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ABSTRACT

The propagator of a linear model plays a central role in empirical normal mode and finite-time instability problems. Its
estimation will affect whether the linear stability characteristics of the corresponding dynamic system can be properly
extracted. In this study, we introduce two alternative methods for estimating the linear propagator and finite-time growth rates
from data. The first is the generalized singular value decomposition (GSVD) and the second is the singular value
decomposition combined with the cosine-sine decomposition (SVD-CSD). Both methods linearize the relation between the
predictor and the predictand by decomposing them to have a common evolution structure and then make the estimations. Thus,
the linear propagator and the associated singular vectors can be simultaneously derived. The GSVD clearly reveals the
connection between the finite-time amplitude growth rates and the singular values of the propagator. However, it can only be
applied in situations when given data have more state variables than observations. Furthermore, it generally encounters an
over-fitting problem when data are contaminated by noise. To fix these two drawbacks, the GSVD is generalized to the
SVD-CSD to include data filtering capability. Therefore, it has more flexibility in dealing with general data situations. These
two methods as well as the Yule-Walker equation were applied to two synthetic datasets and the Kaplan’s sea surface
temperature anomalies (SSTA) to evaluate their performance. The results show that, because of linearization and flexible
filtering capabilities, the propagator and its associated properties could be more accurately estimated with the SVD-CSD than
other methods.
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1. INTRODUCTION

Waves are common phenomena in the atmosphere and
the ocean. The mechanisms of the generation, evolution, and

Y(+ 1) =AY () (1)

predictability of such phenomena are strongly dependent on
the stability characteristics of these waves. Therefore, the
ability to correctly extract wave stability characteristics from
observed data is very crucial to our understanding of the
dynamics of the corresponding systems. Currently, em-
pirical stability studies are mainly carried out through linear
inverse modeling of the observed spatial-temporal data. In
other words, one fits an observed dataset that has m variables
of n + 7 temporal length to a discrete form of the linear
advection equation,
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where Y () € R™ ™" is the first n temporal length of the m
variables (predictor matrix), Y (¢ + 7) is the same variables
at T period later (predictand matrix), and A is the linear
propagator. The principal oscillation pattern analysis (POP;
von Storch et al. 1995; von Storch and Zwiers 1998) ap-
plies an eigenvalue-eigenfunction analysis to the linear
propagator to extract the dominant normal mode oscilla-
tions and the associated stability characteristics of the cor-
responding system. However, normal mode instability is
not the only instability mechanism that operates in a fluid
system. The interactions among waves may also cause
amplitudes of some perturbations to growth temporarily
even in a system that is normal mode stable (Farrell and
Ioannou 1996a, b). Because most observational data are
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nearly stationary, it is hard to associate any normal mode
exponential growth behavior with them. Therefore, the fi-
nite-time instability is widely accepted to play an equal or
more important role as the normal mode instability in cy-
clone genesis, predictability, and data assimilation studies.
In such studies, the singular value decomposition (SVD;
Golub and Van Loan 1996) is applied to the linear pro-
pagator to extract the dominant singular vectors and the
associated finite-time growth rates. Because the linear pro-
pagator plays a central role in empirical normal mode and
finite-time instability problems, how to estimate it from the
data will determine whether the stability characteristics of
the corresponding system can be properly extracted.

Conventionally, the linear propagator A is estimated
using the Yule-Walker equation (Brockwell and Davies
1991):

A=Yt DY O (YO Y (1)) 2)

where superscripts 7 and -1 denote the matrix transpose
and matrix inverse respectively. However, the predictor
and the predictand are generally not perfectly linearly cor-
related; i.c., their lag T autocorrelations are always less than
1. Consequently, the linear propagator so derived generally
underestimates the linear instability of the corresponding
dynamic system. For example, it is well known that POP
analysis can yield only damped oscillation patterns (von
Storch et al. 1995). This means that using the Yule-Walker
equation to estimate the propagator, the observed variabil-
ity cannot be fully maintained and Eq. (1) becomes a stable
linear system. Because of this, some kind of forcing term
must be added to Eq. (1) to maintain the observed vari-
ability in the linear inverse model (Penland and Magorian
1993; Penland and Sardeshmukh 1995) and the Markov
model (Xue etal. 1994; Xue et al. 2000). Therefore, it is de-
sirable to know whether an initial linearization of the origi-
nal data, before the estimation of the linear propagator, can
allow the linear stability characteristics of the correspond-
ing system to be more properly extracted. Furthermore, al-
though it is well known that the singular values of a linear
propagator represent the non-modal averaged amplifica-
tion or decaying rates (finite-time growth rates) of the cor-
responding linear dynamic system in 7 period, the connec-
tion between them is generally established through some
predefined matrix norms. Various studies (Palmer et al.
1998; Kim and Morgan 2002) have shown that different
choices of norms will yield quite different singular vectors.
This seemingly non-uniqueness of singular vectors has
added considerably complexity to the dynamic interpreta-
tion of the corresponding system. Therefore, it is also desir-
able to establish a more direct and clearer connection be-
tween the singular values of a linear propagator and the fi-
nite-time growth rates.

