Detrital Zircons U-Pb Age and Hf Isotope from the Western Side of the Taiwan Strait: Implications for Sediment Provenance and Crustal Evolution of the Northeast Cathaysia Block

Yonghang Xu^{1,*}, Qinqin Sun², Liang Yi³, Xijie Yin¹, Aijun Wang¹, Yunhai Li¹, and Jian Chen¹

 ¹ Open Laboratory of Ocean and Coast Environmental Geology, Third Institute of Oceanography State Oceanic Administration, Xiamen, China
 ² Fujian Provincial Key Laboratory of Coast and Island Management Technology Study, Fujian Institute of Oceanography, Xiamen, China
 ³ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Received 18 December 2012, revised 8 February 2014, accepted 18 February 2014

ABSTRACT

In situ detrital zircons U-Pb and Hf isotope analyses from the Min and Jiulong River of Southeast China were carried out to identify sediment provenance and crustal evolution of the northeast Cathaysia Block. Detrital zircons from both rivers displayed similar spectrum peaks at 236, 155, and 110 Ma, but samples from the Min River displayed a distinct Caledonian peak (ca. 460 Ma) and contained more Precambrian particles (ca. 1.8 Ga), which likely stemmed from the upstream area of the Wuyishan terrain. Interestingly, because Taiwan Island cannot supply Caledonian and Paleoproterozoic detrital materials and because the Ou and Jiulong River also lack components from these two populations, it is highly likely that the sediment in the western Taiwan coast partially originates from the Min River. The sediments from the Min River in Fujian are also considered the most likely source of the beach sands of western Taiwan (Chen et al. 2006). However, we stress that the ~1.8 Ga age source in the western Taiwan sediments was found and recognized. Combining U-Pb dating and Hf-isotope suggests that the northeast Cathaysia Block contains some Neoarchean detrital zircons, which derived from the incorporation of juvenile mantle materials and re-melting of ancient crustal substances. The wide ranges of $\varepsilon_{Hf}(t)$ value in the Paleoproterozoic and Neoproterozoic demonstrate the re-melting of ancient crustal materials with minor juvenile mantle materials. Phanerozoic zircons stemmed from re-melting and recycling of Proterozoic crustal materials with or without the invasion of juvenile mantle-derived magmas.

Key words: Detrital zircon, U-Pb age, Hf isotope, Provenance, Crustal evolution, Cathaysia Block

Citation: Xu, Y., Q. Sun, L. Yi, X. Yin, A. Wang, Y. Li, and J. Chen, 2014: Detrital zircons U-Pb age and Hf isotope from the western side of the Taiwan Strait: Implications for sediment provenance and crustal evolution of the northeast Cathaysia Block. Terr. Atmos. Ocean. Sci., 25, 505-535, doi: 10.3319/TAO.2014.02.18.01(TT)

1. INTRODUCTION

The Taiwan Strait connects the East China Sea and South China Sea, which are two major marginal seas of the western Pacific. This region serves as a canonical area in investigating terrigenous detrital materials transported into the sea, including the provenance and flux, as well as their distribution, transport and dispersion in continental shelves (Liu et al. 2002; Dadson et al. 2003; Xu et al. 2009). Detrital sediments from exposed continental crust across drainage basins may provide a record of the paleogeographic setting and their surrounding source regions (Cawood et al. 2003; Veevers et al. 2005).

Detrital zircons are resistant to chemical weathering and mechanical abrasion, and thus survive weathering from their provenance and subsequent transportation in fluvial systems. Therefore, *in situ* zircon U-Pb dating and Hf-isotope analysis has proven to be a useful tool in assessing the distribution of source rocks in the provenance and reconstructing tectonic evolution of continental blocks (Condie et al. 2005; Iizuka et al. 2005; Veevers et al. 2005; Yang et al. 2009; Wang et al. 2011).

Chen et al. (2006) proposed that sediments from the

^{*} Corresponding author

E-mail: yonghang_xu@163.com

Min River in Fujian, Southeast China, are considered the most likely source of the beach sands of W Taiwan. However, ca. 1.8 Ga monazites have not been discovered in the Min River estuary and Wuyishan area (Chen et al. 2006, 2008). The Min River and Jiulong River are the major waterways flowing into the Taiwan Strait from the west and supply the strait with large amounts of terrigenous detrital materials (Xu 1994; Liu et al. 2001). In this study, we present U-Pb and Hf-isotope analyses of detrital zircons from the Min and Jiulong Rivers. The isotopic data are used to decipher identify sediment provenance and reveal the crustal evolution of the northeast Cathaysia Block.

2. GENERAL GEOLOGY OF THE DRAINAGE BASINS

The South China continent is composed of the Yangtze Block in the northwest and the Cathaysia Block in the southeast, along the Jiangshao-Pingyu Fault (Fig. 1a). The Min River flows across northern Fujian (Fig. 1b). As the largest river in the province it has a drainage basin area of 61000 km^2 , an average flow of $1750 \text{ m}^3 \text{ s}^{-1}$ and annual average sediment loads of 715.5×10^4 t (Liu et al. 2001). The Jiulong River is situated in southern Fujian and is the second largest river in the province. The river has a drainage basin area of 14700 km^2 and annual average sediment loads of 223×10^4 t (Xu 1994). Because both drainage basins are mainly characterised by mountains and hills and concentrated rainfall, large quantities of terrigenous detrital materials are expected to be transported into the Taiwan Strait.

Precambrian basement rocks in the Cathaysia Block are sparsely exposed in the Chen Cai, Badu, Wuyishan, Nanling, Yunkai and Hainan areas (Zhao and Cawood 2012). The Min River originates from the Wuyishan region, which is a major Precambrian outcropping area of the Cathaysia Block (Fig. 1b). The headstream of the Jiulong River is located in the Longvan region (eastern Nanling). The Cathaysia Block has no exposed Archean rocks, but numerous Archean detrital zircons and minor inherited or xenocrystic zircons, implying the existence of Archean crust underlying the block or adjacent regions (Wan et al. 2007; Yu et al. 2009, 2012). The Cathaysia Block basement is composed mainly of Neoproterozoic basement rocks (~90%) with a minor outcrop of Paleoproterozoic rocks (Badu Group) in Wuyishan, and Mesoproterozoic rocks (Baoban, Shilu Group) in Hainan Island (Yu et al. 2010; Zhao and Cawood 2012). This composition is exemplified by ancient rock outcrops, which have been dated to approximately 1.8 Ga, in the Badu Group of southwestern Zhejiang and northwestern Fujian (Li et al. 1998; Yu et al. 2009, 2012). The Cathaysia Block has been bear strong overprinting of middle Paleozoic (Caledonian), Triassic (Indosinian) and Jurassic-Cretaceous (Yanshanian) (Chen and Jahn 1998; Zhou 2003; Wang et al. 2013). Early Palaeozoic granites are widespread in the eastern South China Block. Late Mesozoic granites from the Jurassic to Cretaceous display a migratory pattern from inland to coast

Fig. 1. Simplified map of major tectonic units in the South China (a) and geological map of the drainage basins of the Min River and Jiulong River in Fujian Province (b) revised from Sun (2006) . Abbreviation: JS-PY F, Jiangshao-Pingyu Fault; ZH-DP F, Zhenghe-Dapu Fault.

(Zhou et al. 2006; Li and Li 2007; Xu 2008; Wang et al. 2013). The drainage basins of both rivers are approximately perpendicular to the orientation of the Cathaysia granite-volcanic belts flowing into the Taiwan Strait (Fig. 1b).

3. SAMPLE AND ANALYSIS

Two surface sediment samples were collected from the Min River and one from Jiulong River (Fig. 1b). Three samples were all dominated by medium-coarse-grained feldspars and quartz sand. After washing, magnetic sorting and heavy liquid separation, zircon grains were glued to one side of double-sided tape and mounted with epoxy resin to form targets. The cathodoluminesence (CL) emission images have been widely used to distinguish igneous zircons from metamorphic zircons. In order to investigate the internal structures of zircon particles, zircon CL imaging was taken using a scanning electron microprobe at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.

An Agilent 7500a quadruple (Q)-ICPMS and a Neptune multi-collector (MC) -ICPMS were used for simultaneous determination of zircon U-Pb age, trace elements and Lu-Hf isotopes with a 193 nm excimer ArF laser-ablation system (GeoLas Plus) attached. Experiments were carried out at the MC-ICPMS laboratory of the Institute of Geology and Geophysics, Chinese Academy of Sciences. The analytic methods and equipment parameters were similar to those of Xie et al. (2008).

The spot size of laser ablation was 44μ m in diameter. U, Th and Pb concentrations were calibrated using ²⁹Si as an internal standard and NIST 610 as the reference standard (Pearce et al. 1997). ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb, ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U (²³⁵U = ²³⁸U/137.88) ratios were corrected using the 91500 external standard. GJ-1 and 91500 yielded weighted ²⁰⁶Pb/²³⁸U ages of 603 ± 8 and 1063 ± 17 Ma, respectively. The fractionation correction and results were calculated using GLIT-TER 4.0 (Jackson et al. 2004). Subsequently, common Pb was corrected according to the method proposed by Andersen (2002). The weighted mean U-Pb ages and concordia plots were processed using ISOPLOT 3.0 (Ludwig 2003).

In situ determination of zircon Lu-Hf isotopes was performed using a Neptune MC-ICPMS, which used a Geolas 193 ArF laser ablation system. In this study, the mean ¹⁷³Yb/¹⁷¹Yb ratio of the individual spot is used to calculate the fractionation coefficient (β_{Yb}), and then derive the contribution of ¹⁷⁶Yb to ¹⁷⁶Hf (Iizuka et al. 2005). Detailed test procedures and equipment operating conditions were previously described (Wu et al. 2006). Interference corrections were facilitated using ¹⁷⁵Lu/¹⁷⁶Lu = 0.02655 and ¹⁷⁶Yb/¹⁷²Yb = 0.5887 (Wu et al. 2007). The ¹⁷⁶Lu decay constant required for the calculation of ε_{Hf} (t) was 1.867 × 10⁻¹¹ y⁻¹ (Söderlund et al. 2004). The ¹⁷⁶Hf/¹⁷⁷Hf and ¹⁷⁶Lu/¹⁷⁷Hf ratios of chondrite at the present day are 0.282785 and 0.0336, respectively (Bouvier et al. 2008). To calculate model ages based on a

depleted-mantle source, we have adopted a model with $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ = 0.28325 (Griffin et al. 2002) and $^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$ ratio of 0.0384 (Griffin et al. 2000). GJ-1 and Mud Tank zircons give weighted $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ ratios of 0.282009 \pm 20 (2 σ) and 0.282504 \pm 15 (2 σ), respectively. Hf isotopic composition is calculated using the following equations:

$$\begin{split} \mathcal{E}_{\rm Hf}(0) &= [({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm S}/({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm CHUR,\,0} - 1] \times 10000 \\ \mathcal{E}_{\rm Hf}(t) &= \{[({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm S} - ({}^{176}{\rm Lu}/{}^{177}{\rm Hf})_{\rm S} \times (e^{\lambda t} - 1)]/\\ &[({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm CHUR,\,0} - ({}^{176}{\rm Lu}/{}^{177}{\rm Hf})_{\rm CHUR} \times \\ &(e^{\lambda t} - 1)] - 1\} \times 10000 \end{split} \tag{1}$$

$$T_{\rm DM} &= 1/\lambda \times \ln\{1 + [({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm S} - ({}^{176}{\rm Hf}/{}^{177}{\rm Hf})_{\rm DM}]/\\ &[({}^{176}{\rm Lu}/{}^{177}{\rm Hf})_{\rm S} - ({}^{176}{\rm Lu}/{}^{177}{\rm Hf})_{\rm DM}]\} \end{split}$$

$$\begin{split} T_{DM2} &= T_{DM} - (T_{DM} - t) \times [(f_{CC} - f_S)/(f_{CC} - f_{DM})] \\ f_{Lu/Hf} &= (^{176}Lu/^{177}Hf)_S/(^{176}Lu/^{177}Hf)_{CHUR} - 1 \end{split}$$

4. RESULTS

Detrital zircons are characterized by euhedral, short prismatic shapes, with oscillatory bands in the CL images (Fig. 2). A few zircons display unzoned or cloudy-zoned CL image patterns. Most zircons had Th/U ratios greater than 0.10 (only five particles Th/U ratios less than 0.10). More than 60 zircons were conducted for each sample to satisfy statistical requirements (Vermeesch 2004; Andersen 2005).

