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Worldwide ground observations of upper atmospheric airglow with
particular emphasis on the OI 557.7 and 630 nm emissions have been con-
ducted since 1960s. This study reports the first ground observations of
OI 557.7 nm green line emission over the Taiwan area. For comparison, the
background continuum at 530 nm was also measured by the same system.
The experiments were conducted during the period of Aug - Dec, 2004 at
various locations in Taiwan using a self-developed photometer instrument.
Daily height integrated intensity of the night-time green line emission may
vary in the range of 80 - 210 Rayleighs and twilight enhancement is also
identified. The observational results may serve as a useful reference for
follow-up sounding rocket measurements of OI 557.7 nm airglow emission
over the Taiwan area.
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1. INTRODUCTION

The observation of OI 557.7 nm airglow (hereafter referred to as OI5577) has been a
primary information source for atomic oxygen variation in the atmosphere. The sources of
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OI5577 green line are excited oxygen atoms O(1S) which may originate from two different
regions of the atmosphere. In the thermosphere or the ionospheric F region of about 250 km,
excited oxygen atoms O(1S) are produced by the recombination of ionized molecular oxygen
(O2

+) with electrons:

O O O S 2
1+ −+ → +e ( )    ,   (1)

O S O    ( ) ( . )1 557 7→ + hv nm    ,   (2)

(e.g., Nicolet 1954; Chamberlain and Hunten 1987). Whereas, in the upper mesosphere or the
ionospheric E region of about 95 km, excited oxygen atoms O(1S) may be produced by the so-
called Barth mechamism:

O O M O M+ + → +2
*    ,   (3)

O O O O( S)2
1

 2
* + → +    ,   (4)

O( S) O  ( .  ) 

1 → + hv nm557 7    ,   (5)

(Barth and Hildebrandt 1961), for which M is N2 and/or O2, and O2
* is the electronically excited

state of O2 and the precursor leading to O(1S). However, the details of the excitation processes
of the emissions are still not fully understood. For a review on this subject, readers are referred
to the papers by Bates (1981), Torr (1985), McDade and Llewellyn (1986), and Meriwether
(1989) where several reaction mechanisms for atomic oxygen OI5577 emission were sug-
gested with the Barth mechamism (Barth and Hildebrandt 1961) being the most widely dis-
cussed one.

Observation of airglow began nearly six decades ago and can be made by means of ground
based instruments or payloads onboard balloons, rockets or satellites. Different approaches to
measurement contain different kinds of information; in particular, the results of ground-based
or satellite observations are integrated intensities of the column emission rate while rocket
experiments conduct in-situ measurements that can give rise to the altitude profile of the air-
glow volume emission rate (e.g., Gulledge et al. 1968; Ogawa et al. 1987; Takahashi et al.
1987, 1996; Kita et al. 1988, 1992). In the early phase of instrument development, simple
photocathodes, spectrographs or spectrometers were used to study the emission lines of air-
glows in a qualitative way (e.g., Elvey 1942). Later the development of the photomultiplier
made accurate observation of airglow possible. Even nowadays many ground-based, rocket or
satellite observations still rely on the photomultiplier-based photometer. After the 1990s the
development of high quantum efficiency CCD made simultaneous two-dimensional observa-
tions simpler and all-sky airglow imaging a useful method for investigating the dynamics of
the emission layer. In our study, a photomultiplier-based photometer is developed to conduct
ground observation of OI5577 emission over the Taiwan area.

There have been many studies (e.g., Colerico et al. 1996; Angelats i Coll and Forbes
1998; Balan et al. 2004; Brown et al. 2004; Smith et al. 2006) that utilize the information of
OI5577 airglow to deduce the dynamics and structure of the E region or F region of the iono-
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sphere (upper mesosphere or thermosphere). Weinberg and Mann (1967) of the University of
Hawaii conducted the first systematic sky-scanning measurements of OI5577 airglow and
other wavelength bands at Mt. Haleakala Maui, Hawaii (geographic longitude of 156.6°N and
latitude of 20.7°N, and altitude of 3033 m) in the early 1960s to provide a basic reference
database for balloon, rocket and satellite observations. Kim et al. (2002) reconstructed the
projected maps of the airglow distributions at F region altitude from the database and identified
the equatorial spread F by OI5577 and OI 630.0 nm O(1D) (hereafter referred to OI6300)
observations. Hickey et al. (1993, 1998, 2001) and Schubert et al. (1999) investigated the
intensity fluctuations of the OI5577 from airglow image and found that the fluctuations can be
interpreted as the gravity waves propagating through the emission layer at 90 - 100 km. The F
region plasma depletion phenomenon, so-called plasma bubbles, around 300 km can also be
seen via the observations of OI5577 and OI6300 emissions. Takahashi et al. (2001) used ground-
based two-dimensional imaging of airglow OI5577 and OI6300 emissions to show the fine
structure of the plasma bubble and pointed out that OI5577 can show more of the fine structure
of the bubble than OI6300 emission.

