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ABSTRACT

This study used a new set of zircon and apatite fission track ages to quantitatively document the tectonic evolution and 
cooling histories of the Qiangtang block of the central Tibetan Plateau. The results indicate that the Qiangtang block under-
went three cooling stages at ~148 - 73, ~50 - 20, and ~20 - 0 Ma. The three-stage cooling history and tectonic exhumation were 
controlled by the closure of the Bangong-Nujiang Suture during the Late Jurassic-Late Cretaceous, the India-Asia collision in 
the Paleogene, and the underthrusting of the India Plate during the Late Cenozoic. In addition to revealing the Late Jurassic-
Late Cretaceous cooling events, the annealing patterns of the zircon fission track samples indicate different burial depths, 
which may help identify the Jurassic basin characteristics of the Qiangtang block. The apatite fission track (AFT) ages range 
from 60 ± 5 Ma to 26 ± 3 Ma, with a mean age of 44 Ma. These ages indicate that the Cenozoic exhumation of the Qiangtang 
block may have started in the Eocene. Inverse modeling of the AFT data shows that the Qiangtang block had a relatively slow 
cooling rate of approximately 0.5 - 1°C Myr-1 from 50 to 20 Ma. After ~20 Ma, most of the samples show evidence for a rapid 
cooling stage with a cooling rate of 4 - 6°C Myr-1. 
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1. INTRODUCTION

The Qiangtang block is located in the central Tibetan 
Plateau and is bounded by the Jinshajiang suture to the north 
and the Bangong-Nujiang suture to the south (Dewey et al. 
1988; Yin and Harrison 2000) (Fig. 1). Because of its unique 
geographic and geological setting, the Qiangtang block has 
attracted geologists from around the world. Recent studies 
have included studies of the crystalline basement (Wang 
and Wang 2001; Tan et al. 2009; Wang et al. 2009; Guynn 
et al. 2012) and crust structure (Rodgers and Schwartz 1998; 
Unsworth et al. 2004; Li et al. 2006; Zhang et al. 2011), the 
metamorphic rocks of the central Qiangtang block (Kapp et 
al. 2003; Zhang et al. 2006; Zhai et al. 2007, 2011), Meso-
zoic volcanic rocks (Wang et al. 2008; Fu et al. 2010; Zhai 
et al. 2010; Zhang et al. 2011), Cenozoic volcanic rocks (Mo 

et al. 2006; Ding et al. 2007), oil shale (Fu et al. 2011a, b)  
and petroleum exploration in the Mesozoic basin (Li et al. 
2001; Wang et al. 2001; Wang et al. 2004; Guo et al. 2008; 
Wang et al. 2009). Sedimentary studies show that the for-
mation and closure of the Mesozoic Qiangtang basin were 
closely connected with the tectonic evolutionary processes 
in the Bangong-Nujiang Ocean (Wang et al. 2004, 2009; 
Zhang et al. 2009). Evidence from thermochronology and 
Cenozoic volcanics indicates that the surface uplift of the 
Qiangtang block was mainly controlled by the India-Asia 
collision (Wang et al. 2007; Wang et al. 2008).

However, some questions remain unanswered: (1) 
Was Qiangtang a foreland basin (Li et al. 2001; Wang et al. 
2001) or passive marginal basin (Wang et al. 2004; Guo et 
al. 2008; Wang et al. 2009) during the late Triassic-Jurassic 
period? The late Triassic-Jurassic basin in Qiangtang is an 
important marine basin with good petroleum exploration 
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prospects. However, the characteristics of the late Triassic-
Jurassic basin in Qiangtang has been a controversial issue 
and has had an enormous impact on the present direction of 
petroleum exploration in Qiangtang. (2) Did cooling events 
and tectonic exhumation occur in the Qiangtang block 
during the Qiangtang-Lhasa collision? Some studies have 
shown that the major exhumation in central Tibet occurred 
in the Cenozoic, but this may not be correct. A growing 
number of studies provide evidence for early exhumation 
during the late Mesozoic period (Murphy et al. 1997; Wang 
et al. 2008; Li et al. 2013). (3) How was the Qiangtang block 
exhumed during the Cenozoic period? Because the relevant 
data are lacking, the exhumation history remains unclear. 

This study uses zircon fission-track (ZFT) and apatite 
fission-track (AFT) analysis of the Qiangtang block to an-
swer the above questions and discusses the Late Mesozoic 
and Cenozoic geological evolution of northern Tibet. Fis-
sion track dating is a good thermo-chronological method 
for recording the annealing and cooling events caused by 
tectonic movement. The cooling and exhumation history 
can be reconstructed based on these fission-track dates, re-
vealing the geological evolution of a site. Researchers have 
previously used fission track dating to resolve numerous 
geological problems in tectonothermal evolution (Fellin 
et al. 2006; Liu et al. 2009), collisional orogeny (Liu et al. 