4.1 U-Pb Ages Results

We used ²⁰⁷Pb/²⁰⁶Pb ages for zircons of age ≥ 1.0 Ga and ²⁰⁶Pb/²³⁸U ages for zircons of age < 1.0 Ga (Compston et al. 1992). It is worth noting that only analyses with less than 10% discordance were included in the following discussion.

4.1.1 Min River (MJ01)

A total of 146 analyses of 146 grains from the Min River estuary were made, of which 126 analyses are concordant with ages ranging from 2765 ± 12 to 97 ± 2 Ma (Appendix 1). The age distributions of detrital zircon exhibited four major groups (Figs. 3a and b): 1.6 - 1.9 Ga (16.7%), 351 - 498 Ma (27.8%), 224 - 259 Ma (7.9%), and 97 - 182 Ma (27.8%). In addition, two zircon grains with magmatic internal zoning structures show Neoarchean ages of 2506 \pm 10 and 2765 \pm 12 Ma, and nine detrital zircons belong to the Neoproterozoic (613 - 919 Ma).

4.1.2 Min River (MJ16)

A total of 97 analyses of 97 grains from the upstream Min River were undertaken, of which 10 analyses were

Fig. 3. Left panels show U-Pb concordia plots (a, c, e) of the detrital zircons from the Min River (MJ01 and MJ16) and Jiulong River (JL01). Insets show expanded plots for younger zircons. Right panels show corresponding relative probability plots of U-Pb ages for concordant detrital zircons (b, d, f).

Fig. 3. (Continued)

discordant. The concordant zircons ranged in age from 2742 ± 9 to 97 ± 2 Ma (Appendix 1), and exhibited four major populations 1.6 - 1.9 Ga (24.1%), 363 - 469 Ma (18.4%), 210 - 233 Ma (13.8%) and 97 - 170 Ma (17.2%) (Figs. 3c and d). Seven zircon grains yielded the oldest ²⁰⁷Pb/²⁰⁶Pb ages of 2504 - 2742 Ma (8.0%). Six detrital zircons belong to the Neoproterozoic (826 - 964 Ma).

4.1.3 Jiulong River (JL01)

A total of 80 analyses of 80 grains from the Jiulong River estuary were undertaken, of which 73 analyses were concordant. The concordant zircons ranged in age from 2577 ± 9 to 101 ± 4 Ma (Appendix 1). Two major groups can be identified (Figs. 3e and f): 101 - 197 Ma (56.2%) and 207 - 254 Ma (20.5%). The third largest age population was made up of 5 grains with a range of 1474 - 1675 Ma. Few Caledonian and Paleoproterozoic zircons have been discovered in Jiulong River estuary.

4.2 Zircon Hf Isotopic Results

Almost all of the zircons had ¹⁷⁶Lu/¹⁷⁷Hf ratios of less than 0.002, indicating that the zircons had a minimal extent of radioactive Hf accumulation after their formation. Hence, the present-day ¹⁷⁶Hf/¹⁷⁷Hf ratios of the zircons are representative of the ¹⁷⁶Hf/¹⁷⁷Hf ratios upon formation of the zircons (Amelin et al. 1999). The analytical results are summarized in Appendix 2.

Detrital zircons from the Min River showed a large variation in Hf isotopic compositions (0.280856 - 0.282816), with $\varepsilon_{\rm Hf}(t)$ values varying from +11.5 to -21.1 (Fig. 4a). Min River zircons chiefly fall in the negative epsilon space, but only 24 zircons (11%) with positive $\varepsilon_{\rm Hf}(t)$. Figure 4b shows the distributions of the two-stage Hf (T_{DM2}) model ages. It can be seen that the crustal model age shows two prominent groups of 3.2 - 2.6 and 2.0 - 1.4 Ga from the two samples

in Min River.

Detrital zircons from the Jiulong River estuary had ¹⁷⁶Hf/¹⁷⁷Hf ratios in the range of 0.280902 - 0.282842. The majority of particles had ratios greater than 0.282010, corresponding to an age range of 101 - 800 Ma and $\varepsilon_{\rm Hf}(t)$ values between -12.7 and +6.1 (Fig. 4c). A few zircons had ratios less than 0.282010, corresponding to an age range of 932 - 2577 Ma and $\varepsilon_{\rm Hf}(t)$ values between -5.5 and -15.8. The Jiulong River also shows a large abundance of negative and some positive $\varepsilon_{\rm Hf}(t)$ values of 275 - 100 Ma (Fig. 4c). Zircons from the Jiulong River show a significant number of zircons with T_{DM2} between 1.2 and 1.8 Ga (Fig. 4d).

5. DISCUSSION

5.1 Provenance Tracing

U-Pb age analysis revealed that the detrital zircons from the Min River contained a large proportion of Precambrian particles (37%). In particular sample MJ16 has a clear peak age corresponding to the Paleoproterozoic (1874 Ma). This feature is related to the fact that the Badu Group with a Paleoproterozoic basement extensively outcrops in the Min River upstream basin (Li et al. 1998; Yu et al. 2009, 2012). In addition, nine Neoarchean detrital zircons are found in this study, which also have been identified in Wuyishan terrain as inherited or xenocrystic zircons (Wan et al. 2007; Yu et al. 2009, 2012). Recent SHRIMP U-Pb zircon dates demonstrated that northeast Cathaysia has undergone tectonothermal events in Neoproterozoic (Shu et al. 2011), which could provide Neoproterozoic material. In contrast, the Jiulong River estuary contains a sporadic number of Precambrian particles (Fig. 3f).

The Cathaysia Block was impacted by the Caledonian, Hercynian-Indosinian and Yanshanian (Jurassic-Cretaceous) orogenies (Zhou et al. 2006; Xu 2008), which are widespread in the eastern South China Block (Fig. 1b). The proportion of Phanerozoic detrital zircons in the mouth of the Min River is significantly higher than that ones in the upstream. The Caledonian granites are well developed throughout the Wuyishan terrain (Zhou 2003; Wan et al. 2007). Consequently, a considerable proportion (23%) of the detrital zircons in the Min River displayed prominent Caledonian traits.

A few Hercynian-Indosinian granites are exposed in Zhenghe, Mingxi and Liancheng in Fujian Province (Sun 2006) (Fig. 1b). The monazite age (Chen et al. 2008) and the zircons U-Pb age (Xu et al. 2007; Yu et al. 2012), were recently reported using sand samples from east of Wuyishan terrain, demonstrating the presence of Indosinian materials. The Indosinian granites are also exposed in the Longyan area (Zhao et al. 2006; Guo et al. 2012; Wang et al. 2013). These areas possibly provide the source of Indosinian components to the Min River and Jiulong River. From Jurassic to Cretaceous, this granite belt migrated from inland toward the coast (Zhou et al. 2006; Xu 2008). So, both the Min and Jiulong River contain a large number of Mesozoic zircons.

The detrital sediments in the Min River estuary mainly originate from the Jurassic-Cretaceous rocks in the middlelower reaches. Those are also partially derived from the Indosinian and Caledonian components of its upstream region, together with Precambrian basement material from the headstream area. In contrast, the source of the detrital sediments in the Jiulong River estuary is mainly the Jurassic-Cretaceous rocks from the middle-lower reaches of the river, with a minor contribution from the Mesoproterozoic and Hercynian-Indosinian materials of the upstream region.

5.2 Re-Assessing the Provenance of Sediments From Western Coastal Areas of Taiwan Island

The Min River plays a prominent role in transport and supply of deposits to the western Taiwan, where large quantities of monazites that have been dated to ca. 1.8 Ga (Chen et al. 2006). However, Precambrian monazite has not been discovered in the Min River estuary and Wuyishan area (Chen et al. 2006, 2008). Chen et al. (2008) challenged the theory of an early Proterozoic provenance in Taiwan and suggested that coastal deposits of western Taiwan may be under the control of other river systems (e.g., the Ou River; Xu et al. 2007) or other orogenic belts (Sano et al. 2006).

The Taiwan crust experienced five major tectonic-thermal events (Lan et al. 2008), which occurred in the early

Fig. 4. Left panels show U-Pb ages versus $\varepsilon_{HI}(t)$ values plots of concordant zircons (a, c), right panels show histograms of the two-stage Hf model ages for the concordant zircons (b, d). The intersection of these lines with the DM curve represents the crustal model age (T_{DM2}) of grains lying along the line. Abbreviation: DM, Depleted Mantle; CHUR, Chondritic Uniform Reaervoir.

Jurassic (200 - 175 Ma), late Jurassic (~153 Ma), late Cretaceous (97 - 77 Ma) and prior to (56 - 9 Ma) and after (< 5 Ma) the Pliocene, but no one in the Caledonian (360 - 540 Ma). In contrast, monazites in beaches of western Taiwan (Miaoli-Hsinchu area) and southern Taiwan (Chiayi-Tainan area) show prominent Caledonian (430 Ma) features (Chen et al. 2006), suggesting that these materials are unlikely to have originated from the island of Taiwan.

Further constraints on provenance can be gained by various potential sources (Fig. 5). The Paleoproterozoic peak at ~1.8 Ga is ubiquitous in the Yangtze, Ou River and Min River (Figs. 5a, b, and c), but the ~2.5 Ga and 700 - 900 Ma peaks are unique to the Yangtze (Yang et al. 2012). Neoproterozoic was an important period for the crust of the South

China Block accretion and reworking (Li et al. 1995, 2002; Wang et al. 2007). However, a ~420 Ma population appears to be distinctive of the Min River (Fig. 5c). Not surprisingly, the Yangtze clay mineral (< 2 μ m) can be transported southward to Taiwan Strait by the China Coastal Current (Xu et al. 2009), but heavy minerals (i.e., monazite, zircon) to western Taiwan Island are limited. Zircons from the Ou River show the Paleoproterozoic and Cretaceous ages (Fig. 5b), but very few grains of the Paleoproterozoic and Caledonian were found in its estuary (Xu et al. 2007).

Our work broadly supports Chen et al. (2008), showing that the main sources of Taiwan sediment came from the Min River. According to Fig. 5, higher age probability and more populations of the Min River grains are centred

Fig. 5. U-Pb zircon age spectrum of the major potential sources. Data sources: (a) Yang et al. 2012; (b) Xu et al. 2007; (c) and (d): this study; (e): (b) + (c).

at ~1.8 Ga and ~420 Ma, which appear to be distinctive of the western Taiwan Island. Thus, the Min River likely supplies a portion of the detrital materials to western Taiwan beaches. Nevertheless, U-Pb ages revealed that the detrital zircons of the Jiulong River estuary do not have characteristic Precambrian and Caledonian peaks, indicating that this river is unlikely to provide materials to beaches of western Taiwan. Furthermore, based on the U-Pb ages and Hf isotopes of the detrital zircons of central Taiwan and compared the data with the U-Pb and $\varepsilon_{\rm Hf}$ (t) data of the zircons in the Cathaysia Block (Lan et al. 2009), it was also clear that they have the same origin. Hence, the authors reasoned that the Min River plays a crucial role in the transportation and supply of detrital sediments to western Taiwan.

5.3 Implications for Crustal Evolution

The Ou River and the Min River in northeast Cathaysia Block both have a large number of Paleoproterozoic zircons, which contain information of the Paleoproterozoic basement (Wuyishan). However, the zircon U-Pb age and $\varepsilon_{\rm Hf}(t)$ from Jiulong River are significantly different from these from Min River. Yu et al. (2010) suggested that the Cathaysia Block can be roughly divided into the Wuyishan area in the northeast and the Nanling-Yunkai-Hainan area in the southwest. Here, we just discuss the crustal evolution of northeast Cathaysia Block.