The long-term variation of OI5577 is also an important topic of study. Deutsch and
Hernandez (2003) collected large amounts of data that encompass observations from different
stations at low geomagnetic activity from 1923 to 2003 and carried out long-term time series
analysis. The longest time series provided by their study is about 12 years. The result shows
that the OI5577 emission rate increases with solar activity in general; in particular, the emission
rate is higher during the decreasing phase of solar activity but it has apparent changes in
different solar cycles and latitudinal dependence. The annual and semiannual variations also
provide seasonal behavior of OI5577 emission. In general, analysis shows a maximum during
autumn and minimum near the spring equinox, but the detailed behavior strongly depends on
the latitude. Latitudinal dependence indicates that the emission rate increases with latitude and
this result has been confirmed in many other reports (e.g., Donahue et al. 1973; Cogger et al.
1981; Shepherd et al. 1999). However, investigations of daily variation of OI5577 do not show
clear characteristics pertaining to maxima or minma during daily observation. Some of the
studies show the presence of a general maximum near midnight (e.g., Christophe-Glaume
1965), but others do not show the same behavior (Smith and Steiger 1968). Some studies also
show a correlation between geomagnetic activity and the OI5577 emission rate (e.g., Silverman
1970; Hernandez 1976); in particular, during high geomagnetic activity, measured by the Kp
index, enhanced auroral activity and thermospheric temperature may contribute to the OI5577
emission rate.

Chow et al. (2002) reported coincident observations of equatorial bubbles by ROCSAT-1
(FORMOSAT-1) spacecraft and the OI6300 airglow ground imager at Mt. A-Li, Taiwan (23.3°N,
120.5°E). But reference information regarding quantitative measurement of OI5577 in the
Taiwan area is still lacking. This paper presents the first quantitative OI5577 green line obser-
vation over the Taiwan area based on a self-developed photometer instrument. The objective
of the observations is to provide basic references for follow-up sounding rocket experiments
or all-sky imager observations of OI5577 emission in the Taiwan area. Most of our observa-
tions were conducted throughout the night including the twilight period; i.e., the transition
from night to day. During twilight the atmosphere is illuminated gradually by the Sun with a
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decreasing solar zenith angle, and the effect of photon ionization can be investigated in this
period. Attempts have been made to find the relation between solar radiation and OI5577
emission during twilight (e.g., Megill 1960; Deehr 1969; Hays and Sharp 1973) but the existence
and mechanism of OI5577 twilight enhancement was not revealed explicitly until the work of
Schaeffer (1975) who has attributed the enhancement to the dissociative recombination of O2

+

with electrons in the ionospheric F region. Schaeffer’s results imply that seasonal variation,
daily variation and activities of the F region are related to OI5577 twilight enhancement. In
this paper, we also show a qualitative result of twilight enhancement from our preliminary
ground observations of OI5577 emission over the Taiwan area.

2. INSTRUMENTATION

The instruments used in this study are two independent photometer systems that were
designed and developed by the Satellite Payload Development Laboratory of the Institute of
Space Science, National Central University. The optical sensors of the system are designed for
two wavelength bands: 530.0 and 557.7 nm; each consisting of a band pass interference filter,
a synthetic fused silica lens, and a photomultiplier. The photomultiplier utilizes the photon-
counting method to detect photons emitted from the airglow. The half bandwidth (FWHM) is
1 nm for both interference filters and the field of view (FOV) of the photometers is 4.7° circular
in full angle for visible light. The two photometers are installed side by side to align the field
of view of both photometers along zenith and to reduce the inaccuracy arising from spatial
inhomogenity.

The photometers were absolutely calibrated with a standard light source available at the
National Precision Instrument Development Center of Taiwan. The sensitivity of the system is
25 cps R -1 (cps = counts per second; R = Rayleigh; 1 R = 106 photons/sec-cm2). The uncer-
tainty of measurement is governed by systematic errors (associated with quantum efficiency
of detector, transmission rate of filter, FOV and calibration errors etc.), random errors (due to
thermal noise and dark counts etc.), and dynamic errors (associated with the dynamic properties
of the instrument, setting time and time constant etc.). In our photometer system, the uncer-
tainty of the measurement is dominated by shot noise and linearity of the system’s response.
On average, the measurement uncertainty for our photometer system is 7.3 ~ 14.9 R for the
range of 50 ~ 210 R.