In this study, we introduce two alternative approaches,

which originate from the field of matrix computation, to esti-
mate the propagator, finite-time growth rates and the as-
sociated singular vectors from the data. Rather than using
the autocovariance and the lag-t covariance matrices of the
observed data to estimate the propagator, these approaches
first linearize the relation between the predictor and the
predictand by decomposing them to have the same common
evolution matrix, and then make the estimations. Further-
more, these approaches establish a direct connection be-
tween the singular values of a linear propagator and the
finite-time growth rates of the predictand singular vectors.
The remainder of this paper is organized as follows. Section
2 describes the methodology and properties of the general-
ized singular value decomposition (GSVD; Golub and Van
Loan 1996). Section 3 describes the methodology and pro-
perties of the singular value decomposition (SVD) com-
bined with the cosine-sine decomposition (CSD; Golub and
Van Loan 1996). To compare and evaluate the relative
advantages of different approaches, the Yule-Walker equa-
tion, the GSVD and the SVD-CSD are applied to two syn-
thetic datasets and an observed dataset to estimate the cor-
responding linear propagators and the associated proper-
ties. Section 4 shows the results for two synthetic datasets
consisting of 10 normal mode oscillations plus two different
levels of noise. Section 5 shows results for the monthly mean
sea surface temperature anomalies (SSTA, Kaplan et al.
1998). Section 6 discusses and summarizes this study.

2. THE GENERALIZED SINGULAR VALUE
DECOMPOSITION METHOD (GSVD)

In the matrix computation field, there is a well-known
theorem called generalized singular value decomposition
(GSVD; theorem 8.74 in Golub and Van Loan 1996). It
states that, if F € R G € R %and k, p > ¢, then there ex-
ist two orthogonal matrices, U € R***and V € R?*?, and an
invertible matrix, X € R?*?, such that:

U'FX = C = diag(c1,c) 0<ci << <¢,<1(3)
V'GX =S = diag (), 59 125 >85> >5,20 (4)

where C'C + 8" S = I, and 1, is a ¢ x ¢ identity matrix.
Therefore, a generalized eigenvalue problem (i.e., Gx =
AFx), can be directly solved without the need for forming
G’ G and F' F. Based on this theorem, the proposed GSVD
method for estimating the linear propagator and the associ-
ated properties can be described as follows. For the linear
model of Eq. (1), if m > n, the predictor and the predictand
matrices can be decomposed using the GSVD as:

Y (1) = uCx! (5)

Y(t+ 1) = VSX' (6)
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Because Y (¢) and Y (¢ + 7) have been rearranged to have
the same temporal evolution structure, X' € R" *", the
correlation coefficient between the time series of each
corresponding column vector of U € R”*"and V € R"*"
becomes unity. Therefore, the use of GSVD linearizes the
relation between the predictor and the predictand. The
substitution of Egs. (5) and (6) into Eq. (1) with some
matrix manipulations then yields:

A =VsCc'U" = vzu’ (7)
where
X = diag (01, -, 0,) = sc! = diag (Sl/cl’ D sn/cn) (8)

is a diagonal matrix.