Whether the Cathaysia Block contains ancient crystalline basement remains controversial. Recently, Archean detrital zircons and minor inherited or xenocrystic zircons have been found in Wuyishan regions (Wan et al. 2007; Yu et al. 2009, 2012). Yu et al. (2012) found a large proportion of Archaean zircons (3.7 - 3.6, 3.2 - 3.0, 2.7 - 2.6, and 2.5 Ga) in the Badu Group Complex. In addition, some Archean debris had been discovered in Paleoproterozoic amphibolite in Jianning, Fujian (Li et al. 1998). In this study, nine Neoarchean detrital zircons (2504 - 2765 Ma) in Min River were identified, with $\varepsilon_{\rm Hf}(t)$ varying from +6.5 to -6.8. The two-stage Hf model age of the zircons in this age group is 2.6 - 3.6 Ga (Fig. 4b), which suggested the juvenile crust of the Badu area in north Cathaysia was mainly formed in 2.5 - 2.8 Ga (Yu et al. 2012). These data imply that the Neoarchean zircons include both juvenile mantle-derived components and the reworked crustal materials.

The $\varepsilon_{\rm Hf}(t)$ values of Paleoproterozoic zircons exhibit a wide range from negative to positive (-16.1 to +3.9) (Fig. 4b), indicating that the northeast Cathaysia involved extensive reworking of older crust with litter juvenile crustal growth (Xu et al. 2007). Zircons with U-Pb ages of 1.5 - 1.0 Ga were extremely rare, reflecting that the northeast Cathaysia Block experienced long-term tectonic stability during that period. The wide ranges in $\varepsilon_{\rm Hf}(t)$ values (-14.2 to +2.6) in the Neoproterozoic indicated re-melting of ancient crustal material with minor juvenile mantle input. The zircons of Neoproterozoic mafic rocks show positive $\varepsilon_{\text{Hf}}(t)$ values, suggesting that they originated from a depleted mantle source (Shu et al. 2011). In the groups spanning 100 - 500 Ma, the northeast Cathaysia Block has been influenced by the Caledonian, Hercynian-Indosinian and Yanshanian orogenies. Most of Phanerozoic zircons (93%) have negative $\varepsilon_{\text{Hf}}(t)$ values, and only twelve grains have positive $\varepsilon_{\text{Hf}}(t)$ values. Their T_{DM2} values were predominantly within the range of 0.7 - 2.5 Ga with wide ranges in Hf-isotope composition, indicating that the Phanerozoic zircons stemmed from re-melting and recycling of the Proterozoic crustal materials, with or without juvenile mantle-derived magmas (Liu et al. 2012; Wang et al. 2013).

6. CONCLUSIONS

- (1) Detrital zircons from the Min River and Jiulong River display Indosinian and Jurassic-Cretaceous characteristic peaks indicating that the detrital sediments were mainly supplied by Indosinian material of the upstream regions as well as Jurassic-Cretaceous materials from the middle and lower reaches. In addition, the detrital zircons from the Min River estuary display a prominent Caledonian peak and contain greater proportion of Precambrian particles, implying that these detrital substances originated from the upstream area of Wuyishan.
- (2) Given that Taiwan Island cannot supply the Caledonian and Paleoproterozoic detrital material, and that the Ou and Jiulong River estuary lack components from these two periods, it is highly likely that the beach debris in western Taiwan coast partially originates from the Min River. Our study of zircons from Min River confirms the finding of Chen et al. (2006) that the sediments from the Min River in Fujian are considered the most likely source of the beach sands of the western Taiwan. However, we stress that the ~1.8 Ga age source in the western Taiwan sediments was founded and recognized.
- (3) The northeast Cathaysia Block contains some Neoarchean detrital zircons, which derived from incorporation between juvenile mantle material and re-melt ancient crustal substances. Wide ranges in $\varepsilon_{Hf}(t)$ values in the Paleoproterozoic and Neoproterozoic indicated remelting of ancient crustal material with minor juvenile mantle materials. Phanerozoic zircons stemmed from remelting and recycling of the Proterozoic crustal materials with or without juvenile mantle-derived magmas.

Acknowledgments This work was financially supported by the National Natural Science Foundation of China (NSFC 40906047 and 41106073), Scientific Research Foundation of Third Institute of Oceanography (SOA. NO. 2014015) and Natural Science Foundation of Fujian Province (2010J05096). We are grateful to Dr. Yanyan Zhou and Dr. Yueheng Yang for their assistance with the analyses. We also thank Mei-Fei Chu, Kuo-Lung Wang and one anonymous reviewer for their helpful comments.

REFERENCES

- Amelin, Y., D. C. Lee, A. N. Halliday, and R. T. Pidgeon, 1999: Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. *Nature*, **399**, 252-255, doi: 10.1038/20426. [Link]
- Andersen, T., 2002: Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb. *Chem. Geol.*, **192**, 59-79, doi: 10.1016/S0009-2541(02)00195-X. [Link]
- Andersen, T., 2005: Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. *Chem. Geol.*, **216**, 249-270, doi: 10.1016/j.chemgeo.2004.11.013. [Link]
- Bouvier, A., J. D. Vervoort, and P. J. Patchett, 2008: The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth Planet. Sci. Lett.*, **273**, 48-57, doi: 10.1016/j. epsl.2008.06.010. [Link]
- Cawood, P. A., A. A. Nemchin, M. Freeman, and K. Sircombe, 2003: Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. *Earth Planet. Sci. Lett.*, **210**, 259-268, doi: 10.1016/ S0012-821X(03)00122-5. [Link]
- Chen, C. H., H. Y. Lu, W. Lin, and C. Y. Lee, 2006: Thermal event records in SE China coastal areas: Constraints from Monazite Ages of Beach Sands from two sides of the Taiwan Strait. *Chem. Geol.*, 231, 118-134, doi: 10.1016/j.chemgeo.2006.01.023. [Link]
- Chen, C. H., C. Y. Lee, P. S. Hsieh, W. Zeng, and H. W. Zhou, 2008: Approaching the age problem for some metamorphosed Precambrian basement rocks and Phanerozoic granitic bodies in the Wuyishan area: The application of EMP monazite age dating. *Geol. J. Chin. Univ.*, 14, 1-15. (in Chinese)
- Chen, J. and B. Jahn, 1998: Crustal evolution of southeastern China: Nd and Sr isotopic evidence. *Tectonophysics*, 284, 101-133, doi: 10.1016/S0040-1951(97)00186-8.
 [Link]
- Compston, W., I. S. Williams, J. L. Kirschvink, Z. Zhang, and M. A. Guogan, 1992: Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol. Soc., 149, 171-184, doi: 10.1144/gsjgs.149.2.0171. [Link]
- Condie, K. C., E. Beyer, E. Belousova, W. L. Griffin, and S. Y. O'Reilly, 2005: U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. *Precambrian Res.*, 139, 42-100, doi: 10.1016/j.precamres.2005.04.006. [Link]
- Dadson, S. J., N. Hovius, H. Chen, W. B. Dade, M. L. Hsieh, S. D. Willett, J. C. Hu, M. J. Horng, M. C. Chen,

C. P. Stark, D. Lague, and J. C. Lin, 2003: Links between erosion, runoff variability and seismicity in the Taiwan orogen. *Nature*, **426**, 648-651, doi: 10.1038/ nature02150. [Link]

- Griffin, W. L., N. J. Pearson, E. Belousova, S. E. Jackson, E. van Achterbergh, S. Y. O'Reilly, and S. R. Shee, 2000: The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. *Geochim. Cosmochim. Acta*, 64, 133-147, doi: 10.1016/S0016-7037(99)00343-9. [Link]
- Griffin, W. L., X. Wang, S. E. Jackson, N. J. Pearson, S. Y. O'Reilly, X. Xu, and X. Zhou, 2002: Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. *Lith*os, 61, 237-269, doi: 10.1016/S0024-4937(02)00082-8. [Link]
- Guo, C. L., J. H. Zheng, F. S. Lou, and Z. L. Zeng, 2012: Petrography, genetic types and geological dynamical settings of the Indosinian granitoids in South China. *Geotectonica et Metallogenia*, **36**, 457-472, doi: 10.3969/j. issn.1001-1552.2012.03.020. (in Chinese) [Link]
- Iizuka, T., T. Hirata, T. Komiya, S. Rino, I. Katayama, A. Motoki, and S. Maruyama, 2005: U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. *Geology*, **33**, 485-488, doi: 10.1130/ G21427.1. [Link]
- Jackson, S. E., N. J. Pearson, W. L. Griffin, and E. A. Belousova, 2004: The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. *Chem. Geol.*, **211**, 47-69, doi: 10.1016/j.chemgeo.2004.06.017. [Link]
- Lan, C. Y., C. S. Lee, T. F. Yui, H. T. Chu, and B. M. Jahn, 2008: The tectono-thermal events of Taiwan and their relationship with SE China. *Terr. Atmos. Ocean. Sci.*, **19**, 257-278, doi: 10.3319/TAO.2008.19.3.257(TT). [Link]
- Lan, C. Y., T. Usuki, K. L. Wang, T. F. Yui, K. Okamoto, Y. H. Lee, T. Hirata, Y. Kon, Y. Orihashi, J. G. Liou, and C. S. Lee, 2009: Detrital zircon evidence for the antiquity of Taiwan. *Geosci. J.*, **13**, 233-243, doi: 10.1007/ s12303-009-0023-3. [Link]
- Li, X. H., Y. X. Wang, Z. H. Zhao, D. F. Chen, and Z. Hong, 1998: SHRIMP U-Pb zircon geochronology for amphibolite from the Precambrian basement in SW Zhejiang and NW Fujian provinces. *Geochimica*, 27, 327-334. (in Chinese)
- Li, Z. X. and X. H. Li, 2007: Formation of the 1300-kmwide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. *Geology*, **35**, 179-182, doi: 10.1130/ G23193A.1. [Link]
- Li, Z. X., L. Zhang, and C.M. Powell, 1995: South China in Rodinia: part of the missing link between Australia-East

Antarctica and Laurentia? *Geology*, **23**, 407-410, doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO; 2. [Link]

- Li, Z. X., X. H. Li, H. Zhou, and P. D. Kinny, 2002: Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. *Geology*, **30**, 163-166, doi: 1 0.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO; 2. [Link]
- Liu, C. Z., H. L. Jia, and X. F. Chen, 2001: Sedimentary texture and sedimentation in the Minjiang River estuary. *Oceanol. Limnol. Sin.*, **32**, 177-184. (in Chinese)
- Liu, J. T., K. Liu, and J. C. Huang, 2002: The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. *Mar. Geol.*, **181**, 357-386, doi: 10.1016/S0025-3227(01)00219-5. [Link]
- Liu, Q., J. H. Yu, Q. Wang, B. Su, M. F. Zhou, H. Xu, and X. Cui, 2012: Ages and geochemistry of granites in the Pingtan-Dongshan Metamorphic Belt, Coastal South China: New constraints on Late Mesozoic magmatic evolution. *Lithos*, **150**, 268-286, doi: 10.1016/j.lithos.2012.06.031. [Link]
- Ludwig, K. R., 2003: User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, Special publication, Berkeley Geochronology Center, No. 4, Berkeley, Calif.
- Pearce, N. J. G., W. T. Perkins, J. A. Westgate, M. P. Gorton, S. E. Jackson, C. R. Neal, and S. P. Chenery, 1997: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostand. Geoanal. Res.*, 21, 115-144, doi: 10.1111/j.1751-908X.1997.tb00538.x. [Link]
- Sano, Y., N. Takahata, Y. Tsutsumi, and T. Miyamoto, 2006: Ion microprobe U-Pb dating of monazite with about five micrometer spatial resolution. *Geochem. J.*, 40, 597-608.
- Shu, L. S., M. Faure, J. H. Yu, and B. M. Jahn, 2011: Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. *Precambrian Res.*, 187, 263-276, doi: 10.1016/j.precamres.2011.03.003. [Link]
- Söderlund, U., P. J. Patchett, J. D. Vervoort, and C. E. Isachsen, 2004: The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth Planet. Sci. Lett.*, **219**, 311-324, doi: 10.1016/S0012-821X(04)00012-3. [Link]
- Sun, T., 2006: A new map showing the distribution of granites in South China and its explanatory notes. *Geol. Bull. Chin.*, 25, 332-335. (in Chinese)
- Veevers, J. J., A. Saeed, E. A. Belousova, and W. L. Griffin, 2005: U-Pb ages and source composition by Hf-isotope

and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. *Earth-Sci. Rev.*, **68**, 245-279, doi: 10.1016/j.earscirev.2004.05.005. [Link]

