of the model on the different platforms, HALEM, IBM-SP,
and CHAPMAN, reveals: 1) the compressible version has better speedup for a single cpu or
small number of tasks; 2) the anelastic version becomes faster in time spent than or equal to
the compressible version for large numbers of tasks; 3) both versions spend less wall time in
IBM-SP than those in HALEM or CHAPMAN for a small number of tasks but not for a larger
number of tasks. Results 1) and 2) are due to additional computations required in the anelastic
version, and 3) indicates that the model computes faster but communicates slower in IBM
under our experimental design. However, note that, with certain MPI environment settings;

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007610

Fig. 6. Wall-clock time in seconds with respect to number of tasks for (a) the
compressible and (b) the anelastic versions with 256 grid points in the
x- and y-directions and 34 in the z direction on HALEM. The solid line
indicates perfect parallelization based on wall-clock time for a single
task. Wall-clock time is shown on the y-axis. The dotted curve indicates
99% parallelization, and the dashed curve indicates 95%. The numbers
next to the symbol “X” are the actual wall-clock times.

Juang et al. 611

such as memory shared in MPI mode, GCE can have good communication in IBM. The reason
why CHAPMAN achieved excellent parallelization may be related to its cache advantage for
the proper length of the array used in GCE. Furthermore, the results indicate that it is ineffi-
cient to run this model with a dimension of 256 × 256 × 34 using more than 256 tasks.

Fig. 7. Same as Fig. 6 except for the IBM-SP environment.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007612

4.4 Speedup and Efficiency

In addition to wall-clock time, parallel jobs can also be checked in terms of speedup and
efficiency. Wall-clock time can show the related speedup for each configuration for a different
number of tasks, but different versions running on different machines cannot be compared on

Fig. 8. Same as Fig. 6 except for the CHAPMAN environment.

Juang et al. 613

one plot. With speedup and efficiency plots, different versions run on different platforms can
be put in one plot, such as in Figs. 9 and 10. The formula for speedup is given as follows:

S n
T

T np ()
()
()

= 1
 , (6)

and substituting Eq. 5 into Eq. 6 yields the theoretical speedup as:

S n
T

T p
T p

n
c n

p ()
()

()()
()

()
=

− + +

1

1 1
1 , (7)

where the communication portion c(n) is neglected (as in most published literature) in drawing
the theoretical perfect, 99% and 95% speedup in Fig. 9. Following this, Figs. 6, 7, and 8, the
solid line indicates perfect speedup, the dotted curve 99%, and the dashed curve 95%.

Fig. 9. Speed-up for the compressible and anelastic versions of the model with
256 grid points in the x- and y-directions and 34 in the z-direction on
HALEM, the IBM-SP and CHAPMAN. The solid line indicates perfect
speedup, the dotted curve 99%, and the dashed curve 95%.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007614

In Fig. 9, compressible and anelastic versions run on the IBM-SP, HALEM, and CHAPMAN
are plotted together. Generally speaking, all of the results are along or better than 99%
parallelization. It shows clearly that CHAPMAN provides the best speedup for current imple-
mentation of MPI in GCM when the number of tasks is larger than 64. The results are less
distinctive for a smaller number of tasks, due to the architecture of Origin 2000 with a shared
memory system, which significantly reduces communication time. Also, the anelastic version
has a better speedup than the compressible on all platforms. Of course, these results are consis-
tent with the results shown in the previous sub-section (Figs. 6, 7, and 8). Though Fig. 9 shows
the relative speedup all together, and it is indicated that the anelastic version has a better
speedup than the compressible. From the results under current computational environments, if
the meteorological performance is nearly equal between them, it is faster in wall time to use
the anelastic version on the IBM-SP, the compressible version on HALEM, and any version
on CHAPMAN if 256 tasks are available.

Fig. 10. Efficiency for the compressible and anelastic versions of the model with
256 grid points in the x- and y-directions, and 34 in the z-direction on
HALEM, IBM-SP and CHAPMAN.