2000, 2001), magmatic activity (Yang et al. 1995, 2003), 
crust exhumation and mountain uplift (Jain et al. 2000; 
Garver et al. 2005; Wang et al. 2007; Lee et al. 2010), fault 
action (Tagami 2005; Yuan et al. 2006), and provenance 
studies (Carter and Moss 1999). Although many researchers 
have recently reported ZFT dates for the Tibetan Plateau, 
the thermo-chronological research on the Qiangtang block 
remains relatively scarce. This study provides important in-
formation to help understand the geological evolution of the 
Qiangtang block.

2. GEOLOGICAL AND TECTONIC SETTING
2.1 Regional Tectonic Setting

The Tibetan Plateau consists of a tectonic collage of 
continental terranes. From north to south, the Tibetan Plateau 
consists of the Kunlun-Qaidam block, the Hoh Xil-Songpan 
block, the Qiangtang block, the Lhasa block, and the Hima-
laya block. These terranes are separated by east-striking su-
ture zones of late Paleozoic to Cenozoic age (Fig. 1) (Allègre 
et al. 1984; Dewey et al. 1988; Yin and Harrison 2000).

The Kunlun-Qaidam block is located in the northern 
part of the Tibetan Plateau and is bounded to the north by 
the Tarim block and to the south by the Hoh Xil-Songpan 
block. The Kunlun-Qaidam block primarily consists of  

Fig. 1. Tectonic map of the Tibetan Plateau and the Digital elevation model (DEM) of the study area. The yellow box indicates the sampling loca-
tion. Data for the DEM come from the Shuttle Rader Topography Mission (SRTM). The white lines represent the tectonic boundary. The Qiangtang 
block includes three sub-structure areas: northern Qiangtang, southern Qiangtang, and the Central zone. KQ: Kunlun-Qaidam block. HS: Hoh Xil-
Songpan block. QT: Qiangtang block. LS: Lhasa block. JSS: Jinshajiang suture. BNS: Bangong-Nujiang suture. IYS: Indus-Yalung suture.
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Proterozoic basement rocks, middle Paleozoic granitic 
rocks, Devonian to Permian-Triassic carbonate rocks, and 
Triassic turbidite rocks (Jolivet et al. 2001). After the Late 
Triassic, continental deposits are dominant. The Mid-Juras-
sic slow cooling recorded by AFT (Jolivet et al. 2001) sug-
gests there were no intense tectonic activities in this region. 
The Cretaceous to Cenozoic sediments are generally absent, 
and consist of fault depression deposits.

The Hoh Xil-Songpan block is located in the eastern 
part of the Tibetan Plateau and is mainly covered by Trias-
sic flyschoid sediments. Paleozoic carbonate rocks and the 
Jurassic clastic rocks are relatively few and mainly appear 
in the eastern part of the Hoh Xil-Songpan block. The Kand-
ing complex of 0.8 - 1 Ga may represent the basement rocks. 
Mesozoic granites and Tertiary granites are widely exposed 
in this region as a result of Triassic orogenetic movements 
and the Cenozoic India-Asia collision, respectively. The 
Triassic orogeny is contemporaneous with the Indosinian 
tectonism of Indochina and caused the fold deformation of 
the Triassic strata and the closure of the Paleo-Tethys Ocean 
(Roger et al. 2010).

During the Permo-Triassic period, the Kunlun, Hoh 
Xil-Songpan, and Qiangtang blocks were accreted to the 
southern margin of the Asia plate (Dewey et al. 1988). The 
Golmud granodiorite of approximately 240 Ma (Roger et al. 
2010) marked the onset of the subduction during the Early 
Triassic. The ophiolitic fragments along the Jinshajiang su-
ture and the thick Triassic flysch of southern Kunlun are 
remnants of the Kunlun-Qiangtang collision (Harris et al. 
1988). This collision resulted in a regional uplifting in the 
Jinshajiang suture, and the rocks cooled to below 300°C by 
the Late Triassic (Reid et al. 2005).

The Lhasa block is situated in the central-southern part 
of the Tibetan Plateau. The zircon U-Pb age of 787 ± 9 Ma 
from the oldest metamorphic rocks indicates a Neoprotero-
zoic crystalline basement exists in the Lhasa block (Hu et al. 
2005). The Paleozoic sedimentary strata in the Lhasa block 
are rare and primarily consist of Carboniferous clastic rocks 
and Ordovician, Silurian, and Permian limestone. The Tri-
assic strata consist of limestone and volcanic rocks and are 
mainly exposed in the southern margin of the Lhasa block. 
The Jurassic rocks are characterized by clastic rocks and 
ophiolitic assemblages. The Cretaceous strata are widely 
exposed in the Lhasa block, indicating detrital deposition 
(Leier et al. 2007).