From Egs. (5), (6), and (7), it is clear that the linear
propagator can be directly derived from the GSVD decom-
position of the predictor and the predictand without the need
to form Y(7) Y'(¢) and Y(¢ + 7)Y(¢) first. Furthermore, it is
noted that the left and right singular vectors derived from the
SVD of a given matrix are unique up to multiplication of a
column of the left singular vectors by a unit phase factor and
simultaneous multiplication of the corresponding column of
the right singular vectors by the same unit phase factor if all
the singular values are non-degenerate and non-zero. As
Eq. (7) is also the SVD of A, therefore if the same conditions
are met, the use of GSVD decomposition allows the singular
values and the left and right singular vectors of the propagator
to be simultaneously derived. Because all the singular values
derived from observed data are generally distinct and non-
zero, therefore the linear propagator and the associated sin-
gular vectors derived from the GSVD are also generally
unique. The uniqueness of the GSVD results can also be
readily checked by direct calculation. For example, one can
randomly generate a linear propagator A, then use Eq. (1) and
an arbitrary initial condition to generate the corresponding
Y(¢) and Y(¢ + 7). By applying the SVD to A and the GSVD
to Y(?) and Y(¢# + 1), one can easily see that the GSVD de-
rived linear propagator and singular values are the same as A
and its associated singular values, while the GSVD derived
singular vectors are also the same as those of A except for
possible sign reversal among some of the vectors.

Moreover, we note in Eq. (8) that the i-th singular value
0, is expressed in terms of the ratio between s; and ¢;, which
are the normalized amplitude measures of the i-th singular
vector of Y(¢ + 7) and Y(¢), respectively. Therefore, the i-th
singular value of the propagator directly and clearly repre-
sents the non-modal averaged amplitude amplification or
decay rates of the corresponding linear system in t period in
terms of the L2 norm of the state vector, Y (). Because dif-
ferent variables generally have different spectral character-
istics, it is likely that using different state variable to describe
the same linear system will yield somewhat different linear

propagators and associated singular vectors. This feature
may partially explain why different choices of norms in pre-
vious studies yielded quite different singular vectors. An-
other significant feature of the method is the exact equality
between Y(t + 7) and AY(f); ie., Y(r + 7) = VSX' =
VSC'U'UCX™" = AY(¥). This implies that the variability
of Y(¢ + 1) can be completely reproduced by AY(7). Hence,
when using the GSVD to estimate the linear propagator,
there is no need to add any unknown forcing term to Eq. (1)
to maintain the observed variability.

3. THE SINGULAR VALUE DECOMPOSITION
COMBINED WITH THE COSINE-SINE
DECOMPOSITION METHOD (SVD-CSD)

The above derivation shows that, when data have more
grid points than observations, the GSVD provides a direct
way to estimate the linear propagator and its associated sin-
gular vectors. However, the GSVD theorem requires that k,
P 2 q, therefore it cannot be applied to data with fewer vari-
ables than observations (i.e., m < n). More importantly, all
data are more or less contaminated by noise. Therefore,
when m > n, both the GSVD and the Yule-Walker equation
are very likely to over-fit the linear relation between the
predictor and the predictand and lead to wrong estimations.
To prevent such an over-fitting problem, it is a common
practice to use only the dominant principal components
(PCs) from the principal component analysis (PCA; Preisen-
dorfer and Mobley 1988) of the original data to estimate the
linear propagator. In such cases, the number of retained PCs
will generally be much less than the observations. Therefore,
we need to develop another approach to estimate the linear
propagator and the associated properties for m < n cases.

The SVD-CSD method is basically an extension of the
GSVD method. In line with the derivation of the GSVD
theorem, we first linearize Y(¢) and Y(¢ + 7), by requiring
that they have the same evolution structure. Consequently,
the SVD is applied to their joint matrix to yield:

|: Y(t) :| — QART — leAde” + erArRr
Y(t + 1) QAR Q, AR
_ | YO N Y, (1)
Y, (t + 1) Y.(t + 1)
)

where Q € R*"*?" and R € R"”" are orthogonal, A = diag
(A1, -, 4y), and < min (2m, n). If m > n, the cosine-sine
decomposition (CSD; theorem 2.6.2 in Golub and Van
Loan 1996) can be used directly to decompose Q, yielding
the same decompositions of Y(¢) and Y(¢ + ) as those for
Egs. (5) and (6). However, the CSD can not be directly applied
to Q when m <n. In such cases, Q, A, and R need to be de-
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composed into dominant (subscript ¢) and remainder (sub-
script ) submatrices, based upon how many singular vec-
tors need to be extracted or retained. Because the number of
retained singular vectors (N) cannot exceed the number of
state variables (m), for a given N < m, then Q, A, and R in
Eq. (9) are further decomposed into Qg1, Qaz € K™Y, Q,1,
Q. € RN A, =diag (A1, - Ay), A, = diag Ay 1, -
A), R, e R" N and R, € R"*" "™ In terms of these sub-
matrices, Y(#) and Y(¢ + 7) can also be separated into Y, (%),
Y,(H)and Y, (t + 7), Y, (t + 1), respectively. The or-
thogonal relation between R, and R, implies that Y, (¢)
and Y, (¢ + 1) are also orthogonal to Y, (f) and Y, (¢ + 7).
Hence, Eq. (1) can be divided into a dominant equation and
a remainder equation, i.e.,