Juang et al. 615

The efficiency of all versions and platforms can be checked in one plot. The formula for
efficiency is:

E n
S n

n
p()
()

%= 100 , (8)

where E(n) is the efficiency with n tasks. Figure 10 show the efficiency of all versions running
on all platforms. The results from the IBM-SP show less distinction between the two versions,
and efficiency dropping from around 85% with 4 tasks to 10% with 512 tasks. On the contrary,
the results from HALEM show more of a difference between the two versions and no consis-
tent drop in efficiency as in the case of the IBM-SP. Though the compressible version on
HALEM drops from 80% efficiency with 32 tasks to 24% with 512 tasks, the anelastic version
on HALEM has efficiencies of 91% and 97% for 32 and 128 tasks. The special case of the
anelastic version on HALEM having close to perfect speedup was shown in Figs. 8b and 9;
however, this appears much more clearly in the efficiency plot. Thus it is the most efficient
configuration and should be used. Except for 512 tasks, the two versions perform efficiently
(above 90%) on CHAPMAN and achieve 120% efficiency with 32 and 64 tasks. Furthermore,
in an operational environment, this configuration (128 task anelastic version) should be the
choice for routine integrations.

4.5 Different Lengths in Dimensions

So far, only dimensions of 256 × 256 × 34 have been used to test performance. For
another case of measurement, wall-clock time will be examined for increasing dimension not
increasing resolution. Figure 11 shows wall-clock times by using (a) HALEM, (b) IBM-SP, and
(c) CHAPMAN for three different dimensions. The different dimensions are 256 × 256 × 34,
512 × 512 × 34, and 1024 × 1024 × 34; they are used with the compressible version at 128
tasks. The number of grid points in 1024 × 1024 × 34 is four times larger than that of 512 ×
512 × 34, which is four times larger than that of 256 × 256 × 34. The wall-clock times are
marked with the symbol “X” with the associated times written beneath. The solid curve, again,
is the idealized wall-time-spend produced by multiplying the increase in dimensions by the
wall-clock time for 256 × 256 × 34. The dotted curve is 80% of the idealized wall-time-spend
and the dashed curve is 60%. Thus, the less the percentage is, the less wall time, so the better
the performance is.

In Fig. 11a, the wall-clock times from the different dimensions correspond to the ideal-
ized cost (solid curve) indicating that the size of the dimensions can be increased up to 16
times without losing or gaining efficiency on HALEM. In Fig. 11b, for the IBM-SP, the results
fall below the idealized curve. The result for a 4-time increase in the size of the dimensions is
located on the 80% curve, and the result for a 16-time increase is located between the dotted
and dashed curves at about 70%. For CHAPMAN, Fig. 11c shows slightly less wall-clock
time for 512 × 512 but much more than the idealized wall-clock time for 1024 × 1024. This
indicates that the IBM-SP provides the best performance with large dimensions for the model,
followed by HALEM, and then CHAPMAN, under current implementation of MPI in GCE.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007616

Fig. 11. Wall-clock time in seconds for different dimensions of the model hori-
zontal domain for (a) HALEM, (b) IBM-SP and (c) CHAPMAN for the
compressible version of the model. The solid curve indicates wall-clock
times linearly extrapolated from the 256 × 256 model domain, the dotted
curve indicates 80% of the solid curve and the dashed curve indicates
60% of the solid curve in each environment.

Juang et al. 617

4.6 Reproducibility

If the binary results are the same among different decompositions and/or no decomposition,
we call the decomposition reproducible. There are some computations, such as obtaining the
mean value from the entire domain that could use a reduced collective MPI call to save wall
clock time; however, reduced collective calls may not have the same computational sequence
among different decompositions. Thus, a flag was introduced in the code as an option for
reproducibility. When the reproducible flag is off in order to save time, the reduced collective
MPI call is used, thus binary results are different for different runs as well as different numbers
of tasks. However, the difference by using reduced collective MPI calls due to different number
of tasks is within truncation error, which is insignificant.

Since rainfall is the most sensitive quantity to be discerned between different model
integrations, it will be examined from the results for a 3- to 4-day integration, which is about
the averaged integration for GCE. Figure 12 shows total domain rainfall in mm h-1 (a) between
0 and 24 h, and (b) between 72 and 76 h of integration using 256 × 256 × 34 grid points. The

Fig. 12. Rainfall amount over a given domain in mm h-1 with respect to time evolu-
tion from (a) 00 to 24 and (b) 72 to 76 hr of integration. Solid curve indicates
results from a single task and dashed curve from arbitrary multiple tasks.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007618

solid thin curve is from single-cpu integration, and the thick dashed curve is from the non-
reproducible option with 64 cpus. Though the binary output between these two experiments is
different, the figure shows the difference is un-distinguishable, not only over the initial 24 h of
integration but even after 72 h of integration. Figure 13 shows the accumulated rainfall over
the domain for a) 1 cpu and b) 64 cpus. The patterns and values are very similar. Furthermore,
rainfall is the most significant output for this type of model and thus the most representative;
even the vertical velocity and other thermodynamic properties are closely related to precipita-
tion/rainfall.