3. OBSERVATIONS

Since there is no special emission line associated with 530 nm, the measurement results of
the 530 nm photometer can be used as reference guide to the background continuum from light
pollution or any astronomical background feature that may cause contamination of the OI5577
green line measurement. In general, cloud or fog may reflect or scatter light pollution or block
airglow emission of the night sky, and moonlight may cause an appreciable background
continuum, therefore a clear sky and new moon period conditions are required for ground-
based airglow observations to prevent contamination due to other light sources.
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The first successful benchmark experiment was carried out at Chung-Li (25°N, 121.2°E)
on 17 August 2004 and the results are shown in Fig. 1. The sunset/sunrise time was at 1828/
0528 LT and the moonrise/moonset time was at 0617/1927 LT (new moon period) on the day
of observation. Measurement lasted only for about half an hour due to cloud appearing in the
night sky and rain over the following days. Figure 1a shows the intensities of OI5577 emission
and 530 nm background continuum and the average intensities are 8648 and 4671 cps, respec-
tively. In Fig. 1b, the continuum background has been subtracted from the OI5577 and the unit
of the intensity is also converted to Rayleigh (R). Since the value shows the integrated intensity,
it represents the column emission rate of OI5577. The average column emission rate of OI5577
is about 160 R in this observation.

Fig. 1. (a) The intensity variations of the 530 nm background continuum and
OI5577 emissions. (b) The column emission rate of the OI5577 deduced
from Fig. 1a. The observation was carried out at Chung-Li (25°N, 121.2°E)
on 17 August 2004.
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Figure 2 shows a successful all night observation of intensity variation of 530 nm and
OI5577 emissions at Chung-Li (25°N, 121.2°E) on 21 September 2004. The sunset/sunrise
was at 1751/0542 LT, and the moonrise/moonset was at 1213/2149 LT. We measured the
emissions of OI5577 and 530 nm background continuum simultaneously with a data sampling
rate of 1 sample min -1, and an operating period from midnight to dawn. Figure 2a shows that
the trends of intensities for these two bands are similar in that both decrease before twilight
appears at around 0440 LT (solar zenith angle of ~104°). But after 0440 LT the intensity of
these two bands increases drastically with increasing twilight. The minimum intensity of the
530 nm background continuum and OI5577 emissions are at 0318 LT (solar zenith angle of
~126°) and 0433 LT (solar zenith angle of ~106°), respectively. There are two curves in panel
(b) of Figs. 2, 4, 5, and 6, for which the solid curves are OI5577 subtracted by the 530 nm
emissions and the dashed curves are the corrected OI5577 emissions to show twilight en-
hancement as explained in the discussion section. Aside from the twilight enhancement both
curves are the same. In this section, we shall focus on night emission and discuss only emission
features prior to twilight enhancement. Figure 2b shows that the OI5577 column emission rate is
of ~160 ± 20 R, similar to the case shown in Fig. 1. The average is of ~160 R before 0330 LT,
and the peak value is of ~180 R at 0140 LT. It can be seen that OI5577 emission decreases
after 0330 LT until twilight appears around 0440 LT, and the background continuum is even
larger than OI5577 after 0500 LT (solar zenith angle of ~101°).

Fig. 2. (a) The intensity variations of the 530 nm background continuum and
OI5577 emissions observed at Chung-Li on 21 September 2004. (b) The
column emission rate of the OI5577 deduced from Fig. 2a. The dashed
curve in panel (b) is the twilight enhancement of OI5577 emission.
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For comparison, Fig. 3 shows an example of the observations conducted on 29 September
2004 during a full moon period at Chung-Li (25°N, 121.2°E), indicating that the intensities of
OI5577 emission and 530 nm background continuum increase drastically with the increasing
zenith angle of moon. The moonrise/moonset time was at 1816/0609 LT on that day and the
zenith angle of the moon moved from 64° to 41.5° in the period of 2000 to 2130 LT. As com-
pared to the previous two cases conducted during new moon periods, the emissions for both
bands are much stronger and the 530 nm even dominates the OI5577 emission after 2030 LT.
Substracting the background continuum will lead to a negative value for OI5577 emission.
Such measurement thus cannot be used to deduce the green line emission of night airglow.