In the Late Jurassic-early Cretaceous period, the 
Qiangtang and Lhasa blocks collided along the Bangong-
Nujiang suture (Matte et al. 1996; Yin and Harrison 2000). 
This collision resulted in volcanic activity and changed the 
depositional facies from marine to nonmarine in the Bang-
gong-Nujiang zone (Kapp et al. 2007). 

The Indus-Yalung suture is the boundary between the 
Indian Plate and the Lhasa Terrane. The India-Asia colli-
sion at approximately 52 - 40 Ma (e.g., Searle et al. 1997; 

Rowley 1998) resulted in the closure of the Yalung-Zangpo 
suture zone and the surface uplift of Tibet. The huge volume 
of Cenozoic igneous rocks in this area is also attributed to 
the India-Asia collision in Tibet (Wanming 1991; Arnaud et 
al. 1993; Tapponnier et al. 2001).

2.2 Tectonic Setting of the Study Area

Based on geophysical data, depositional characteris-
tics, and surface geology, the Qiangtang block is usually 
divided into three units: the northern, central, and southern 
zones (Fig. 1) (Wang et al. 2001; Zhao et al. 2001; Wang et 
al. 2004, 2009). The ancient metamorphic crystalline base-
ment of the Qiangtang block consists of gneiss containing 
sillimanite and kyanite, which are widely exposed along the 
central zone and have yielded a U-Pb SHRIMP zircon age 
of approximately 1780 - 1666 Ma (Wang and Wang 2001; 
Tan et al. 2009; Wang et al. 2009). Based on sedimentary 
characteristics, the stratigraphic contact, and the degree of 
deformation and metamorphism, the sediments covering the 
Qiangtang block can be classified into four structural layers 
(Fig. 2): Devonian to Permian, Lower Triassic to Upper Tri-
assic, upper Triassic to Jurassic, and Cretaceous to Tertiary. 
These four layers correspond to four different development 
stages of the Qiangtang block: a marginal basin, a foreland 
basin, passive continental margin rifting and a depression 
basin, and a fault depression. The Qiangtang-Asia colli-
sion ended the Neopaleozoic marginal basin formation and 
caused the initiation of the Triassic foreland basin. During 
the Norian Age, most parts of the Qiangtang block were 
uplifted, and paleo-weathering occurred widely in the area 
(Wang et al. 2004, 2009; Wang et al. 2007; Fu et al. 2010). 
The paleo-weathering crusts marked the end of the Trias-
sic foreland basin (Fu et al. 2010). The onset and end of 
the Jurassic passive continental margin rifting and depres-
sion basin were controlled by the opening and closing of 
the Banggong-Nujiang Ocean, respectively. Because of the 
subduction and collision of the Lhasa-Qiangtang block, the 
Qiangtang block entered a fault-depression evolution stage 
during the Late Jurassic and Early Cretaceous (Zhang et al. 
2009). During the Cenozoic India-Asia collision, the eleva-
tion of the Qiangtang block gradually increased and it be-
came a plateau.

2.3 Stratigraphic Features

The Late Paleozoic strata are dominated by marine 
carbonate deposits and unconformably overlap with the 
Pre-Devonian metamorphic basement (Fig. 2). The Triassic 
strata consist mainly of the Kanglu, Kangnan, Xiaochaka, 
and Nadigangri formations. The first 3 formations are char-
acterized by shallow marine clastic rocks and represent the 
Triassic foreland basin deposits (Wang et al. 2009). The 
Nadigangri Formation unconformably overlaps with the  
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Xiaochaka Formation and consists of Late Triassic volcanic 
and volcanic-clastic rocks that have a U-Pb SHRIMP zircon 
age of approximately 220 - 205 Ma (Wang et al. 2009; Fu 
et al. 2010). The Nadigangri Formation marks the start of 
the Late Triassic to Jurassic rifting and depression basin. 
The widely exposed Jurassic strata mainly consist of the 
Quemoco, Buqu, Xiali, Suowa, and Xueshan formations, 
which represent the Jurassic depression-basin deposits and 
consist of lower clastic rocks, middle carbonate rocks, and 
upper evaporate rocks and clastic rocks. The Cretaceous to 
Tertiary strata exhibit a combination of fluvial and lacus-
trine deposition.