Ya(r + 1) = AgYu(s) (10)
Y.t + 1) = AY,(s) an

Due to the fact that Y, () and Y, (¢ + 7) represent the do-
minant linear covariability of Y(¢) and Y(¢ + 1), Eq. (10)
can be viewed as a filtered version of Eq. (1). The CSD is
then used to decompose Q,; and Q, to become:

Q u,c,v,’
|: dl — d1~d dT (12)
Q. U,.S,V,
where Uy, Uy € R”*™, V, € RY Y are orthogonal matri-
ces, Cy and Sg diagonal with c,/c,; + S;/S; = 1. With

these decompositions, Y,(#), Y, (¢ + 7) and A, can be writ-
ten, similar to Egs. (5), (6), and (7), as:

Yy (1) = UnCuVi'AR, = UyCy x X! (13)
Y1 + 1) = UnSiViAR, = UpSX,y (14)
and

Ay = UpS«Cq'Uy" (15)

Consequently, when data have more state variables than
observations, the SVD-CSD still allows for a direct esti-
mation of the linear propagator and the associated pro-
perties from the filtered predictor [Y, (¢)] and predictand
[Yu(¢ + 7)]. Similarly, because the variability of Y, (¢ + 7)
can be completely reproduced by A,Y,(?), one also does
not need to add any unknown forcing term Nto Eq. (10) to
maintain the observed variability.

The SVD-CSD can recover the GSVD results when
m > n and can be applied to m <n cases. Therefore, although
slightly more complicated to implement, the SVD-CSD has
a wider range of applicability. Furthermore, if some kind of
filtering needs to be applied to the original data, the

SVD-CSD has two options to choose from. The first is the
number of retained PCs (m); the second is the number of
retained singular vectors (V). The use of a specific m to fil-
ter data, as in the conventional data analysis, is based on the
explained variance of the original data. However, this kind
of data filtering does not differentiate whether the predictor
and the predictand are linearly related or not. Therefore,
some important linear covariability between the predictor
and the predictand may be filtered out. On the other hand, if
all the PCs of the original data are retained, the SVD-CSD
can still allow data filtering by selecting N < m. In such
cases, one can assure that the dominant linear covariability
between the predictor and the predictand will not be un-
intentionally filtered out. As for the Yule-Walker equation,
because the retained singular modes must be the same as the
number of state variables, data filtering can only be applied
by choosing a subset of PCs (i.¢., choosing a specified m and
N = m). Therefore, the SVD-CSD offers a more selective
data filtering mechanism for the estimation of the linear
propagator and the associated properties.

4. THE SYNTHETIC NORMAL MODE
OSCILLATIONS

In the above derivations, we learned that both the GSVD
and the SVD-CSD are capable of deriving the linear pro-
pagator and the associated properties directly from the pre-
dictor and the predictand matrices. However, their perfor-
mance in estimating the linear propagator and the associated
singular values should be compared with the conventional
Yule-Walker equation to evaluate their usefulness. In this
section, we apply all these methods to two synthetic datasets
with known normal mode growth rates to see if they can
faithfully extract the stability characteristics from the data.
These synthetic datasets are constructed as a superposition
of 10 normal mode oscillations contaminated by two dif-
ferent levels of random noise on the global tropics between
30°S - 30°N with 5° x 5° resolution, that is:

10
z(x, y, t) = ZCOS(/C/.X +1Ly - Gft)ei” + N, o)
J=1 (16)

where /N (0, @) denotes random noise with zero mean and
S
180

standard deviation @ = 0.1 or a = 1, k, = ;=

[ +2 =D [+ 3( =D
180 Y 600
10,4; = -0,-0.001, ---, -0.009 is the growth rate of the jth
normal mode, x = 0, 5, -+, 350, 355,y = -30,-25, ---, 25,30
andr = 1,2, ---, 600. It is noted that each of the dataset con-
sists 0f 936 time series (m = 936), with 600 time steps (n =
600) in each series, therefore the GSVD restriction is satis-
fied (i.e., m > n). Furthermore, because these 10 modes are

with j =1, ...,
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orthogonal and each 4, is small, the finite-time growth rate
can be approximately taken as 1 + A,z if 7 is also small.
Therefore, the estimated finite-time growth rates from the
GSVD, the SVD-CSD and the Yule-Walker equation can be
compared to these known values to evaluate their validity.
Results from the weakly random noise contaminated
synthetic dataset (i.e., @ = 0.1) are shown in Figs. 1 and 2. In
Fig. la, one clearly notes that the explained variance of the
first 20 PCs are well above those of the rest of PCs. Because
the signal part of the synthetic time series constitutes 10
normal mode oscillations and each normal mode can be
decomposed into a pair of equal variance PCs, this result
indicates that the PCA is very effective in differentiating
signal from noise in the weakly random noise contaminated
data. Figure 1b shows the estimated lag-1 (r = 1) finite-time
growth rates using both the GSVD and the Yule-Walker
equation methods. Because the GSVD and the Yule-Walker
equation yield A € R Cand A € R7* P respectively,
the maximum number of singular vectors can be extracted
from them are 600 and 936, respectively. However, the
Yule-Walker equation needs to calculate the inverse of the
auto covariance matrix. When data have fewer observations
than grid points, the resultant auto covariance matrix is
singular. Hence, with the Yule-Walker equation, one en-

counters the rank deficiency problem in matrix inversion
and yields unrealistically large finite-time growth rates com-
pared to the GSVD. Conversely, results from the GSVD
showed a nearly anti-symmetrical distribution between the
growing and decaying modes. Because C and S, as shown in
Egs. (5) and (6), are arranged in ascending and descending
order between 0 and 1, respectively, this anti-symmetrical
distribution is what one would expect when the variability
of Y(¢ + 1) can be faithfully reproduced by AY(?). Never-
theless, because the GSVD does not have any data filtering
mechanism to differentiate signal from noise, it inevitably
overestimates the linear relation between the predictor and
the predictand. Therefore it is also incapable of yielding the
correct results (i.e., the solid line significantly deviates from
the diamond symbols).

Figure 2 shows the SVD-CSD and the Yule-Walker
equation estimated lag-1 growth rates for PCA filtered data.
The SVD-CSD results are calculated using 20 retained PCs
(m = 20) and retained singular vectors, N = 5, 10, 15, 20,
respectively. The Yule-Walker equation results are calcu-
lated using retained PCs m = 5, 10, 15, 20, respectively. One
observes clearly that the Yule-Walker equation always over-
estimates the decay rates, while the SVD-CSD yields results
overall quite similar to the true decay rates. However, when
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Fig. 1. The PCA and the estimated lag-1 (7 = 1) finite-time growth rates results of the weakly random noise contaminated synthetic dataset (standard
deviation « = 0.1). (a) is the explained variance as a function of PC modes from PCA of the data. (b) is the estimated finite-time growth rates as a func-
tion of the singular vectors using the Yule-Walker equation (dashed line) and the GSVD (thick solid line), respectively. The diamond symbols repre-
sent the lag-1 finite-time growth rates derived from the normal mode growth rates of the synthetic data (i.e., 1 +4)).
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Fig. 2. The estimated lag-1 finite-time growth rates results of the weakly random noise contaminated synthetic dataset using both the SVD-CSD (thick
solid line) and the Yule-Walker equation (dashed line) methods. (a), (b), (c), and (d) correspond to results from the SVD-CSD using 20 PCs (m = 20)
and retained singular vectors N=15, 10, 15, 20 and results from the Yule-Walker equation using 5, 10, 15, and 20 PCs (m =5, 10, 15, 20), respectively.
Similarly, The diamond symbols in each panel represent the lag-1 finite-time growth rates derived from the normal mode growth rates of the synthetic

data (i.e., 1 +4)).

the retained singular vectors are equal to the retained PCs
(i.e., m = N = 20), the growth rates of the first few singular
vectors tend to be overestimated. Note that the retained PCs,
although being PCA filtered, are still not noise-free. When
m = N, because the SVD-CSD is unable to apply further fil-
tering to the data, the overestimation of the linear relation
between the predictor and the predictand inevitably leads to
the overestimation of the growth rates.