- Vermeesch, P., 2004: How many grains are needed for a provenance study? *Earth Planet. Sci. Lett.*, **224**, 441-451, doi: 10.1016/j.epsl.2004.05.037. [Link]
- Wan, Y., D. Liu, M. Xu, J. Zhuang, B. Song, Y. Shi, and L. Du, 2007: SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. *Gondwana Res.*, **12**, 166-183, doi: 10.1016/j.gr.2006.10.016. [Link]
- Wang, C. Y., I. H. Campbell, A. S. Stepanov, C. M. Allen, and I. N. Burtsev, 2011: Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. *Geochim. Cosmochim. Acta*, **75**, 1308-1345, doi: 10.1016/j.gca.2010.12.010. [Link]
- Wang, X. L., J. C. Zhou, W. L. Griffin, R. C. Wang, J. S. Qiu, S. Y. O'Reilly, X. Xu, X. M. Liu, and G. L. Zhang, 2007: Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks. *Precambrian Res.*, **159**, 117-131, doi: 10.1016/j.precamres.2007.06.005. [Link]
- Wang, Y., W. Fan, G. Zhang, and Y. Zhang, 2013: Phanerozoic tectonics of the South China Block: key observations and controversies. *Gondwana Res.*, 23, 1273-1305, doi: 10.1016/j.gr.2012.02.019. [Link]
- Wu, F. Y., Y. H. Yang, L. W. Xie, J. H. Yang, and P. Xu, 2006: Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. *Chem. Geol.*, 234, 105-126, doi: 10.1016/j.chemgeo.2006.05.003. [Link]
- Wu, F., X. Li, Y. Zheng, and S. Gao, 2007: Lu-Hf isotopic systematics and their applications in petrology. *Acta Petrol. Sin.*, 23, 185-220, doi: 10.3321/j.issn:1000-0569.2007.02.001. (in Chinese) [Link]
- Xie, L., Y. Zhang, H. Zhang, J. Sun, and F. Wu, 2008: In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chin. Sci. Bull., 53, 1565-1573, doi: 10.1007/s11434-008-0086-y. [Link]
- Xu, K., J. D. Milliman, A. Li, J. P. Liu, S. J. Kao, and S. Wan, 2009: Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. *Cont. Shelf Res.*, 29, 2240-2256, doi: 10.1016/j.csr.2009.08.017. [Link]
- Xu, M., 1994: Study on fragmentary minerals surface sediments in Jiulong river estuary. J. Xiamen Univ., 33, 675-680. (in Chinese)

Xu, X., 2008: Several problems worthy to be noticed in the research of granites and volcanic rocks in SE China. *Geol. J. Chin. Univ.*, 14, 283-294. (in Chinese)

- Xu, X., S. Y. O'Reilly, W. L. Griffin, X. Wang, N. J. Pearson, and Z. He, 2007: The crust of Cathaysia: age, assembly and reworking of two terranes. *Precambrian Res.*, **158**, 51-78, doi: 10.1016/j.precamres.2007.04.010. [Link]
- Yang, J., S. Gao, C. Chen, Y. Tang, H. Yuan, H. Gong, S. Xie, and J. Wang, 2009: Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. *Geochim. Cosmochim. Acta*, **73**, 2660-2673, doi: 10.1016/j. gca.2009.02.007. [Link]
- Yang, S., F. Zhang, and Z. Wang, 2012: Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China. *Chem. Geol.*, **296-297**, 26-38, doi: 10.1016/j.chemgeo.2011.12.016. [Link]
- Yu, J. H., L. Wang, S. Y. O'Reilly, W. L. Griffin, M. Zhang, C. Li, and L. Shu, 2009: A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China. *Precambrian Res.*, **174**, 347-363, doi: 10.1016/j.precamres.2009.08.009. [Link]
- Yu, J. H., S. Y. O'Reilly, L. Wang, W. L. Griffin, M. F. Zhou, M. Zhang, and L. Shu, 2010: Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. *Precambrian Res.*, **181**, 97-114, doi: 10.1016/j.precamres.2010.05.016. [Link]
- Yu, J. H., S. Y. O'Reilly, M. F. Zhou, W. L. Griffin, and L. Wang, 2012: U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block. *Precambrian Res.*, 222-223, 424-449, doi: 10.1016/j. precamres.2011.07.014. [Link]
- Zhao, G. and P. A. Cawood, 2012: Precambrian geology of China. *Precambrian Res.*, 222-223, 13-54, doi: 10.1016/j.precamres.2012.09.017. [Link]
- Zhao, L., J. Yu, L. Wang, L. Xie, T. Sun, and J. Qiu, 2006: Formation time of Hongshan topaz-bearing granite and its metallogenic potential prognosis. *Mineral Deposits*, **25**, 672-682, doi: 10.3969/j.issn.0258-7106.2006.06.004. (in Chinese) [Link]
- Zhou, X. M., 2003: My thinking about granite geneses of south China. *Geol. J. Chin. Univ.*, 9, 556-565. (in Chinese)
- Zhou, X. M., T. Sun, W. Z. Shen, L. S. Shu, and Y. L. Niu, 2006: Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. *Episodes*, 29, 26-33.

	Concordance		101	94	93	173	104	138	103	103	95	145	116
	1σ		3	ю	1	1	7	0	~	4	1	0	0
	²⁰⁸ Pb/ ²³² Th		127	198	142	117	427	226	451	91	137	94	128
	1σ		2	6	6	1	9	0	2	0	1	ю	0
(Ma)	$^{206}\text{Pb}/^{238}\text{U}$		140	229	158	131	457	240	471	76	151	98	134
Ages (1σ		2	0	1	З	11	ю	9	9	1	16	0
V	$^{207}\mathbf{Pb}/^{235}\mathbf{U}$		141	215	147	227	474	330	485	100	144	142	155
	1σ		19	13	12	12	38	10	15	93	11	275	18
	$^{207}Pb/^{206}Pb$		158	79	23	1395	563	1037	560	179	40	955	505
	1σ	ver	0.00013	0.00014	0.00006	0.00005	0.00043	0.00011	0.0004	0.0002	0.00006	0.00011	0.0001
	²⁰⁸ Pb/ ²³² Th	Min R	0.00631	0.00985	0.00705	0.00579	0.02136	0.01123	0.02256	0.00452	0.00682	0.00464	0.00633
	1σ		0.00026	0.00038	0.00024	0.00023	0.001	0.0004	0.0009	0.00033	0.00023	0.00047	0.00026
ratios	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		0.022	0.03618	0.02481	0.02052	0.0734	0.03787	0.07588	0.01521	0.02371	0.01531	0.02094
Isotope	1σ		0.0025	0.00287	0.00102	0.0035	0.01673	0.00384	0.00903	0.006	0.00117	0.01851	0.00284
	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$		0.14853	0.23621	0.15591	0.25048	0.59556	0.3836	0.61233	0.1036	0.1523	0.14967	0.16475
	1σ		6000.0	0.00063	0.00031	0.00134	0.00173	0.00083	0.00095	0.00303	0.00039	0.00904	0.00109
	$^{207}Pb/^{206}Pb$		0.04921	0.0476	0.0456	0.08858	0.05888	0.07384	0.05882	0.04965	0.04682	0.07092	0.05734
11/1/1			0.45	0.53	1.16	0.44	1.04	1.51	0.54	0.63	0.75	66.0	0.80
	Allalysis		IJ01-1	IJ01-2	IJ01-3	IJ01-4	IJ01-5	IJ01-6	IJ01-7	IJ01-8	IJ01-9	IJ01-10	[J01-11

U-Th-Pb isotope data for detrital zircons from Min River, Jiulong River and standard zircons.