To show the Late Mesozoic to Cenozoic tectonic evo-
lution, especially the thermochronological responses to the 
Qiangtang-Lhasa and India-Asia collisions, this study uses 
the Late Triassic Xiaochaka, Nadigangri, and Early-Middle 
Jurassic Quemoco formations as the sampling strata in the 
Qiangtang block (Figs. 2, 3, 4, and 5). There are three main 
reasons for this sampling approach: (1) these formations 
were relatively widely exposed in the Qiangtang block; (2) 
as detrital rocks and volcanic-clastic rocks, these formations 
contain sufficient zircon and apatite minerals to conduct 

the experimental measurements; and (3) the rocks are old 
enough to record the cooling events induced by the Qiang-
tang-Lhasa and India-Asia collisions.

3. SAMPLING AND ANALYSES
3.1 Sampling

Fourteen samples were collected from the Xiaochaka, 
Nadigangri, and Quemoco formations (Table 1). The rock 
types of these samples vary from sandstone and rhyolite to 
tuff. Samples were taken from different sites in Qiangtang: 
four samples from the northern part of northern Qiangtang 
(Q1, 2, 3, and 4; see Fig. 3), two samples from the south-
ern part of northern Qiangtang (Q5 and 6; see Fig. 4), one 
sample from the central zone of Qiangtang (Q7; see Fig. 4), 
two samples from the northern part of southern Qiangtang 
(Q8 and 9; see Fig. 4), and five samples from the central part 
of northern Qiangtang (Q10, 11, 12, 13, and 14; see Fig. 5). 
The elevation of all samples was measured using a portable 
GPS instrument. 

3.2 Laboratory Processing

The individual mineral selection and fission-track dat-
ing were carried out at the China University of Geosciences. 
Conventional crushing, magnetic, and heavy liquid separa-
tion techniques were used to recover apatite and zircon frac-
tions from the rock samples. The fission-track ages of the 
zircons and apatites were determined by the external detec-
tor method (Hurford and Green 1983). Apatite grains were 
mounted in epoxy resin and polished to expose the internal 
grain surface. Spontaneous tracks were revealed by etching 
using 6.6% HNO3 for 30 s at 25°C. The zircons were mounted 
on Teflon discs, ground and polished, and etched in a eutectic 
mixture of NaOH and KOH (Gleadow et al. 1976) at 210°C 
for 12 - 15 h (Yamada et al. 1995, 1998; Tagami and Shi-
mada 1996). The muscovite external detectors were etched 
in 40% HF for 20 min at 25°C to reveal the induced fission 
tracks. All samples were irradiated using a thermal-neutron 
nuclear reactor at the China Institute of Atomic Energy, 
Beijing. The ages of all samples were calculated using the 
Zeta calibration method (Hurford and Green 1983; Hurford 
1990), with Zeta values of 85.4 ± 4 for ZFT and 389.4 ± 19.2  
for AFT. Fission tracks and track lengths were counted and 
measured using an OLYMPUS microscope with a 100× im-
mersion objective. Table 1 lists the analytical data, with the 
ages given with an error of ±1σ. 

4. RESULTS
4.1 Zircon Fission-Track Results

The fourteen zircon samples yielded a wide range of 
central ages ranging from 199 ± 18 to 54 ± 8 Ma (Table 1). 
The chi-square probability of a sample is a good indicator of 
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Fig. 3. Geological sketch map and the 
binomial peak-fitting results (after Bran-
don, 1996) of the ZFT samples from the 
northern part of northern Qiangtang. 1: 
Quaternary. 2: Tertiary. 3: Jurassic. 4: 
Triassic. 5: Fault line. 6: Strata boundary. 
7: Unconformity. 8: Sampled location. 
In the geological sketch map, the black 
spots represent the sample location, and 
the sample number and the AFT ages are 
situated on the left and the right of them. 
In the binomial peak-fitting results, the 
left columns are the radial plots, and the 
right columns are the probability density 
plots. On the radial plots, dots represent 
ZFT grain ages and black lines represent 
individual peaks. The orange line repre-
sents the strata age. N is the number of the 
zircon grains. The solid black lines in the 
probability density plots represent the ob-
served grain-age distribution, and yellow 
areas represent individual peaks.