Figures 3 and 4 show results from the moderately ran-
dom noise contaminated synthetic dataset (i.e., ¢ = 1). In
Fig. 3a, one notes that all PCs of the @ = 1 data have greater
explained variance than those of the @ = 0.1 data. Further-
more, signal and noise parts of the spectra are not as clearly
separated as those of the & = 0.1 case. These results indicate
that the PCA is ineffective in differentiating signal from
noise in moderately random noise contaminated data. Simi-
lar to Fig. 1b, Fig. 3b also shows clearly that both the GSVD
and the Yule-Walker equation methods are unable to esti-
mate the finite-time growth rates correctly from original
data. These results strongly suggest that one always needs to
apply some kinds of data filtering to correctly estimate the
linear propagator and the associated properties.

Figure 4 shows the same as Fig. 2, except for results of
the @ =1 case. One notes that the overestimation of the decay
rates by the Yule-Walker equation is more serious than that

in the a = 0.1 case. On the other hand, the SVD-CSD still
yields results quite similar to the true decay rates for retained
singular vectors up to 15. When m = N = 20, because the
noise level is relatively high and the SVD-CSD is unable to
apply further filtering to the data, the overestimation of the
linear relation between the predictor and the predictand then
leads to a more serious overestimation of the growth rates
for the first few singular vectors. These results clearly sug-
gest that the selective data filtering capability of SVD-CSD
can yield a more correct estimation of the propagator and the
associated finite-time growth rates than can the Yule-Walker
equation. It is noted that similar analyses were also applied
to various values of 7. Their results (not shown) are quite
similar to those of 7 = 1. Therefore, the above conclusions
are valid not just for 7 = 1 only.

5. SEA SURFACE TEMPERATURE ANOMALIES

In this section, all three methods are applied to Kaplan’s
SSTA data (Kaplan et al. 1998) to evaluate their perfor-
mance. Kaplan’s SSTA data consist of the global gridded
(5° x 5°) monthly mean SSTA from January 1856 to March
2003 (they can be found in http://ingrid.ldeo.columbia.edu
/SOURCES/.KAPLAN/.EXTENDED). It was constructed
using optimal estimation in the space of 80 PCs to interpo-
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late ship observations from the UK Met Office database
(Parker et al. 1994). The data after 1981 represents the pro-
jection of the NCEP OI analysis (which combines ship ob-
servations with remote sensing data) by Reynolds and Smith
(1994) on the same set of 80 PCs. In this study, only tropical
ocean (27.5°S - 27.5°N) data between the years 1950 and
2002 are used.

The results (not shown) from applying the GSVD and
the Yule-Walker equation to the original data are similar to
those in Fig. 1 and still are unable to yield correct esti-
mations. The estimated maximum lag-1 finite-time growth
rates for the PCA filtered Kaplan’s SSTA from both the
SVD-CSD (m = 80) and the Yule-Walker equation as a
function of the retained singular modes are shown in Fig. 5.
Results from both the Yule-Walker equation and the SVD-
CSD show monotonically increasing growth rates with re-
tained singular vectors. Nevertheless, those from the Yule-
Walker equation have lower growth rates than those for the
SVD-CSD. As can be seen in Fig. 5b, no instability can be
found in the results from the Yule-Walker equation for re-
tained singular vectors less than 4. Does the Yule-Walker
equation underestimate the growth rates? Figure 6 shows the

~
o
=

estimated finite-time growth rates for the PCA filtered Ka-
plan’s SSTA from both the SVD-CSD and the Yule-Walker
equation as a function of the singular vectors for (a) 5, (b)
10, (c) 15, and (d) 20 retained singular vectors, respectively.
Note that the growth rate curves from the Yule-Walker
equation are predominantly asymmetrical towards the decay
states (growth rates < 1), while those from the SVD-CSD
are more anti-symmetrical about the neutral state (growth
rate = 1). The results of the Yule-Walker equation indicate
that the variability of Y(¢# + 1) cannot be well maintained by
AY(?). To show this is indeed the case, the ratios between the
total variance of AY(¢) and Y(z + 1) are calculated. They are
0.96, 0.94, 0.93, and 0.92, respectively. These results show
the variability of Y(¢ + 1) is not fully recovered by AY(?)
when the Yule-Walker equation is used to estimate A. Fur-
thermore, the damping of the variability of Y(z + 1) in-
creases as more PCs are used. Conversely, the anti-symmet-
rical distribution results of the SVD-CSD are what one
would expect when the variability of Y, (# + 1) can be faith-
fully reproduced by A,Y, (?). These results clearly suggest
that, due to the incapability of differentiating linear related
and unrelated variability between the predictor and the pre-
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PCs, and from the Yule-Walker equation.

dictand, the Yule-Walker equation may overly underesti-
mate the growth rates. As for different choice of 7 (results
are not shown), although the estimated growth rates are
generally larger than those of 7 = 1, the conclusions are
similar.