5. SUMMARY

The concept of parallelization using MPI with little modification to the original model
code as well as having flexibility and reproducibility running any number of tasks, including
single-cpu, has been adopted for GCE modeling. The GCE model has two different dynamic
options: compressible and anelastic. Both versions are decomposed in grid point space in a
similar manner and require data exchange for MPI to update the halo regions and lateral
boundaries. In order to have all of the grid points in any given direction available for FFT in
the anelastic version, a MPI transpose method similar to the data exchange is implemented
into the anelastic version to solve the pressure derivative in the horizontal. A preprocessor
written in the C language is adopted into the original code to manage the model options, so that
the model can be run with a variety of different versions, decompositions and numbers of tasks.

Fig. 13. Accumulated rainfall amount in mm h-1 after 76 hr of integration for
results from (a) 1 cpu and (b) 64 tasks on HALEM.

Juang et al. 619

Since there are many options available, several sensitivity tests were conducted in order
to obtain the optimal values for performance. Three platforms, HALEM (Dec alpha), the IBM
SP (power4) and CHAPMAN (SGI Origin 2000), were selected to test the performance of the
parallelization using MPI. Repeated runs using the same configuration on different platforms
showed about a 5% difference in wall-clock time. Long- and short-term runs have about the
same ratio of wall-clock time to forecast time, indicating the performance of the implementa-
tion on these platforms is quite consistent.

The performance of the different decompositions reconfirms the theoretical concept that
the best performance is with 2D decomposition using equal numbers of columns and rows.
The worst performance is with 1D decomposition with one row sliced into columns. These
results are mainly due to the smaller amount of data exchange in 2D decomposition and the
x-direction grid length in the inner loop. Both versions of the model have wall-clock times and
speedups that are around 99% of the theoretical curves up to 256 tasks but not for 512 tasks.
This implies that for dimensions of 256 × 256 × 34, the speedup saturates at about 256 tasks
or more precisely about 128 tasks. The anelastic version has better speedup and efficiency
compared to the compressible version due to the greater number of computations. There is a
highly efficient configuration for the anelastic system with 128 tasks on HALEM that pro-
duces wall-clock times that are about the same as the compressible version with the same
number of tasks. There is no way to compare and conclude the performance of these three
machines by using one model and it is not our intention to do so. However, from our limited
number of experiments here, GCE has the best speedup and efficiency for dimensions less
than 256 × 256 × 34 in CHAPMAN, and GCE’s performance using large dimensions with
128 tasks is the best in IBM-SP among these three machines. Again, three machines are arbi-
trarily selected by their availability to demonstrate the flexibility of the MPI implementation
into GCE, they are not used for performance comparison in general.

Even though the performance of the current parallelization with MPI is reasonably good,
there are still some portions of the code that can be improved using MPI, for example input
and output (IO). MPI-IO was not included in the first version of MPI (Gropp et al. 1999a).
Most IO either uses direct access, an IO server with one IO task, or writes out each portion into
a file, then all files (all portions) are collected by another program. MPI-2 (Gropp et al. 1999b)
has several advanced MPI routines including MPI-IO. However, it was not implemented into
the current GCE model. The GCE model will need further parallelization with MPI-2 in the
future. Nevertheless, the concept of the current parallelization by using MPI with a C prepro-
cessor provides a viable mechanism for model development, which gives the GCE model the
capability to plug/un-plug MPI and/or any future package to easily keep up with rapidly changing
computer architectures.

