Detrital Zircons U-Pb Age and Hf Isotope from the Western Side of the Taiwan Strait: Implications for Sediment Provenance and Crustal Evolution of the Northeast Cathaysia Block

  • Author(s): Yonghang Xu, Qinqin Sun, Liang Yi, Xijie Yin, Aijun Wang, Yunhai Li, and Jian Chen
  • DOI: 10.3319/TAO.2014.02.18.01(TT)
  • Keywords: Detrital zircon, U-Pb age, Hf isotope, Provenance, Crustal evolution, Cathaysia Block
Abstract

In situ detrital zircons U-Pb and Hf isotope analyses from the Min and Jiulong River of Southeast China were carried out to identify sediment provenance and crustal evolution of the northeast Cathaysia Block. Detrital zircons from both rivers displayed similar spectrum peaks at 236, 155, and 110 Ma, but samples from the Min River displayed a distinct Caledonian peak (ca. 460 Ma) and contained more Precambrian particles (ca. 1.8 Ga), which likely stemmed from the upstream area of the Wuyishan terrain. Interestingly, because Taiwan Island cannot supply Caledonian and Paleoproterozoic detrital materials and because the Ou and Jiulong River also lack components from these two populations, it is highly likely that the sediment in the western Taiwan coast partially originates from the Min River. The sediments from the Min River in Fujian are also considered the most likely source of the beach sands of western Taiwan (Chen et al. 2006). However, we stress that the ~1.8 Ga age source in the western Taiwan sediments was found and recognized. Combining U-Pb dating and Hf-isotope suggests that the northeast Cathaysia Block contains some Neoarchean detrital zircons, which derived from the incorporation of juvenile mantle materials and re-melting of ancient crustal substances. The wide ranges of εHf(t) value in the Paleoproterozoic and Neoproterozoic demonstrate the re-melting of ancient crustal materials with minor juvenile mantle materials. Phanerozoic zircons stemmed from re-melting and recycling of Proterozoic crustal materials with or without the invasion of juvenile mantle-derived magmas.

Read 881 times