Figure 4 shows an example of observations conducted at Mu-Dan (22.2°N, 120.8°E) of
southern Taiwan on 11 October 2004. The overall profile of counting rate versus local time is
similar to the cases conducted at Chung-Li, but the absolute emission rates for both 530 and
557.7 nm are smaller than those obtained at Chung-Li; in particular, the peak emission rate of
OI5577 after substracting the background 530 nm is about 80 R. The discontinuties in the data
shown in Fig. 4 are the dark-count checking points of the system. Figure 5 shows another
example of observations conducted on 13 October 2004 at Chung-Li and the periodic dis-
continuities are dark-count checking points which shows that after a long period of operation
the system still has very low dark counts (< 25 counts sec -1). Note that the jump in the emission
rate from 0355 to 0415 is due to reflection in light pollution from overhead passing clouds.

Figure 6 shows an observation conducted on 11 November 2004 at Gau-Yi (24.7°N,
121.4°E) of northern Taiwan and the data gaps from 0040 to 0105 are due to overhead passing
clouds, rain and system checking. The profile of the count rate versus local time is different
from that of previous cases in that the peak emission rate occurs at 0500 LT in this case. Table 1
lists all the successful ground observation cases for OI5577 emission in the Taiwan area during

Fig. 3. The intensity variations of the 530 nm background continuum and OI5577
emissions observed at Chung-Li on 29 September 2004.
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Fig. 4. (a) The intensity variations of the 530 nm background continuum and
OI5577 emissions observed at Mu-Dan (22.2°N, 120.8°E) on 11 October
2004. (b) The column emission rate of the OI5577 deduced from Fig. 4a.
The dashed curve in panel (b) is the twilight enhancement of OI5577
emission.

Fig. 5. (a) The intensity variations of the 530 nm background continuum and
OI5577 emissions observed at Chung-Li on 13 October 2004. (b) The
column emission rate of the OI5577 deduced from Fig. 5a. The dashed
curve in panel (b) is the twilight enhancement of OI5577 emission. The
data gaps are due to system checking.
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Fig. 6. (a) The intensity variations of the 530 nm background continuum and
OI5577 emissions observed at Gau-Yi (24.7°N, 121.4°E) on 11 November
2004. (b) The column emission rate of the OI5577 deduced from Fig. 6a.
The dashed curve in panel (b) is the twilight enhancement of OI5577
emission.

Table 1. Observational cases of OI5577 emissions in the Taiwan area during
2004.
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2004. The listed emission rate is the maximum intensity for each case prior to twilight
enhancement. Note that the experiments were performed in the later half of the year because
weather conditions were not sutible for airglow observations over spring and summer in the
Taiwan area during 2004.

4. DISCUSSION AND SUMMARY

As indicated in Table 1, the peak integrated intensity of nocturnal OI5577 emission for
each observed case over the Taiwan area is in the range of 80 - 210 R. The statistical results of
worldwide airglow observations during the International Geophysical Year and the Interna-
tional Geophysical Cooperation, 1957 - 1959, (Yao 1962) and other later statistical results
obtained, for example, by Deutsch and Hernandez (2003) show that the intensities of OI5577
emissions may vary from ~20 to ~600 R. Our observational results of OI5577 appear to be in
the statistical range. As mentioned above, OI5577 emissions may come from the thermo-
sphere (F region ionosphere) or upper mesosphere (E region ionosphere), thus emissions of
oxygen atoms can increase significantly during the equatorial anomaly or high solar activity
periods. Takahashi et al. (2001) pointed out that OI5577 emission intensity increased signifi-
cantly and reached above 100 R during the maximum phase of solar activity in 1998 - 1999.

The last column of Table 1 shows the Kp index during the observation. Each number and
suffix represent a three-hour index; in particular, they are indices of 2000 - 2300 LT, 2300 -
0200 LT, 0200 - 0500 LT, and 0500 - 0800 LT, respectively. Although we have only limited
observational cases, a comparison of the Kp index and the occurrence time of the peak emis-
sion rate shows that, in general, the peak value occurs in or near the period of the largest Kp
index. The 13 October case shown in Fig. 5b for OI5577 emission seems to be an exception for
which the largest Kp occurs during 2000 - 2300 LT while the peak emission rate is at 0220 LT.
Nevertheless absolute observed OI5577 emission without substracting the 530 nm emission
still exhibits a peak emission rate before 2300 LT. This may be due to a large value for the
background continuum 530 nm arising from severe city light pollution before midnight. Note
that the maximum emission rate in our observations is on 9 November and that happens to be
the period of a geomagnetic storm’s sudden commencement though the magnetic storm is
only one of the factors that may affect the variation of the OI5577 emission rate. Analysis of
the long-term observation of OI5577 emission (Deutsch and Hernandez 2003) has indicated
that local variations in atmospheric or ionospheric conditions also have significant effects on
variation in the emission rate.