Acknowledgements This work is supported both by the Atmospheric Dynamics and Ther-
modynamics Program under NASA headquarters and by the NASA Tropical Rainfall Measur-
ing Mission (TRMM). The authors are grateful to Dr. R. Kakar at NASA headquarters for his
support of Goddard Cumulus Ensemble (GCE) model development. Acknowledgement is also
made to Dr. T. Lee at NASA HQ and Dr. T. Clune at NASA/NCCS. The NASA/Goddard
Space Flight Center, NCEP, and AMES are acknowledged for computer time used in this
research.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007620

REFERENCES

Anderson, J. R., K. K. Droegemeier, and R. B. Wilhelmson, 1985: Simulation of the thunder-
storm subcloud environment. Preprint, 14th Conf. on Severe Local Storms, 147-150.

Aoyama, Y., and J. Nakano, 1999: RS/6000 SP: practical MPI programming. IBM Interna-
tional Technical Support Organization, SG24-5380-00, 221 pp.

Baker, R. D., B. H. Lynn, A. Boone, W. K. Tao, and J. Simpson, 2001: The influence of soil
moisture, coastline curvature, and the land-breeze circulation on sea-breeze initiated
precipitation. J. Hydrometeor., 2, 193-211.

Chen, J. P., and D. Lamb, 1999: Simulation of cloud microphysical and chemical processes
using a multi-component framework. Part II: Microphysical evolution of a wintertime
orographic cloud. J. Atmos. Sci., 56, 2293-2312.

Chou, M. D., and M. J. Suarez, 1999: A shortwave radiation parameterization for atmospheric
studies. 15, NASA/TM-104606, 40 pp.

Chou, M. D., K. T. Lee, S. C. Tsay, and Q. Fu, 1999: Parameterization for cloud longwave
scattering for use in atmospheric models. J. Climate, 12, 159-169.

Estrade, J. F., Y. Trémolet, J. Sela, 2001: Experiments with NCEP’s spectral model. Develop-
ments in Tera Computing, proceedings of the ninth ECMWF workshop on the use of
high performance computing in Meteorology, Reading, UK, 13 - 17 November, 2000,
92-99.

Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I:
Description. J. Atmos. Sci., 51, 249-280.

Ferrier, B. S., W. K. Tao, and J. Simpson, 1995: A double-moment multiple-phase four-class
bulk ice scheme. Part II: Simulations of convective storms in different large-scale envi-
ronments and comparisons with other bulk parameterizations. J. Atmos. Sci., 52, 1001-
1033.

GCSS (GEWEX Cloud System Study), 1993: Bull. Amer. Meteor. Soc., 74, 387-400.
Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convec-

tion in two-dimensional explicit numerical simulations. Quart. J. R. Meteor. Soc., 127,
445-468.

Gropp, W., E. Lusk, and A. Skjellum, 1999a: Using MPI: portable parallel programming with
the message-passing interface, 2nd Ed., The MIT Press, Cambridge, Massachusetts, 371 pp.

Gropp, W., E. Lusk, and R. Thakur, 1999b: Using MPI-2: advanced features of the message-
passing interface. The MIT Press, Cambridge, Massachusetts, 382 pp.

Ikawa, M., 1988: Comparison of some schemes for non hydrostatic models with orography. J.
Meteor. Soc. Japan, 66, 753-776.

Johnson, D., W. K. Tao, J. Simpson, and C. H. Sui, 2002: A study of the response of deep
tropical clouds to large-scale processes, Part I: Model set-up strategy and comparison
with observation. J. Atmos. Sci., 59, 3492-3518.

Johnson, K. W., J. Bauer, G. A. Riccardi, K. K. Droegemeier, and M. Xue, 1994: Distributed
processing of a regional prediction model. Mon. Wea. Rev., 122, 2558-2572.

Juang, H.-M. H., and M. Kanamitsu, 2001: The computational performance of the NCEP

Juang et al. 621

seasonal forecast model on FUJITSU VPP5000 at ECMWF. Developments in Tera
Computing, proceedings of the ninth ECMWF workshop on the use of high perfor-
mance computing in Meteorology, Reading, UK, 13 - 17 November, 2000, 338-347.

Juang, H.-M. H., C. H., Shiao, and M. D. Cheng, 2003: The Taiwan Central Weather Bureau
Regional Spectral Model for seasonal prediction: Multi-parallel implementation and
preliminary results. Mon. Wea. Rev., 131, 1832-1847.

Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on
the state-of-the-art numerical modeling of cloud microphysics. Atmosph. Res., 55, 159-
224.

Klemp, J. B., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm
dynamics. J. Atmos. Sci., 35, 1070-1096.