APPENDIX 1

117-111					Isotope	ratios						A	ges (l	Ma)				
Th/U ²⁰⁷ Pb/ ²⁰⁶ Pb 1σ ²⁰⁷ Pb/ ²³⁵ U 1σ ²⁰⁶ Pl	²⁰⁷ Pb/ ²⁰⁶ Pb 10 ²⁰⁷ Pb/ ²³⁵ U 10 ²⁰⁶ Pl	1σ $^{207}\text{Pb}/^{235}\text{U}$ 1σ ^{206}Pl	²⁰⁷ Pb/ ²³⁵ U 10 ²⁰⁶ Pl	10 ²⁰⁶ PI	²⁰⁶ PI	J ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	10 ²	⁰⁸ Pb/ ²³² Th	1σ	Concorda
-		-	-	-				Min R	iver									
1.21 0.04823 0.00165 0.14463 0.00461 0.0	0.04823 0.00165 0.14463 0.00461 0.0	0.00165 0.14463 0.00461 0.0	0.14463 0.00461 0.0	0.00461 0.0	0.0	2185	0.00034	0.00607	0.00013	111	46	137	4	139	6	122	3	66
1.44 0.05408 0.0012 0.28522 0.00581 0.038	0.05408 0.0012 0.28522 0.00581 0.038	0.0012 0.28522 0.00581 0.038	0.28522 0.00581 0.038	0.00581 0.038	0.038	343	0.0005	0.01106	0.00016	374	24	255	5	243	ŝ	222	3	105
0.60 0.05646 0.00229 0.26919 0.01033 0.0345	0.05646 0.00229 0.26919 0.01033 0.0345	0.00229 0.26919 0.01033 0.0345	0.26919 0.01033 0.0345	0.01033 0.0345	0.0345	80	0.00045	0.01075	0.00012	471	92	242	~	219	3	216	2	111
0.30 0.0663 0.00043 1.35596 0.00817 0.1490	0.0663 0.00043 1.35596 0.00817 0.1490	0.00043 1.35596 0.00817 0.1490	1.35596 0.00817 0.1490	0.00817 0.1490	0.1490	10	0.00145	0.02378	0.00026	816	11	870	4	895	~	475	5	76
0.44 0.14699 0.0009 9.82299 0.05684 0.4569	0.14699 0.0009 9.82299 0.05684 0.4569	0.0009 9.82299 0.05684 0.4569	9.82299 0.05684 0.4569	0.05684 0.4569	0.4569	91	0.00488	0.11793	0.00125	2311	10	2418	2	2327	21	2253	23	66
0.39 0.05235 0.00064 0.42294 0.00475 0.058	0.05235 0.00064 0.42294 0.00475 0.058	0.00064 0.42294 0.00475 0.058	0.42294 0.00475 0.058	0.00475 0.058	0.058	86	0.00063	0.01733	0.00026	301	12	358	ю	369	4	347	5	26
0.63 0.05153 0.0007 0.52242 0.00654 0.067	0.05153 0.0007 0.52242 0.00654 0.067	0.0007 0.52242 0.00654 0.067	0.52242 0.00654 0.067	0.00654 0.067	0.067	86	0.00081	0.02021	0.00029	265	13	427	4	409	5	404	9	104
1.02 0.08689 0.01753 0.17601 0.03474 0.014	0.08689 0.01753 0.17601 0.03474 0.014	0.01753 0.17601 0.03474 0.014	0.17601 0.03474 0.014	0.03474 0.014	0.014	69	0.00062	0.00435	0.00016	1358	432	165	30	94	4	88	3	176
1.03 0.05546 0.00134 0.50927 0.01131 0.0668	0.05546 0.00134 0.50927 0.01131 0.0668	0.00134 0.50927 0.01131 0.0668	0.50927 0.01131 0.0668	0.01131 0.0668	0.0668	6	0.00093	0.0187	0.00035	431	26	418	~	417	9	374	7	100
0.89 0.09696 0.03422 0.21019 0.07191 0.0157	0.09696 0.03422 0.21019 0.07191 0.0157	0.03422 0.21019 0.07191 0.0157	0.21019 0.07191 0.0157	0.07191 0.0157	0.0157	2	0.00136	0.00461	0.00033	1566	785	194	09	101	6	93	7	192
0.48 0.13313 0.00256 6.22407 0.10931 0.3404	0.13313 0.00256 6.22407 0.10931 0.3404	0.00256 6.22407 0.10931 0.3404	6.22407 0.10931 0.3404	0.10931 0.3404	0.3404	L.	0.00579	0.087	0.00173	2140	14	2008	15	1889	28	1686	32	113
0.30 0.05735 0.00115 0.53154 0.00908 0.0672	0.05735 0.00115 0.53154 0.00908 0.0672	0.00115 0.53154 0.00908 0.0672	0.53154 0.00908 0.0672	0.00908 0.0672	0.0672	0	0.00071	0.02087	0.00021	505	45	433	9	419	4	417	4	103
0.42 0.11384 0.00099 5.51058 0.04432 0.3425	0.11384 0.00099 5.51058 0.04432 0.3425	0.00099 5.51058 0.04432 0.3425	5.51058 0.04432 0.3425	0.04432 0.3425	0.3425		0.00381	0.08328	0.00128	1862	6	1902	2	1887	18	1617	24	66
0.36 0.16397 0.0009 10.97384 0.05686 0.4803	0.16397 0.0009 10.97384 0.05686 0.4803	0.0009 10.97384 0.05686 0.4803	10.97384 0.05686 0.4803	0.05686 0.4803	0.4803	3	0.00478	0.12519	0.00126	2497	10	2521	5	2559	21	2384	23	98
0.65 0.0532 0.00042 0.15898 0.00114 0.0217	0.0532 0.00042 0.15898 0.00114 0.0217	0.00042 0.15898 0.00114 0.0217	0.15898 0.00114 0.02174	0.00114 0.0217	0.0217	2	0.00021	0.00622	0.00006	337	10	150	1	139	1	125	1	108
0.86 0.05451 0.00107 0.20418 0.00364 0.02727	0.05451 0.00107 0.20418 0.00364 0.02727	0.00107 0.20418 0.00364 0.02727	0.20418 0.00364 0.02727	0.00364 0.02727	0.02727		0.00034	0.00802	0.00013	392	20	189	ŝ	173	6	161	3	109
1.93 0.07748 0.00769 0.26492 0.02571 0.0248	0.07748 0.00769 0.26492 0.02571 0.0248	0.00769 0.26492 0.02571 0.0248	0.26492 0.02571 0.0248	0.02571 0.0248	0.0248		0.00052	0.00744	0.00011	1134	205	239	21	158	3	150	2	151
1.62 0.05592 0.00264 0.30535 0.01311 0.03975	0.05592 0.00264 0.30535 0.01311 0.0397	0.00264 0.30535 0.01311 0.03975	0.30535 0.01311 0.0397	0.01311 0.03975	0.0397	10	0.00092	0.01109	0.00033	449	55	271	10	251	9	223	7	108
0.44 0.06567 0.00037 1.3817 0.00719 0.1531	0.06567 0.00037 1.3817 0.00719 0.1531	0.00037 1.3817 0.00719 0.1531	1.3817 0.00719 0.1531	0.00719 0.1531	0.1531	9	0.00147	0.04459	0.00038	262	12	881	ŝ	919	∞	882	7	96
0.71 0.11052 0.00121 4.74259 0.04756 0.31238	0.11052 0.00121 4.74259 0.04756 0.31238	0.00121 4.74259 0.04756 0.31238	4.74259 0.04756 0.31238	0.04756 0.31238	0.31238	~	0.00366	0.08805	0.0013	1808	10	1775	~	1752	18	1706	24	103
0.09 0.05682 0.00086 0.60678 0.0084 0.0777	0.05682 0.00086 0.60678 0.0084 0.0777	0.00086 0.60678 0.0084 0.0777	0.60678 0.0084 0.0777	0.0084 0.0777	0.0777	3	0.00089	0.03255	0.00108	485	14	482	2	483	5	647	21	100
0.75 0.05047 0.00348 0.11077 0.00713 0.0159	0.05047 0.00348 0.11077 0.00713 0.0159	0.00348 0.11077 0.00713 0.0159	0.11077 0.00713 0.0159	0.00713 0.0159	0.0159	5	0.00043	0.0052	0.00025	217	66	107	2	102	ю	105	5	105
0.69 0.05123 0.00146 0.16471 0.00436 0.0234	0.05123 0.00146 0.16471 0.00436 0.0234	0.00146 0.16471 0.00436 0.0234	0.16471 0.00436 0.0234	0.00436 0.0234	0.0234		0.00034	0.00697	0.00017	251	35	155	4	149	0	140	3	104
0.82 0.0565 0.00124 0.55594 0.01123 0.0716	0.0565 0.00124 0.55594 0.01123 0.0716	0.00124 0.55594 0.01123 0.0716	0.55594 0.01123 0.0716	0.01123 0.0716	0.0716	-	0.00095	0.02081	0.0004	472	23	449	Г	446	9	416	8	101
1.04 0.05048 0.00143 0.16619 0.00436 0.02395	0.05048 0.00143 0.16619 0.00436 0.02395	0.00143 0.16619 0.00436 0.02395	0.16619 0.00436 0.02395	0.00436 0.02395	0.02395		0.00035	0.00756	0.00015	217	34	156	4	153	0	152	3	102
0.62 0.06744 0.00611 0.34085 0.03009 0.03666	0.06744 0.00611 0.34085 0.03009 0.03666	0.00611 0.34085 0.03009 0.03666	0.34085 0.03009 0.03666	0.03009 0.03666	0.03666		0.00075	0.01117	0.00025	851	195	298	23	232	5	225	5	128
1.07 0.05803 0.00103 0.3299 0.00531 0.0413	0.05803 0.00103 0.3299 0.00531 0.0413	0.00103 0.3299 0.00531 0.0413	0.3299 0.00531 0.0413	0.00531 0.0413	0.0413	5	0.00051	0.01221	0.00019	531	16	289	4	261	б	245	4	111
1.07 0.05515 0.00178 0.17623 0.00524 0.023	0.05515 0.00178 0.17623 0.00524 0.023	0.00178 0.17623 0.00524 0.023	0.17623 0.00524 0.023	0.00524 0.0233	0.023	25	0.00037	0.00715	0.00016	418	39	165	5	148	6	144	3	111
1.61 0.0613 0.00154 0.31063 0.00721 0.0368	0.0613 0.00154 0.31063 0.00721 0.0368	0.00154 0.31063 0.00721 0.0368	0.31063 0.00721 0.0368	0.00721 0.0368	0.0368	9	0.00051	0.0109	0.00017	650	27	275	9	233	б	219	3	118
0.35 0.04914 0.00075 0.1932 0.0027 0.0285	0.04914 0.00075 0.1932 0.0027 0.0285	0.00075 0.1932 0.0027 0.0285	0.1932 0.0027 0.0285	0.0027 0.0285	0.0285	6	0.00032	0.00888	0.00018	155	15	179	6	182	5	179	4	98

					Icotone	ratioe							N aga	(e)				
Analysis	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	lσ	²⁰⁶ Pb/ ²³⁸ U	lσ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	10	06Pb/238U	10 ²	⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Min Ri	iver	-		-	1	-	-	-		
MJ01-42	0.77	0.04772	0.00142	0.15146	0.00419	0.02308	0.00034	0.00685	0.00016	85	38	143	4	147	6	138	e.	97
MJ01-43	0.43	0.05403	0.00066	0.54391	0.00614	0.07021	0.00079	0.0222	0.00033	372	11	441	4	425	5	444	7	104
MJ01-44	0.07	0.05704	0.00061	0.62973	0.00618	0.08029	0.00085	0.04745	0.0011	493	10	496	4	498	5	937	21	100
MJ01-45	0.54	0.15364	0.00088	9.59458	0.05171	0.44406	0.0045	0.13086	0.00124	2387	10	2397	5	2313	20	2486	22	103
MJ01-46	1.05	0.05515	0.00166	0.27671	0.00772	0.03648	0.00055	0.01105	0.00023	418	36	248	9	231	3	222	S	107
MJ01-47	1.17	0.04995	0.00046	0.28215	0.00239	0.04106	0.00041	0.01241	0.00012	193	10	252	7	259	3	249	0	76
MJ01-48	1.05	0.05853	0.00128	0.60185	0.01213	0.07474	0.001	0.02204	0.00038	550	22	478	~	465	9	441	~	103
MJ01-49	0.74	0.05332	0.00098	0.5215	0.00885	0.06509	0.00087	0.02116	0.00036	342	19	426	9	403	5	423	7	106
MJ01-50	0.94	0.06714	0.001	1.24341	0.01691	0.1346	0.0016	0.03901	0.00056	842	13	820	~	814	6	773	11	101
MJ01-51	0.30	0.06819	0.00054	1.72181	0.01254	0.18351	0.00186	0.05163	0.00066	874	10	1017	5	1086	10	1018	13	80
MJ01-52	0.39	0.05353	0.00072	0.5419	0.00668	0.07056	0.00081	0.0222	0.00037	351	12	440	4	428	5	444	7	103
MJ01-53	1.10	0.06018	0.00253	0.62241	0.02502	0.07501	0.00091	0.02316	0.00023	610	93	491	16	466	5	463	4	105
MJ01-54	0.32	0.10754	0.00066	4.65855	0.02733	0.31451	0.00308	0.08571	0.00084	1758	10	1760	2	1763	15	1662	16	100
MJ01-55	0.83	0.05154	0.00248	0.17018	0.0079	0.02397	0.00039	0.00771	0.0002	265	77	160	7	153	2	155	4	105
MJ01-56	0.40	0.10848	0.00079	5.17967	0.03616	0.33666	0.00348	0.09554	0.00104	1774	6	1849	9	1919	17	1844	19	92
MJ01-57	0.44	0.11201	0.00077	5.30017	0.03422	0.33368	0.00351	0.08948	0.00105	1832	10	1869	9	1804	17	1732	19	102
MJ01-58	0.26	0.10648	0.00084	4.45512	0.03265	0.30384	0.00319	0.09078	0.00138	1740	6	1723	9	1710	16	1756	26	102
MJ01-59	1.07	0.05849	0.00097	0.80377	0.01231	0.09979	0.0012	0.02881	0.00041	548	15	599	7	613	7	574	~	98
MJ01-60	0.11	0.05938	0.00086	0.61395	0.00647	0.07499	0.00075	0.02319	0.00026	581	32	486	4	466	4	463	Ś	104
MJ01-61	0.18	0.15155	0.00079	9.27764	0.04616	0.44433	0.00434	0.12191	0.00128	2363	10	2366	5	2370	19	2325	23	100
MJ01-62	0.72	0.05244	0.00267	0.18532	0.0088	0.02565	0.00055	0.00825	0.00033	305	69	173	~	163	3	166	7	106
MJ01-63	0.88	0.0509	0.00314	0.17034	0.01018	0.02427	0.00037	0.00764	0.0000	236	143	160	6	155	0	154	6	103
MJ01-64	0.82	0.05948	0.00126	0.5887	0.01145	0.07181	0.00095	0.02287	0.00044	585	21	470	2	447	9	457	6	105
MJ01-65	1.29	0.05196	0.00237	0.156	0.00683	0.0218	0.00035	0.00665	0.00014	284	71	147	9	139	0	134	б	106
MJ01-66	0.54	0.0468	0.00111	0.14551	0.00316	0.02265	0.0003	0.0055	0.00013	39	28	138	Э	144	0	111	б	96
MJ01-67	0.80	0.04953	0.00383	0.15602	0.01166	0.02289	0.00052	0.00621	0.00023	173	126	147	10	146	3	125	S	101
MJ01-68	0.40	0.05147	0.00144	0.5098	0.01297	0.06717	0.00116	0.02083	0.00071	262	31	418	6	429	2	417	14	26
MJ01-69	0.79	0.14736	0.00169	9.54373	0.10544	0.45057	0.00563	0.1127	0.00158	2316	6	2392	10	2286	25	2158	29	101
MJ01-70	0.83	0.04929	0.00204	0.11408	0.00441	0.01681	0.00029	0.0042	0.00011	163	55	112	Э	107	0	86	0	105
MJ01-71	0.93	0.09736	0.00116	4.14521	0.04713	0.29434	0.00349	0.07404	0.00088	1574	10	1663	6	1607	17	1444	17	98