Fig. 4. Geological sketch map and the binomial peak-fitting results of the ZFT samples from the central zone of the Qiangtang block. 1: Quaternary. 
2: Tertiary. 3: Jurassic. 4: Triassic. 5: Permian. 6: Mesozoic granites. 7: Fault line. 8: Strata boundary. 9: Unconformity. 10: Sampled location.
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whether the single-grain ages of a sample are homogeneous. 
If the single-grain age distributions pass the χ2 test, they 
are considered homogeneous (Galbraith and Green 1990). 
Thirteen ZFT samples (except for sample Q5) failed the χ2 
test, indicating that they contain heterogeneous single-grain 
ages. Therefore, the central age is only an average age of the 
grains in each sample; it cannot represent a cooling event 
and is virtually meaningless (Fellin 2006). To better evalu-
ate the geological significance of these data, the grain ages 
of each sample must be decomposed into a set of grain-age 
components or peaks. At present, the best method are the bi-
nomial peak-fitting methods of Galbraith and Green (1990) 
and Brandon (1996). Using these methods, this study obtains 
the best-fit peak ages of the ZFT ages and divides them into 
four groups: P1, 2, 3, and 4 ( Table 1 and Figs. 3, 4, and 5).

Previous studies show that many factors (including ra-
diation damage, U concentration, time, temperature, cool-
ing rate, and pressure) can affect the annealing properties 
of ZFT (Bernet and Garver 2005). Of these factors, radia-
tion damage has the greatest effect. Zircon grains exposed to 
significant radiation have a low annealing temperature and 

are called low retentive zircons (LRZs). Zircons with low 
radiation damage have a high annealing temperature and are 
called high retentive zircons (HRZs) (Garver et al. 2005). 
The effective annealing temperatures of the LRZs and HRZs 
represent the upper and lower bounds of the partial annealing 
zone (PAZ) of ZFT, respectively. Therefore, a fully annealed 
ZFT sample will have only one peak age when quickly pass-
ing through the PAZ of ZFT and variable peak ages when 
slowly passing through the PAZ of ZFT. In previous studies, 
the temperatures of the PAZ for the ZFT are incompatible. 
For simplification, this study uses ~300 - 180°C as the PAZ 
ZFT temperature range.

4.2 Apatite Fission-Track Results

The central ages of the fifteen apatite samples range 
from 60 ± 5 to 26 ± 3 Ma (Table 1 and Figs. 3, 4, and 5). All 
the central ages of the AFT samples are lower than their stra-
ta ages, suggesting they were fully annealed after deposition. 
The central ages of most of the samples range from 55 to 34 
Ma, and the average age is approximately 43 Ma. Therefore, 

Fig. 5. Geological sketch map and the 
binomial peak-fitting results of the ZFT 
samples from the central part of northern 
Qiangtang. 1: Quaternary. 2: Tertiary. 3: 
Jurassic. 4: Triassic. 5: Cenozoic volca-
nics. 6: Fault line. 7: Strata boundary. 8: 
Sampled location. 9: The zircon U-Pb age 
of the Cenozoic volcanics.
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the main cooling event occurred during the Eocene. Almost 
all the AFT samples (except Q2, 3, 12, and 13) passed the χ2 
test, indicating a relatively rapid Cenozoic cooling rate.

To interpret the AFT data accurately, the samples with 
adequate numbers of track lengths (> 50) and single popula-
tions of grain ages were modeled using the annealing model 
of Ketcham et al. (1999). To avoid introducing artifacts, all 
the measured tracks must be confined tracks and all the con-
fined tracks must be countered in the fission-track analysis. 
We used a starting point of ~80 Ma at 120 ± 40°C in the 
AFT modeling because the maximum individual-grain ages 
of most samples were between 65 and 80 Ma. A temperature 
of ~110 - 60°C delineates the AFT partial annealing zone, 
defined as the temperature interval in which the majority of 
track length shortening takes place. The present temperature 
was also set to a constant value of 20°C, and 10000 paths 
were modeled for each plot (Fig. 6).

5. DISCUSSION
5.1 Jurassic Annealing 

The peak ages of six ZFT samples (Q5, 8, 9, 10, 11, 

and 12) in this study are younger than their strata ages, indi-
cating the ZFT underwent full annealing and was reset after 
the strata or rock formation. The peak ages of the other eight 
ZFT samples (Q1, 2, 3, 4, 6, 7, 13, and 14) are equal to or 
younger or older than their strata ages, indicating a partial 
annealing after the strata or rock formation. All the samples 
in the study area show evidence that different degrees of 
annealing occurred after formation because the individual-
grain ages would be older than the depositional age if a 
sample did not undergo annealing after deposition (Tagami 
and O’Sullivan 2005).