Lang, S., W. K. Tao, J. Simpson, and B. Ferrier, 2003: Modeling of convective-stratiform
precipitation processes: Sensitivity to partitioning methods. J. Appl. Meteor., 42, 505-
527.

Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in
a cloud model. J. Clim. Appl. Meteor., 22, 1065-1092.

Lynn, B. H., W. K. Tao, and P. J. Wetzel, 1998: A study of landscape generated deep moist
convection. Mon. Wea. Rev., 126, 928-942.

Lynn, B. H., and W. K. Tao, 2001: A parameterization for the triggering of landscape gener-
ated moist convection, Part II: Zero order and first order closure. J. Atmos. Sci., 58,
593-607.

Lynn, B. H., W. K. Tao, and F. Abramopoulos, 2001: A parameterization for the triggering of
landscape generated moist convection, Part I: Analyses of high resolution model results.
J. Atmos. Sci., 58, 575-592.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incom-
pressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys.
Res., 102, 5753-5766.

Michalakes, J., S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock,
2001: Development of a next-generation regional weather research and forecast model.
Developments in Tera Computing, proceedings of the ninth ECMWF workshop on the
use of high performance computing in Meteorology, Reading, UK, 13 - 17 November,
2000, 269-276.

Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the
atmosphere. J. Atmos. Sci., 19, 173-179.

Purnell, D. K., and M. J. Revell, 1995: Field-object design of a numerical weather prediction
model for uni- and multiprocessors. Mon. Wea. Rev., 123, 401-429.

Randall, D. A., J. Curry, P. Duynkerke, S. K. Krueger, M. W. Moncrieff, B. Ryan, D. O. Starr,
M. Miller, W. Rossow, G. Tseliudis, and B. A. Wielikci, 2003: The GEWEX cloud
system study: A view from 2001. Bull. Amer. Meteor. Soc., 84, 455-469.

Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organi-
zation of clouds and precipitation in mid-latitude clouds. Part XII: A diagnostic model-
ing study of precipitation development in narrow cold frontal rainbands. J. Atmos. Sci.,
41, 2949-2972.

Terr. Atmos. Ocean. Sci., Vol. 18, No. 3, August 2007622

Skalin, R., 1997a: Scalability of parallel gridpoint limited-area atmospheric models. Part I:
Explicit time-integration schemes. J. Atmos. Ocea. Technol., 14, 427-441.

Skalin, R., 1997b: Scalability of parallel gridpoint limited-area atmospheric models. Part II:
Semi-implicit time-integration scheme. J. Atmos. Ocean. Technol., 14, 442-455.

Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive advection
transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355-375.

Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J.
Atmos. Sci., 37, 2035-2050.

Tao, W. K., and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model
description. Terr. Atmos. Ocean. Sci., 4, 19-54.

Tao, W. K., J. Simpson, C. H. Sui, B. Ferrier, S. Lang, J. Scala, M. D. Chou, and K. Pickering,
1993: Heating, moisture and water budgets of tropical and mid-latitude squall lines:
Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673-690.

Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M. D. Chou, 1996: Mechanisms of
Cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci., 53, 2624-
2651.

Tao, W. K., 2003: Goddard Cumulus Ensemble (GCE) model: Application for understanding
precipitation processes, AMS Meteorological Monographs - Cloud Systems, Hurri-
canes and TRMM, 103-138.

Tao, W. K., C. L. Shie, R. Johnson, S. Braun, J. Simpson, and P. E. Ciesielski, 2003: Convec-
tive Systems over South China Sea: Cloud-Resolving Model Simulations. J. Atmos.
Sci., 60, 2929-2956.

Wang, Y., W. K. Tao, J. Simpson, and S. Lang, 2003: The sensitivity of tropical squall lines
(GATE and TOGA COARE) to surface fluxes: 3-D Cloud resolving model simulations.
Quart. J. R. Met. Soc., 129, 987-1007.

Wu, X., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud sys-
tems in TOGA COARE and their interactions with radiative and surface processes.
Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 2693-2714.

Juang, H.-M. H., W. K. Tao, X. Zeng, C. L. Shie, S. Lang, and J. Simpson, 2007: Parallelization
of the NASA Goddard cumulus ensemble model for massively parallel computing.
Terr. Atmos. Ocean. Sci., 18, 593-622, doi: 10.3319/TAO.2007.18.3.593(A).