The differences between these two approaches are
shown not only in the growth rates but also in the singular
vectors. Because the original data has been PCA filtered, the
singular vectors so derived are linear combinations of the
retained PC modes. Figure 7 shows the optimal singular
vectors (the most unstable singular vectors) derived by the
Yule-Walker equation as a function of the retained PC modes
for m = N =2, 4, -, 20, respectively. As all the corre-
sponding optimal growth rates are close to unity, the pat-
terns between the predictor and the predictand are very simi-
lar for each given m. Furthermore, the optimal mode con-
stituents increase as more PCs are retained. However, the
relative contribution of each PC mode to the optimal mode
does not show a dramatic change with the increase of the
retained PCs. This is because the Yule-Walker equation is
covariance based. The singular vectors so derived not only
depend on the linear relation between the predictor and the
predictand but also on their variance. Since most variance of
the predictor and the predictand is explained by the first few
PCs, the covariance structure between the predictor and the
predictand is also primarily controlled by these few PCs.

Therefore, even though the linear relationship may change if
more PCs are retained, the optimal modes so derived are
relatively insensitive to the variation of the retained PCs.

Figure 8 shows the same plots as Fig. 7, except for re-
sults from the SVD-CSD with m = 80. The resemblance
between patterns of the predictor and the predictand can
still be clearly observed. However, because they are derived
using 80 retained PCs, the optimal mode constituents are no
longer restricted only to PC modes less than the retained
singular vectors. Furthermore, the relative contribution of
each PC mode to the optimal mode gradually shifts toward
higher PC modes, as more singular vectors are retained (i.e.,
N increases). Because the SVD-CSD has linearized the re-
lation between the predictor and the predictand before
estimating the linear propagator, the optimal modes thus
derived are chosen solely according to which combination
of the empirical orthogonal functions [EOFs, i.e., column
vectors of Q in Eq. (9)] of the joint predictor and the pre-
dictand matrices will yield the largest singular value. There-
fore, the structures of the SVD-CSD derived optimal modes
depend strongly on how many singular vectors (or equiva-
lently, how many column vectors of Q) are retained.

6. SUMMARY AND DISCUSSION

The propagator of a linear model plays a very important
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role in normal mode and finite-time instability problems. Its
estimation will affect whether the linear stability characteris-
tics of the corresponding dynamic system can be properly
extracted. Conventionally, the propagator is estimated using
the Yule-Walker equation with the auto and lag covariance
matrices of the predictor and the predictand. However, be-
cause nonlinear and noise information of the predictor and
the predictand may also be included in forming these co-
variance matrices, the linear propagator thereby derived is
likely to underestimate the linear relationship between them.
Therefore, in this study the GSVD and SVD-CSD methods
have been introduced as alternatives to the Yule-Walker
equation to estimate the linear propagator and its associated
properties for a linear model. In accord with the basic con-
cept of a linear model, both methods linearize the relation
between the predictor and the predictand by decomposing
them to have a common evolution structure and then make
the estimations. With these decompositions, the linear pro-
pagator and the associated singular vectors can be simul-
taneously derived. Furthermore, the connection between the
finite-time amplitude growth rates and the singular values of
the propagator are clearly established. Both the GSVD and
the SVD-CSD, together with the Yule-Walker equation, are
applied to two synthetic datasets and Kaplan’s SSTA data-
sets to evaluate their respective performances. The results
show that, because of the linearization and flexible filtering
capabilities, the SVD-CSD allows the propagator, the fi-
nite-time growth rates, and the associated singular vectors to
be more appropriately estimated.

It is noted that the application of the SVD-CSD is not re-
stricted to linear models where the predictor and the pre-
dictand use the same field variables. Therefore, it can be ap-
plied not only to linear statistical prediction problem, but
also to bias correction or statistical downscaling problems.
As for data assimilation and related problems in numerical
weather prediction, because the linear propagator is time de-
pendent, the applicability of the SVD-CSD to these prob-
lems is not clear and needs further studies.
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