An annealing event is generally caused either by volca-
nism or by deep burial. Judging by the Late Jurassic to Early 
Cretaceous cooling ages, the annealing of the ZFT must have 
taken place before that time and continued until the Late Ju-
rassic. According to the geological survey of the Qiangtang 
block, there are relatively few Late Jurassic igneous rocks, 
and they are mainly located in the central zone and mar-
ginal area. Hence, the Late Jurassic annealing event of the 
ZFT may have been caused only by the deep burial. With 
the measured PAZ temperature of ~240 - 180°C, the pres-
ent average surface temperature of 20°C, and the borehole  
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Fig. 6. Modeling diagrams of the apatite fission-track data. Modeled time-temperature paths for six apatite samples, computed with AFTSolve pro-
gram. The black lines show ‘best-fit’ curves, and the green area and magenta area represent ‘acceptable’ thermal history range and ‘good’ thermal 
history range, respectively. ‘K-S test’ is the goodness-of-fit between the model and measured track lengths. ‘GOF’ is the goodness-of-fit between 
the model and measured ages. The modeled thermal history is ‘acceptable’ when both the model AFT age and the model track length distribution 
matched their measured counterparts with a level of confidence of 5% or greater. The modeled thermal history is deemed to be ‘good’ when both 
the model AFT age and the model track length distribution match their measured counterparts with a level of confidence of 50% or greater. Ng is 
the number of grains counted. Nc is the number of measured confined tracks.
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gradient of 25°C km-1, the calculated burial depth of the 
samples may have reached or exceeded 6.4 - 11.2 km during 
the Late Jurassic. Because the sampled strata are situated on 
the depositional bottom of the Jurassic marine Qiangtang 
Basin, the burial depth of the samples represents the Juras-
sic depositional thickness, which is nearly consistent with 
the result of the stratum thickness statistics (~7000 m; see 
Fig. 2). 

Three ZFT samples (Q10, 11, and 12) from the central 
part of northern Qiangtang were fully annealed in the Late 
Jurassic; however, four samples (Q1, 2, 3, and 4) from the 
northern part of northern Qiangtang were only partially an-
nealed, which suggests that the burial depth of the former 
was greater than that of the latter. The maximum peak ages 
of the fully reset samples (Q10, 11, and 12) are all early 
Cretaceous, indicating that the samples reached their deep-
est burial depths and were fully annealed in the late Jurassic 
or before, then cooled below 180°C in the early Cretaceous. 
Hence, the annealing differences of the samples reflect the 
differences of the late Triassic-Jurassic depositional depth. 
This means the late Triassic-Jurassic depositional depth 
of the former is greater than that of the latter, and the late 
Triassic-Jurassic basin type cannot be a foreland basin in 
the Qiangtang block because the late Triassic-Jurassic dep-
ositional depth of the northern part of northern Qiangtang 
would be much greater than that of the central part of north-
ern Qiangtang if the late Triassic-Jurassic Qiangtang basin 
is a foreland basin (see Wang et al. 2001; Zhang et al. 2009). 
The ZFT result is consistent with that of the lithofacies pa-
laeogeography study. From north to south, the Jurassic sedi-
mentary environments are beach, carbonate-platform, and 
continental shelf in Qiangtang (Wang et al. 2004, 2009). 
Therefore, the central thickness is greater than that of the 
northern part in the northern Qiangtang for the Jurassic de-
posit, and the Jurassic basin of Qiangtang must be a pas-
sive-marginal basin. This study has settled one of the most 
hotly debated questions in the petroleum exploration of the 
Mesozoic Qiangtang basin: Was Qiangtang a foreland basin 
or a passive marginal basin during the late Triassic-Jurassic 
period? The response to this question can help determine the 
favorability of the petroleum exploration zones in Qiang-
tang and suggest some directions to consider for oil and gas 
exploration in the study region.

5.2 Late Jurassic-Cretaceous Exhumation

During the Late Jurassic-Early Cretaceous, the Qiang-
tang block likely collided with the Lhasa block along the 
Bangong-Nujiang suture (Kapp et al. 2003; Murphy and Yin 
2003; Wang et al. 2007; Murphy et al. 2010). This collision 
resulted in a series of granitic intrusions in the Bangong-
Nujiang suture. Examples include the Pangduo intrusions of  
123.8 ± 1.8 - 129.6 ± 7.8 Ma (U-Pb zircon dating; Wu et al. 2004) 
and the Dangxiong-Sangxiong intrusions of ~130 - 120 Ma  

(Wang et al. 2007). The 40Ar/39Ar data of 104 ± 2 Ma from 
the southern Kunlun block and 165 - 110 Ma from the south-
central Tibetan Plateau are the direct results of the Qiang-
tang-Lhasa collision (Yuan et al. 2006; Wang et al. 2007). 
The Qiangtang-Lhasa collision also resulted in a depositional 
facies change from marine to nonmarine environments and 
major denudation during the Early Cretaceous in Qiangtang 
(Wang et al. 2004; Kapp et al. 2007).