Schaeffer (1975) used the Fabry-Perot interferometer to measure OI5577 in the presence
of an appreciable twilight background continuum and found that enhancement of OI5577 ema-
nating from the dissociative recombination of O2

+ and electrons in the ionospheric F region
begins at solar zenith angle of ~106°. The intensity of the emission can even reach ~1000 R for
solar zenith angle of 96° ~ 100° in twilight. Since the twilight phenomenon is governed by
various factors, such as, the solar irradiance spectrum, shadow of the Earth, and atmospheric
effects, including scattering, reflection, and absorption, the critical issue for twilight enhance-
ment measurement is the accurate subtraction of the background continuum. Schaeffer (1975)
took measurements in both zenith and 75° zenith angle during twilight and identified OI5577
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enhancement for both cases but pointed out that it is difficult to define the absolute value for
the zenith case due to a strong sunlit scattered background. To improve the discrimination of
the twilight airglow signal, observation should be conducted at a larger zenith angle in the
sun’s azimuth. In our experiments, all observations are conducted in the zenith direction, thus
the background continuum is dominated by scattered sunlight during twilight. In Schaeffer’s
work, for the zenith observation, the intensity of OI5577 twilight enhancement is estimated
simply by subtracting nightglow intensity that is assumed constant during the twilight period.

As shown in panel (a) of Figs. 2, 4, 5, and 6, there is an obvious twilight enhancement for
both bands before sunrise; for example, in Fig. 2, the twilight enhancement for both bands
begins from 0440 LT when the solar zenith angle is about ~104°. The OI5577 emission after
subtracting the 530 nm, however, does not exhibit twilight enhancement due to the fact that
the scattered background intensity of 530 nm is much higher than 557.7 nm. Thus, it is not
appropriate to use the simultaneous 530 nm wavelength band as a background continuum to
deduce the twilight enhancement measurement of OI5577, as explained above. To estimate
the OI5577 emission rate in an overwhelming solar scatter background, we adopt the same
method as that of Schaeffer, i.e., we use the value of the 530 nm background continuum at a
solar zenith angle of ~108°, corresponding to 0426 LT for the case shown in Fig. 2, as the
sunlit background continuum. The results shown by the dashed curves in panel (b) of Figs. 2,
4, 5, and 6 indicate that the intensity of OI5577 emission may vary from 100 to 1000 R during
solar zenith angle of ~104° to ~98° (corresponding to 0440 ~ 0506 LT in Fig. 2) which is
qualitatively similar to Schaeffer’s result even though the sunlight scattering condition of local
aerosol and signal to background ratio of the instrument are different. A somewhat different
method has also been made to estimate the background continuum obtained from our 530 nm
observations. In particular, the estimation based on the intensity of solar irradiance and wave-
length-dependent Rayleigh scattering shows that the zenith intensity of 530 nm is about 1.3 ~
1.5 times larger than the intensity of 557.7 nm. This result can in principle be used to estimate
the 557.7 nm sunlit background during a twilight period that is about 0.67 ~ 0.77 of 530 nm
emission. The results show that OI5577 twilight enhancement may still occur but only when
assuming 530 nm to be ~1.5 times larger than the intensity of 557.7 nm. In this case, the onset
of twilight enhancement occurs at slightly later times than those shown in the figures.

In summary, we have utilized a self-developed photometer instrument to conduct the first
ground measurements of OI5577 emission at various locations within the Taiwan area during
the period of August - December  2004. The results show that peak intensity of night time
OI5577 emission is in the range of 80 - 210 R and there exists a good correlation between
emission and geomagnetic activity measured according to the Kp index. In addition, limited
cases show a clear feature of twilight emission enhancement. Similar characteristics of OI5577
green line emission have been reported by other authors using data collected at various places
in the world, implying that our measurements are mostly meaningful. The ground observa-
tional data reported here may serve as a useful reference to follow-up sounding rockets and the
all sky imager as well as long-term ground measurements of night time OI5577 emission over
the Taiwan area.
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