					Icotono	ratioe						V	V) au	(e)				
Analysis	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207 Pb/ 235U	10	206Pb/238U	lσ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U		6Pb/238U	10 ²	⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Min Ri	iver				-		-			
MJ01-102	0.48	0.05238	0.00094	0.5052	0.00867	0.06803	0.00079	0.01961	0.00031	302	20	415	9	426	5	393	9	67
MJ01-103	0.40	0.05019	0.00099	0.49771	0.00943	0.065	0.00083	0.01986	0.00037	204	24	410	9	398	5	397	7	103
MJ01-104	0.30	0.08591	0.00061	2.05679	0.01325	0.17426	0.00178	0.04161	0.00051	1336	10	1135	4	1036	10	824	10	129
MJ01-105	0.30	0.04591	0.00104	0.17978	0.00393	0.02843	0.00033	0.00803	0.00017	7	24	168	ю	181	0	162	ю	93
MJ01-106	0.59	0.10502	0.00073	4.57663	0.03055	0.31038	0.00321	0.0819	0.00078	1715	10	1745	9	1772	16	1591	15	26
MJ01-107	1.90	0.04699	0.00082	0.15332	0.00245	0.02375	0.00028	0.00555	0.00006	49	18	145	2	151	2	112	1	96
MJ01-108	0.77	0.05261	0.00272	0.17456	0.00845	0.02415	0.00051	0.00607	0.00024	312	72	163	7	154	33	122	5	106
MJ01-109	09.0	0.05361	0.00145	0.54679	0.01423	0.07104	0.00096	0.02019	0.00042	355	36	443	6	420	9	404	~	105
MJ01-110	0.49	0.04725	0.00225	0.13894	0.00609	0.0214	0.00046	0.0054	0.00027	62	59	132	5	136	3	109	2	26
MJ01-111	0.65	0.08947	0.00092	3.12388	0.02926	0.25407	0.00288	0.0629	0.00085	1414	10	1439	2	1459	15	1233	16	26
MJ01-112	0.92	0.04897	0.00234	0.14482	0.00637	0.02152	0.00046	0.00536	0.00019	146	63	137	9	137	3	108	4	100
MJ01-113	0.34	0.05266	0.00075	0.52361	0.00712	0.06937	0.00078	0.02127	0.00032	314	14	428	5	429	5	425	9	100
MJ01-114	0.74	0.103	0.00138	4.34044	0.05535	0.30586	0.00358	0.07984	0.00115	1679	11	1701	11	1720	18	1553	22	98
MJ01-115	0.40	0.1036	0.00101	4.58066	0.04278	0.31092	0.00345	0.08366	0.00116	1690	6	1746	~	1594	17	1624	22	106
MJ01-116	1.15	0.06605	0.00843	0.14127	0.01673	0.01556	0.00077	0.00418	0.00034	808	166	134	15	100	5	84	7	134
MJ01-117	09.0	0.10575	0.00167	5.01329	0.07588	0.31403	0.00434	0.08961	0.00163	1727	13	1822	13	1706	21	1735	30	101
MJ01-118	0.80	0.05158	0.00237	0.16323	0.00721	0.02297	0.00037	0.00701	0.00018	267	72	154	9	146	2	141	4	105
MJ01-119	0.59	0.15087	0.00117	10.30263	0.07756	0.46552	0.00525	0.12364	0.00141	2356	6	2462	2	2495	23	2356	25	94
MJ01-120	0.78	0.05386	0.00204	0.56441	0.02056	0.07004	0.00116	0.02213	0.00053	365	55	454	13	422	2	442	10	108
MJ01-121	96.0	0.05256	0.00162	0.47933	0.01339	0.06334	0.00114	0.01651	0.00037	310	34	398	6	374	7	331	7	106
MJ01-122	0.88	0.10118	0.00182	4.16982	0.07166	0.29101	0.00392	0.08751	0.00145	1646	15	1668	14	1596	19	1696	27	103
MJ01-123	0.70	0.09085	0.00276	2.84058	0.07831	0.22678	0.00289	0.06689	0.00079	1443	59	1366	21	1318	15	1309	15	109
MJ01-124	0.85	0.06218	0.00133	1.21968	0.02501	0.1323	0.00176	0.03964	0.00064	680	24	810	11	758	10	786	12	107
MJ01-125	0.89	0.04828	0.00192	0.1511	0.0056	0.02276	0.0004	0.00588	0.00016	113	55	143	5	145	3	118	б	66
MJ01-126	1.17	0.04743	0.00158	0.1082	0.00334	0.01657	0.00025	0.00445	0.0000	78	45	105	3	106	0	92	0	66
MJ01-127	0.55	0.09616	0.00345	2.08254	0.06885	0.15707	0.0022	0.04605	0.00079	1551	69	1143	53	940	12	910	15	122
MJ01-128	69.0	0.05757	0.00265	0.17862	0.00761	0.02256	0.00046	0.00628	0.00024	513	58	167	2	144	ю	127	5	116
MJ01-129	0.94	0.05467	0.00234	0.57994	0.02387	0.07394	0.00126	0.02242	0.00056	399	63	464	15	478	~	448	11	26
MJ01-130	0.94	0.05463	0.00389	0.29585	0.02011	0.03938	76000.0	0.01109	0.0005	397	108	263	16	249	9	223	10	106
MJ01-131	0.50	0.05274	0.00285	0.18499	0.00961	0.02544	0.00037	0.00798	0.0000	318	126	172	8	162	5	161	5	106

					Isotope	ratios						P	ges (]	Ma)				
Analysis	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Min Ri	ver									
MJ16-16	0.20	0.10862	0.00294	4.07812	0.09128	0.2853	0.00414	0.07884	0.0012	1776	51	1650	18	1652	21	1534	23	108
MJ16-17	0.80	0.13711	0.00111	7.44001	0.05608	0.39362	0.00416	0.11441	0.00135	2191	6	2166	7	2140	19	2189	24	102
MJ16-18	0.49	0.11064	0.00202	5.17216	0.08774	0.33909	0.00517	0.09695	0.00279	1810	14	1848	14	1882	25	1870	51	96
MJ16-19	0.19	0.06897	0.00064	1.38184	0.01188	0.14534	0.00149	0.04347	0.0008	868	10	881	S	875	∞	860	15	101
MJ16-20	0.17	0.06843	0.00114	1.34926	0.01756	0.143	0.0015	0.0435	0.00046	882	35	867	~	862	~	861	6	101
MJ16-21	0.79	0.1128	0.00125	5.00155	0.05111	0.32165	0.00373	0.08798	0.00135	1845	6	1820	6	1798	18	1704	25	103
MJ16-22	0.83	0.04786	0.00698	0.10975	0.01481	0.01663	0.00096	0.00501	0.00061	92	195	106	14	106	9	101	12	100
MJ16-23	0.52	0.05427	0.00105	0.50179	0.00892	0.06707	0.00084	0.02075	0.00044	382	20	413	9	418	2	415	6	66
MJ16-24	0.81	0.11144	0.00216	4.79243	0.08539	0.31194	0.00494	0.09311	0.00217	1823	14	1784	15	1750	24	1799	40	104
MJ16-25	0.68	0.05219	0.00319	0.13064	0.00729	0.01816	0.0005	0.00635	0.00032	294	78	125	Г	116	3	128	9	108
MJ16-26	0.43	0.05484	0.00206	0.46841	0.01619	0.06196	0.00116	0.01969	0.00083	406	45	390	11	388	7	394	16	101
MJ16-27	2.02	0.07231	0.00765	0.33026	0.0311	0.03313	0.00171	0.01045	0.00066	995	110	290	24	210	11	210	13	138
MJ16-28	96.0	0.18031	0.00161	12.02926	0.10207	0.48394	0.00551	0.13308	0.00175	2656	6	2607	~	2544	24	2525	31	104
MJ16-29	0.61	0.10323	0.00383	4.10473	0.13508	0.28839	0.00493	0.08394	0.00135	1683	70	1655	27	1633	25	1629	25	103
MJ16-30	0.67	0.05096	0.00318	0.17172	0.00988	0.02444	0.00066	0.00754	0.00041	239	83	161	6	156	4	152	∞	103
MJ16-31	0.38	0.05114	0.00124	0.24905	0.00513	0.03532	0.00045	0.01112	0.00018	247	57	226	4	224	3	223	4	101
MJ16-32	0.28	0.14421	0.00342	7.1162	0.12951	0.3849	0.00543	0.10073	0.00153	2278	42	2126	16	2092	26	1940	28	109
MJ16-33	1.12	0.05446	0.00247	0.25613	0.01062	0.03412	0.00073	0.01033	0.00034	390	55	232	6	216	2	208	7	107
MJ16-34	0.79	0.05548	0.00179	0.52387	0.01554	0.0685	0.00117	0.02098	0.0006	432	37	428	10	427	7	420	12	100
MJ16-35	0.46	0.05899	0.00194	0.56193	0.01691	0.0691	0.00121	0.02137	0.00083	567	36	453	11	431	2	427	16	105
MJ16-36	0.33	0.05479	0.00159	0.5075	0.01355	0.06719	0.00106	0.02063	0.00078	404	33	417	6	419	9	413	15	100
MJ16-37	0.32	0.05787	0.00128	0.60193	0.01216	0.07546	0.00103	0.024	0.00073	525	22	478	~	469	9	479	14	102
MJ16-38	0.55	0.13855	0.00322	7.66955	0.16654	0.40154	0.00789	0.117	0.00429	2209	17	2193	20	2176	36	2236	78	102
MJ16-39	0.27	0.11345	0.00283	4.94266	0.10006	0.31599	0.00462	0.09109	0.00133	1855	46	1810	17	1770	23	1762	25	105
MJ16-40	1.84	0.07198	0.00115	1.60025	0.02346	0.16128	0.002	0.04813	0.00062	985	13	970	6	964	11	950	12	101
MJ16-41	0.54	0.05218	0.0049	0.25224	0.02175	0.03506	0.00141	0.01165	0.00105	293	124	228	18	222	6	234	21	103
MJ16-42	0.30	0.12007	0.00141	5.50307	0.05954	0.33248	0.004	0.09991	0.00254	1957	10	1901	6	1850	19	1925	47	106
MJ16-43	0.73	0.05309	0.00449	0.26854	0.02106	0.03669	0.00129	0.0104	0.00077	333	115	242	17	232	~	209	15	104
MJ16-44	0.86	0.05037	0.00399	0.24548	0.01813	0.03535	0.00112	0.00987	0.00061	212	111	223	15	224	2	199	12	100
MJ16-45	0.26	0.05798	0.00153	0.58953	0.01429	0.07376	0.00112	0.02728	0.00105	529	28	471	6	459	5	544	21	103