Sample Q5 has only one peak age of 143 Ma, indicating 
that it quickly cooled below ~180°C in the late Jurassic-early 
Cretaceous. Four samples (Q8, 9, 10, and 11) have two peak 
ages (ranging from 73 to 138 Ma), indicating they under-
went a relatively slow cooling process from ~300 to 180°C 
during the Cretaceous. The time interval between P2 and 3  
is approximately 45 Ma, which reflects the time of residence 
in the PAZ of ZFT (Figs. 4 and 5).

Seven samples (Q1, 2, 3, 4, 6, 7, and 14) have the 
youngest peak ages ranging from the Late Jurassic to Early 
Cretaceous, indicating they underwent partial annealing and 
cooled below the upper temperature (~180°C) of the ZFT 
during that time (Figs. 3 and 5). The relatively young peak 
ages (i.e., 148 Ma from sample Q1) represent the time when 
the relatively resistant zircons cooled below their annealing 
temperature.

Most of the ZFT samples contain Early Cretaceous 
peak ages, indicating early exhumation and cooling events 
in Qiangtang. The Early Cretaceous peak ages are the 
youngest peak ages in most of the samples (except Q8, 9, 
11, 12, and 13), indicating that these samples had cooled 
below ~180°C by the end of the Early Cretaceous.

During the Late Cretaceous, the reactivation of the 
Bangong-Nujiang suture caused volcanic activity and 
crustal shortening and thickening in central Tibet (Yin et 
al. 1995; Murphy et al. 1997; DeCelles et al. 2007; Li et al. 
2013). The crust of the Qiangtang block was significantly 
thickened because of ongoing underthrusting by the Lhasa 
block (Kapp et al. 2007). The Late Cretaceous peak ages 
from four ZFT samples (Q8, 9, 11, and 12) indicate the Late 
Cretaceous exhumation of the Qiangtang block.

In conclusion, all the ZFT samples from Qiangtang 
cooled below the partial annealing zone of ZFT (~300 - 180°C)  
in the Late Cretaceous (before 73 Ma). The peak ages of P2 
and 3 of the ZFT samples are the thermochronological record 
of the Late Jurassic-Cretaceous (~148 - 73 Ma) exhumation 
in the Qiangtang block. This means the burial depth of the 
samples was less than 6.4 km at the end of the Cretaceous 
and that the exhumation thickness was greater than 2000 m 
during the Cretaceous.

Late Mesozoic exhumation of the Qiangtang block 
is evidenced by an increasing number of studies, such as 
crustal shortening analysis (Murphy et al. 1997), 40Ar/39Ar 
dating (Wang et al. 2007), structural deformation and sedi-
mentation analysis (Kapp et al. 2007; Wang et al. 2008), and 
volcanic activity studies (Li et al. 2013). The current study 
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is the first to report ZFT data for the Qiangtang block, and 
the results reconfirm the Late Jurassic-Cretaceous cooling 
events and tectonic exhumation.

5.3 Cenozoic Exhumation

As a result of the India-Asia collision, uplift in Tibet 
occurred. Thermochronology studies suggest that cooling 
events occurred during the Cenozoic in the Qiangtang block 
(Wang et al. 2001, 2007; Wang and Zhao et al. 2008). 

The Cenozoic peak ages (P1) in ZFT samples Q12 
and 13 in this study do not represent the exhumation of 
the Qiangtang block. Instead, these ages can be attributed 
to thermal disturbance from Cenozoic volcanism because 
there are no overlapping regions between the Cenozoic peak 
(namely, P1) and the Mesozoic peak (namely, P2). Gener-
ally, there would be overlapping regions between the Ce-
nozoic and Mesozoic peaks if a sample had been located in 
the PAZ since the Mesozoic. In addition, the Cenozoic peak 
ages only exist in the samples from the central part of north-
ern Qiangtang and are consistent with the zircon U-Pb ages 
of the Cenozoic volcanics from the central part of northern 
Qiangtang (Fig. 5). Therefore, the P1 ages are the result of 
the thermal disturbance of the Cenozoic volcanism, and the 
P2 ages of samples Q12 and 13 may represent the time when 
the samples were exhumed through the PAZ of ZFT and 
cooled below ~180°C. 

The central AFT ages range from 26 ± 3 to 60 ± 5 Ma  
(Table 1), indicating that the Cenozoic exhumation of 
Qiangtang began in the Eocene and that the samples were 
subsequently cooled below the AFT closure temperature 
again (~110°C). This means that the samples cooled from 
~180 to ~110°C between P2 (73 - 89 Ma) and 65 Ma. This 
cooling event may have been caused by the collision of the 
Lhasa-Gangdese block (Searle et al. 1999). Direct evidence 
of the Lhasa-Gangdese collision is the ~90 - 50 Ma granitic 
intrusions distributed from east to west along the Gangdese 
belt (Pan and Ding 2004). This collision also led to the de-
nudation of the regional Cretaceous land basin sediments in 
Qiangtang.

According to the inverse modeling for six apatite sam-
ples (Fig. 6), the Cenozoic exhumation process can be clas-
sified into three phases. Before ~50 Ma, the buried depths of 
most of the samples reached more than 3.6 km. At ~50 Ma, 
all the samples cooled below ~110°C due to denudation and 
entered the AFT PAZ (Fig. 6). This cooling event is called 
the “early Cenozoic cooling”, and its age is consistent with 
the collision between the Indian continental crust and the 
Asian plate along the Indus-Yalung suture in the Paleocene-
Eocene (~55 - 45 Ma) (Dewey et al. 1988). Thus, the early 
Cenozoic cooling may have been caused by the India-Asia 
collision.

From ~50 to 20 Ma, the Qiangtang block began to be ex-
humed slowly with a minor cooling rate of ~0.5 - 1°C Myr-1.  

However, nearly all the samples passed through the partial 
annealing of AFT (~110 - 60°C) and cooled below 60°C at 
~20 Ma (Fig. 6). After the India-Asia collision, the weak tec-
tonic stress led to the slow exhumation process and extension 
and thinning of the lithosphere beneath the Qiangtang block 
and produced the 40 - 30 Ma adakitic volcanic rocks in this 
block (Liu et al. 2008).

After ~20 - 10 Ma, the samples experienced a rapid 
cooling rate of 4 - 6°C Myr-1 (Fig. 6). This cooling was 
likely caused by the India-Himalaya underthrusting. The 
granitic intrusions of approximately 24 - 22 Ma along the 
Indus-Yalung suture are the products of the India-Himalaya 
underthrusting (Yin et al. 1995). A study of the post-colli-
sional magmas also supports the rapid uplift of the western 
Tibetan Plateau after ~20 Ma (Chung et al. 1998). The AFT 
data from the Kunlun-Qaidam block also reflect a rapid 
cooling event during the Late Cenozoic (Jolivet et al. 2001; 
Yuan et al. 2006). Moreover, the AFT and the (U-Th)/He 
ages from southeastern Tibet indicate a rapid cooling and 
river incision between 13 and 9 Ma (Clark et al. 2005).

However, the Late Cenozoic exhumation was not re-
corded by the former AFT samples from Qiangtang (Wang 
et al. 2007). Therefore, the results presented here confirm 
the Late Cenozoic cooling and the exhumation in the Qiang-
tang block. In addition, according to the AFT modeling, the 
late Cenozoic exhumation rate was most rapid during the 
Cenozoic period and may be the main reason why most of 
the Cenozoic strata were eroded and the Jurassic strata were 
widely exposed at the surface in the Qiangtang block.

6. CONCLUSION

The fission track dating of 14 zircon samples and 14 
apatite samples in this study helps understand the exhuma-
tion history of the Qiangtang block from the Mesozoic to 
Cenozoic. The peak ZFT ages and the inverse modeling of 
AFT lead to the following conclusions: 
(1)  The late Triassic-Jurassic depositional depth of the cen-

tral part of northern Qiangtang is greater than that of 
the northern part of northern Qiangtang, indicating that 
the late Triassic-Jurassic Qiangtang basin may not be a 
foreland.

(2)  The collision between Qiangtang and Lhasa resulted in 
a large-scale inversion and a change from a marine to 
a non-marine depositional environment in the Qiang-
tang block during the Cretaceous period. The Qiangtang 
block then began to be exhumed, and the burial depth 
of the samples was less than 6.4 km at the end of the 
Cretaceous. The exhumation thickness exceeded 2000 
m during the Cretaceous.

(3)  Because of the India-Asia collision, the Cenozoic exhuma-
tion of Qiangtang began in the Eocene. From 50 to 20 Ma,  
the Qiangtang block had a relatively slow cooling rate 
of ~0.5 - 1°C Ma-1. After ~20 - 10 Ma, almost all the 
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samples entered a rapid cooling stage with a cooling rate 
of 4 - 6°C Ma-1 because of the India-Himalaya under-
thrusting.

(4)  Using the inverse modeling of the AFT data, this study 
is the first to confirm the existence of the Late Cenozoic 
cooling and exhumation process in the Qiangtang block.
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