				Isotope	ratios						4	vges (Ma)				-
_	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Concordance
							Min Ri	iver									
+	0.11129	0.00317	4.76441	0.11572	0.31049	0.0046	0.08968	0.00128	1821	53	1779	20	1743	23	1736	24	104
6	0.19	0.00202	13.58963	0.13829	0.51882	0.00653	0.14442	0.00368	2742	6	2722	10	2694	28	2727	65	102
0	0.0504	0.00481	0.10533	0.00934	0.01516	0.00056	0.00453	0.00025	213	134	102	6	76	4	91	5	105
4	0.11605	0.00247	4.50848	0.08723	0.28181	0.00476	0.08616	0.00236	1896	16	1733	16	1600	24	1671	4	119
86	0.04969	0.00236	0.24564	0.01072	0.03586	0.00078	0.01069	0.00038	181	62	223	6	227	5	215	8	98
72	0.11509	0.0026	5.19124	0.10802	0.3272	0.00586	0.09622	0.00279	1881	17	1851	18	1825	28	1857	51	103
4	0.04997	0.00198	0.17464	0.00638	0.02535	0.00047	0.00802	0.00026	194	51	163	9	161	3	161	5	101
11	0.10925	0.00151	3.76282	0.03478	0.2498	0.00257	0.07229	0.0008	1787	26	1585	7	1437	13	1411	15	124
12	0.16468	0.00171	10.99873	0.10885	0.48447	0.00589	0.12783	0.0018	2504	6	2523	6	2547	26	2431	32	98
36	0.11458	0.00119	4.97247	0.04767	0.31481	0.00356	0.09105	0.00164	1873	6	1815	~	1764	17	1761	30	106
.15	0.11575	0.00121	5.08204	0.04896	0.31848	0.00362	0.09016	0.00247	1892	6	1833	~	1782	18	1745	46	106
90	0.04815	0.00353	0.2447	0.01658	0.03687	0.00115	0.0112	0.00063	107	95	222	14	233	Г	225	13	95
.85	0.05313	0.00207	0.51469	0.01844	0.07027	0.00136	0.02187	0.00067	334	47	422	12	438	~	437	13	96
52	0.15858	0.003	9.57793	0.13688	0.43804	0.00541	0.12215	0.00151	2441	33	2395	13	2342	24	2329	27	104
4.	0.05142	0.00319	0.14813	0.00849	0.0209	0.00055	0.00666	0.00023	260	84	140	~	133	3	134	2	105
12	0.05439	0.00141	0.50592	0.01201	0.06747	0.00099	0.02126	0.00096	387	28	416	8	421	9	425	19	66
90	0.0494	0.00642	0.1162	0.01385	0.01706	0.00092	0.00529	0.0005	167	169	112	13	109	9	107	10	103
12	0.07239	0.00082	1.59063	0.01647	0.1594	0.00173	0.04834	0.00126	7997	10	67	9	953	10	954	24	101
.35	0.1096	0.00203	4.81359	0.08216	0.3186	0.00487	0.08988	0.00168	1793	14	1787	14	1783	24	1740	31	101
.26	0.05662	0.00151	0.50902	0.01242	0.06521	86000.0	0.02143	0.00081	477	29	418	8	407	9	429	16	103
.32	0.11426	0.00138	4.93955	0.05504	0.31361	0.00379	0.09351	0.00207	1868	10	1809	6	1758	19	1807	38	106
.75	0.04974	0.00182	0.15561	0.00523	0.02269	0.0004	0.00716	0.00022	183	46	147	5	145	3	144	4	101
.02	0.18661	0.00223	13.509	0.15506	0.52513	0.00707	0.14321	0.00198	2713	10	2716	11	2721	30	2705	35	100
.71	0.05354	0.00243	0.26404	0.01097	0.03578	0.00076	0.01099	0.00043	352	56	238	6	227	5	221	6	105
.29	0.08031	0.00882	0.17118	0.01469	0.01546	0.00108	0.00765	0.00048	1205	77	160	13	66	٢	154	10	162
.34	0.11384	0.00272	4.86573	0.10686	0.31005	0.00575	0.09228	0.00435	1862	18	1796	18	1741	28	1784	80	107
.31	0.11169	0.00138	3.72842	0.02741	0.24211	0.0024	0.0699	0.00072	1827	23	1577	9	1398	12	1366	14	131
.28	0.11486	0.00157	4.80012	0.04146	0.31109	0.00321	0.08726	76000.0	1878	25	1785	7	1757	16	1691	18	107
.36	0.05556	0.00151	0.49971	0.01233	0.06523	0.00074	0.02033	0.00022	435	62	412	8	407	4	407	4	101
.83	0.16677	0.00196	10.96213	0.12237	0.47682	0.00619	0.13511	0.00234	2525	10	2520	10	2513	27	2561	42	100

					Isotone	ratios						V	ops (Ma)				
Analysis	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	10	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Min Ri	iver							-		
MJ16-76	0.41	0.11363	0.0032	4.64497	0.11879	0.31552	0.00627	0.09407	0.00688	1858	21	1757	21	1774	31	1817	127	105
MJ16-77	0.20	0.08627	0.00397	2.55146	0.10707	0.21455	0.00609	0.07457	0.0074	1344	41	1287	31	1253	32	1454	139	107
MJ16-78	0.60	0.16735	0.00146	10.88995	0.08992	0.47203	0.00527	0.14069	0.0019	2531	9	2514	~	2492	23	2661	34	102
MJ16-79	0.43	0.05818	0.0059	0.20299	0.01862	0.02531	0.00116	0.00718	0.00089	537	122	188	16	161	2	145	18	117
MJ16-80	1.10	0.04861	0.005	0.1105	0.0106	0.01649	0.00064	0.0054	0.00036	129	143	106	10	105	4	109	2	101
MJ16-81	1.17	0.11451	0.00237	5.1481	0.09813	0.32613	0.00546	0.09686	0.00209	1872	15	1844	16	1820	27	1869	39	103
MJ16-82	1.50	0.04605	0.00333	0.09637	0.00666	0.01518	0.00032	0.00491	0.0001	0	160	93	9	76	7	66	0	96
MJ16-83	0.47	0.06632	0.00083	1.25003	0.01433	0.13673	0.00152	0.04235	0.00067	816	11	823	9	826	6	838	13	100
MJ16-84	0.89	0.05898	0.00217	0.5818	0.0196	0.07155	0.00137	0.02257	0.00067	566	41	466	13	445	~	451	13	105
MJ16-85	1.22	0.05026	0.00296	0.24414	0.01339	0.03524	0.00087	0.01162	0.00042	207	82	222	11	223	5	234	~	100
MJ16-86	1.42	0.09408	0.00148	3.27484	0.04719	0.2525	0.00333	0.07668	0.00112	1510	12	1475	11	1451	17	1493	21	104
MJ16-87	0.17	0.14591	0.00136	7.90657	0.06895	0.39309	0.00442	0.11427	0.00289	2299	6	2220	~	2137	20	2187	52	108
MJ16-88	0.09	0.11497	0.0027	5.23824	0.09324	0.33045	0.00507	0.09513	0.00147	1879	43	1859	15	1841	25	1837	27	102
MJ16-89	0.37	0.13649	0.00159	4.50762	0.02879	0.23952	0.00233	0.06778	0.0008	2183	21	1732	Ś	1384	12	1326	15	158
MJ16-90	0.75	0.05333	0.00248	0.26227	0.01114	0.03567	0.00078	0.01151	0.0005	343	57	236	6	226	5	231	10	104
MJ16-91	2.37	0.09684	0.00459	3.6561	0.1592	0.27388	0.00852	0.08011	0.00249	1564	40	1562	35	1560	43	1558	47	100
MJ16-92	0.14	0.05523	0.00164	0.44135	0.01198	0.05796	0.00093	0.02388	0.00255	422	33	371	~	363	9	477	50	102
MJ16-93	1.08	0.11446	0.00367	4.883	0.14348	0.30947	0.00728	0.09395	0.00317	1871	24	1799	25	1738	36	1815	59	108
MJ16-94	0.71	0.12775	0.00188	6.51347	0.08917	0.36985	0.00513	0.10841	0.00207	2067	11	2048	12	2029	24	2080	38	102
MJ16-95	0.65	0.0557	0.01897	0.28289	0.08836	0.03684	0.0053	0.01092	0.0033	440	397	253	70	233	33	220	99	109
MJ16-96	0.70	0.05966	0.0024	0.60046	0.02209	0.073	0.0015	0.02177	0.00078	591	45	478	14	454	6	435	15	105
MJ16-97	0.66	0.07156	0.00194	1.55778	0.03856	0.1579	0.00266	0.04664	0.00141	973	25	954	15	945	15	921	27	101
								Jiulong l	River									
JL01-1	0.46	0.05358	0.00117	0.27831	0.00552	0.03783	0.0005	0.01072	0.0002	353	23	249	4	239	с	216	4	104
JL01-2	0.40	0.17196	0.00136	12.93791	0.09902	0.51123	0.00604	0.12938	0.00191	2577	6	2675	2	2672	25	2459	34	96
JL01-3	0.85	0.04886	0.0008	0.14366	0.00211	0.02165	0.00026	0.00476	0.00007	141	16	136	0	138	0	96	-	66
JL01-4	0.45	0.04943	0.00091	0.12196	0.00203	0.01817	0.00023	0.00473	0.0000	168	18	117	0	116	-	95	2	101
JL01-5	0.68	0.07014	0.00053	1.78917	0.01273	0.1901	0.00188	0.04897	0.00043	932	10	1042	2	1122	10	996	~	93
JL01-6	1.01	0.04743	0.00122	0.1646	0.00403	0.02586	0.00032	0.00691	0.00011	71	35	155	4	165	7	139	7	94
JL01-7	0.72	0.05057	0.0019	0.11326	0.00407	0.01668	0.00025	0.00501	0.00012	221	55	109	4	107	2	101	7	102

					Isotope	ratios						A	ges (1	Ia)				
Analysis	I IV (²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	10	06Pb/ ²³⁸ U	10	²⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Jiulong l	River									
JL01-8	0.54	0.04978	86000.0	0.2675	0.00499	0.04001	0.00046	0.01219	0.00019	185	23	241	4	253	3	245	4	95
JL01-9	1.17	0.17099	0.007	0.59221	0.02165	0.02512	0.00046	0.00695	0.00014	2567	70	472	14	160	3	140	3	295
JL01-10	0.35	0.05179	0.00044	0.23444	0.00178	0.0333	0.00033	0.00966	0.0001	276	11	214		211	0	194	0	101
JL01-11	0.56	0.05355	0.0007	0.28776	0.00334	0.03952	0.00044	0.00996	0.00013	352	12	257	3	250	3	200	3	103
JL01-12	0.54	0.05021	0.00328	0.17963	0.01147	0.02595	0.00037	0.00819	0.0000	205	150	168	10	165	0	165	7	102
JL01-13	0.30	0.0489	0.00063	0.17079	0.00197	0.02567	0.00028	0.00749	0.00012	143	12	160	2	163	0	151	7	98
JL01-14	0.27	0.04862	0.00065	0.2154	0.00261	0.03256	0.00036	0.00885	0.00016	130	13	198	2	207	0	178	ю	96
JL01-15	0.69	0.05315	0.00449	0.17804	0.01387	0.02435	0.00086	0.00746	0.00049	335	113	166	12	155	5	150	10	107
JL01-16	0.11	0.09232	0.00047	3.2784	0.01528	0.26095	0.00253	0.16841	0.00159	1474	11	1476	4	1495	13	3146	28	66
JL01-17	0.45	0.05038	0.00096	0.16495	0.00283	0.02405	0.0003	0.00624	0.00012	213	19	155	2	153	0	126	0	101
JL01-18	1.04	0.0529	0.00078	0.27059	0.00357	0.03757	0.00043	0.00876	0.0001	325	13	243	3	238	3	176	7	102
JL01-19	0.73	0.0519	0.00267	0.13979	0.00661	0.01956	0.00045	0.0058	0.00018	281	67	133	9	125	3	117	4	106
JL01-20	0.49	0.04731	0.00088	0.11107	0.00187	0.01724	0.00021	0.00429	0.00008	65	19	107	2	110	1	87	2	76
JL01-21	0.69	0.04735	0.00291	0.16171	0.00921	0.0248	0.00064	0.00774	0.00038	67	79	152	~	158	4	156	~	96
JL01-22	0.96	0.05285	0.00041	0.28307	0.00198	0.03929	0.00039	0.00908	0.00007	322	11	253	2	248	0	183	1	102
JL01-23	1.43	0.07586	0.00113	0.30717	0.01283	0.04363	0.00053	0.01048	0.00012	1091	12	278	4	275	3	211	6	101
JL01-24	0.86	0.04928	0.00096	0.16722	0.00296	0.02489	0.00031	0.00554	0.0000	161	20	157	Э	158	0	112	7	66
JL01-25	0.24	0.0981	0.00062	4.32438	0.02566	0.30591	0.00319	0.07369	0.00076	1588	10	1698	5	1719	16	1437	14	92
JL01-26	0.91	0.04605	0.00295	0.10255	0.00615	0.01615	0.00036	0.00617	0.00049	0	140	66	9	103	0	124	10	96
JL01-27	0.75	0.05177	0.00158	0.21792	0.00633	0.0311	0.00042	0.00935	0.00018	275	42	200	5	197	3	188	4	102
JL01-28	0.42	0.05098	0.00181	0.2786	0.00938	0.03963	0.00044	0.01248	0.00014	240	84	250	7	251	3	251	3	100
JL01-29	0.51	0.0509	0.00157	0.16344	0.00471	0.02329	0.00026	0.00734	0.00007	236	73	154	4	148	0	148	1	104
JL01-30	0.61	0.14204	0.00112	8.87349	0.08334	0.435	0.00594	0.11123	0.0015	2252	6	2312	2	2187	14	2492	27	103
JL01-31	0.04	0.05009	0.00039	0.2868	0.00211	0.04223	0.00041	0.02596	0.00037	199	11	256	0	267	3	518	7	96
JL01-32	0.71	0.05489	0.00312	0.14327	0.00786	0.01893	0.00028	0.00591	0.00007	408	131	136	7	121	2	119	1	112
JL01-33	0.62	0.05113	0.00057	0.26934	0.00269	0.03857	0.00041	0.00959	0.00011	247	11	242	7	244	3	193	0	66
JL01-34	0.71	0.05888	0.00336	0.19283	0.01062	0.02375	0.00036	0.00735	0.0000	563	128	179	6	151	2	148	6	119
JL01-35	0.62	0.05215	0.00297	0.13326	0.00735	0.01853	0.00027	0.00582	0.00007	292	133	127	2	118	0	117	-	108
JL01-36	0.88	0.09691	0.00455	0.2431	0.0106	0.01819	0.00032	0.00533	0.0000	1566	90	221	6	116	2	107	0	191
JL01-37	0.29	0.10099	0.00074	4.0845	0.02813	0.29768	0.00297	0.08804	0.00101	1642	6	1651	9	1680	15	1705	19	98

Analvsis	Th/U -				Isotope	ratios						Š	ses (I	(Ia)	ŀ			Concordance
•		²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	207 Pb/ 235 U	1σ	²⁰⁶ Pb/ ²³⁸ U	1 σ ²	⁰⁸ Pb/ ²³² Th	1σ	
								Jiulong I	River									
JL01-38	0.62	0.05857	0.00181	0.60709	0.01785	0.07627	0.00109	0.02599	0.00054	551	39	482	=	474	7	519	Ξ	102
JL01-39	0.85	0.06012	0.00356	0.26932	0.01546	0.03249	0.00047	0.01003	0.00011	608	132	242	12	206	ŝ	202	0	117
JL01-40	0.63	0.0511	0.00308	0.15558	0.00909	0.02208	0.00033	0.00695	0.00008	245	140	147	~	141	2	140	0	104
JL01-41	0.13	0.05802	0.00041	0.85733	0.00543	0.10795	0.00106	0.03993	0.00049	531	11	629	ю	661	9	791	10	95
JL01-42	0.78	0.0532	0.00218	0.16847	0.00642	0.02299	0.00042	0.00728	0.00024	337	54	158	9	147	ŝ	147	5	107
JL01-43	1.21	0.14108	0.00168	8.77567	0.10074	0.42608	0.00541	0.11378	0.00139	2241	6	2315	10	2122	24	2178	25	106
JL01-44	0.80	0.0484	0.00403	0.1402	0.01136	0.02101	0.00039	0.00666	0.00012	119	188	133	10	134	2	134	0	66
JL01-45	0.81	0.0522	0.00047	0.28962	0.00243	0.04025	0.00041	0.05618	0.00163	294	11	258	0	254	ю	1105	31	102
JL01-46	0.64	0.04791	0.00167	0.16763	0.00536	0.02549	0.00043	0.00651	0.0002	95	44	157	5	162	ю	131	4	26
JL01-47	0.65	0.10064	0.00066	4.68431	0.02929	0.3108	0.00335	0.08594	0.00076	1636	10	1764	S	1791	16	1666	14	91
JL01-48	0.45	0.05529	0.00261	0.33194	0.01509	0.04354	0.00056	0.01358	0.00018	424	108	291	12	275	б	273	4	106
JL01-49	0.46	0.05315	0.00255	0.18405	0.00849	0.02512	0.00034	0.00787	0.0000	335	112	172	7	160	2	158	0	108
JL01-50	0.98	0.04945	0.00466	0.11595	0.00983	0.0171	0.00074	0.00378	0.00027	169	115	111	6	109	2	76	5	102
JL01-51	69.0	0.04936	0.00207	0.11412	0.00445	0.01684	0.00031	0.00421	0.00012	165	57	110	4	108	2	85	0	102
JL01-52	0.75	0.05153	0.00168	0.26189	0.00764	0.03706	0.00066	0.00904	0.00027	265	36	236	9	235	4	182	5	100
JL01-53	0.73	0.04903	0.002	0.12588	0.00473	0.0187	0.00035	0.00466	0.00016	149	53	120	4	119	0	94	3	101
JL01-54	1.00	0.04977	0.00275	0.11723	0.00581	0.01717	0.00046	0.00367	0.00015	184	67	113	5	110	ю	74	ю	103
JL01-55	0.63	0.0463	0.00182	0.10285	0.00379	0.01618	0.00027	0.00393	0.0001	13	47	66	33	103	0	79	2	96
JL01-56	0.70	0.04828	0.00187	0.15233	0.00552	0.02298	0.0004	0.00532	0.0001	113	53	144	5	146	ю	107	0	66
JL01-57	0.70	0.06348	0.00633	0.15153	0.01488	0.01731	0.00031	0.00531	0.00011	724	220	143	13	111	2	107	0	129
JL01-58	0.66	0.05571	0.00318	0.19514	0.01074	0.02541	0.00039	0.00791	0.0001	441	131	181	6	162	0	159	7	112
JL01-59	1.11	0.05	0.00371	0.17671	0.01189	0.02574	0.00087	0.00563	0.00029	195	94	165	10	164	5	113	9	101
JL01-60	0.57	0.05056	0.00053	0.26467	0.00253	0.03811	0.0004	0.0098	0.00011	221	11	238	0	241	0	197	0	66
JL01-61	1.10	0.04981	0.0051	0.10803	0.01013	0.01578	0.00068	0.00437	0.00029	186	133	104	6	101	4	88	9	103
JL01-62	0.73	0.05001	0.0031	0.11873	0.00666	0.01727	0.00049	0.00425	0.00023	195	78	114	9	110	б	86	5	104
JL01-63	09.0	0.05131	0.00092	0.1753	0.00285	0.02485	0.0003	0.0065	0.00011	255	18	164	0	158	0	131	0	104
JL01-64	09.0	0.11214	0.00082	5.32096	0.03682	0.33457	0.00343	0.09074	0.00087	1834	6	1872	9	1739	16	1756	16	105
JL01-65	1.02	0.05079	0.00188	0.16318	0.00561	0.02338	0.0004	0.00598	0.00016	231	48	153	5	149	3	121	3	103
JL01-66	0.73	0.04907	0.00088	0.1576	0.00257	0.02334	0.00028	0.00573	0.0000	151	18	149	0	149	6	115	2	100
JL01-67	0.94	0.04996	0.00088	0.1745	0.00279	0.02538	0.00031	0.00583	0.00008	193	17	163	6	162	6	117	6	101

	i				Isotope	ratios						A	ges (1	Ma)				
Analysis	TP/O	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	10	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Concordance
								Jiulong l	River									
JL01-68	0.61	0.04992	0.00128	0.26007	0.00616	0.03789	0.00054	0.01016	0.00022	191	30	235	5	240	3	204	4	98
JL01-69	1.03	0.05975	0.00217	0.53119	0.01713	0.06459	0.00134	0.01848	0.00057	595	36	433	11	403	~	370	11	107
JL01-70	0.54	0.04983	0.00232	0.15357	0.00667	0.02241	0.00044	0.00604	0.0002	187	65	145	9	143	ю	122	4	101
JL01-71	0.81	0.04841	0.00087	0.14306	0.00234	0.02146	0.00026	0.00517	0.00008	119	18	136	2	137	6	104	2	66
JL01-72	0.65	0.04741	0.00157	0.1079	0.00335	0.01655	0.00025	0.00442	0.0000	70	45	104	3	106	6	89	2	98
JL01-73	0.88	0.0505	0.00135	0.25882	0.0063	0.0372	0.00055	0.00918	0.0002	218	30	234	5	235	3	185	4	100
JL01-74	1.10	0.04948	0.00122	0.24545	0.00545	0.036	0.00052	0.00879	0.00017	171	27	223	4	228	33	177	3	98
JL01-75	0.64	0.05004	0.00206	0.11033	0.00421	0.01603	0.0003	0.00399	0.0001	197	54	106	4	103	0	80	2	103
JL01-76	0.54	0.04815	0.00094	0.1582	0.0028	0.02383	0.0003	0.00578	0.00011	107	20	149	2	152	6	116	2	98
JL01-77	0.46	0.04749	0.00066	0.15235	0.00192	0.02327	0.00026	0.00607	0.0000	74	13	144	2	148	0	122	7	76
JL01-78	0.72	0.06333	0.00073	1.15392	0.01206	0.13212	0.00146	0.03076	0.00038	719	11	<i>611</i>	9	800	~	612	7	26
JL01-79	0.08	0.10278	0.0005	4.28543	0.0193	0.29228	0.0029	0.08289	76000.0	1675	11	1691	4	1603	14	1610	18	104
JL01-80	0.48	0.05179	0.00184	0.16833	0.00544	0.02356	0.00042	0.00645	0.00023	276	42	158	5	150	3	130	5	105
								standard 3	zircons									
91500	2.782	0.07392	0.00159	1.83248	0.03624	0.17982	0.00265	0.05239	0.00174	1039	19	1057	13	1066	14	1032	33	
91500	2.846	0.07462	0.00164	1.84183	0.03708	0.17903	0.00266	0.05333	0.00176	1058	19	1061	13	1062	15	1050	34	
91500	2.832	0.07811	0.00196	1.93462	0.04429	0.17966	0.00295	0.05591	0.00211	1150	22	1093	15	1065	16	1100	40	
91500	2.873	0.07571	0.00198	1.87547	0.04505	0.17968	0.00301	0.05388	0.00215	1087	24	1072	16	1065	16	1061	41	
91500	2.804	0.07452	0.00203	1.84387	0.04606	0.17947	0.00309	0.05388	0.00225	1056	25	1061	16	1064	17	1061	43	
91500	2.809	0.07277	0.00173	1.79559	0.03907	0.17899	0.0028	0.05406	0.00194	1008	21	1044	14	1061	15	1064	37	
91500	2.815	0.07739	0.002	1.91263	0.04518	0.17926	0.00302	0.05592	0.00218	1131	23	1086	16	1063	17	1100	42	
91500	2.797	0.07785	0.00194	1.92132	0.04372	0.17902	0.00294	0.05305	0.00202	1143	22	1089	15	1062	16	1045	39	
91500	2.898	0.07367	0.00177	1.82226	0.04038	0.17943	0.0028	0.0522	0.00187	1032	22	1053	15	1064	15	1028	36	
91500	2.814	0.07531	0.00179	1.8605	0.04053	0.17921	0.00284	0.05511	0.00196	1077	21	1067	14	1063	16	1084	38	
91500	2.928	0.07581	0.00172	1.87195	0.03892	0.17911	0.00275	0.0547	0.00186	1090	20	1071	14	1062	15	1076	36	
91500	2.887	0.07226	0.00188	1.78378	0.04266	0.17907	0.00297	0.05289	0.00207	993	24	1040	16	1062	16	1042	40	
91500	2.921	0.07181	0.00172	1.7775	0.03921	0.17956	0.00282	0.0534	0.00193	981	22	1037	14	1065	15	1052	37	
91500	2.86	0.07537	0.00176	1.86513	0.03987	0.17951	0.00281	0.0547	0.00194	1078	21	1069	14	1064	15	1076	37	
91500	2.811	0.07511	0.00196	1.85367	0.04445	0.17902	0.003	0.05579	0.00216	1071	24	1065	16	1062	16	1097	41	
91500	2.875	0.07599	0.00182	1.87497	0.04107	0.179	0.00284	0.05335	0.00193	1095	21	1072	15	1062	16	1051	37	

-	Concordance																															
	1σ		42	43	47	54	47	48	4	55	64	50	09	46	55	55	57	43	71	46	42	49	50	50	49	40	43	37	4	43	42	42
	²⁰⁸ Pb/ ²³² Th		1037	1013	1002	1193	1090	1096	1054	1042	1174	1011	1024	1023	1023	1064	1036	1011	1046	1040	1060	1042	1042	1202	1149	1020	1065	988	1088	1079	1062	1090
	1σ		17	17	19	18	18	18	17	20	22	19	22	18	21	20	21	17	25	18	16	19	19	19	18	16	17	16	17	16	16	17
(Ma)	²⁰⁶ Pb/ ²³⁸ U		1064	1063	1060	1062	1062	1065	1063	1062	1065	1063	1065	1062	1064	1063	1064	1061	1061	1062	1063	1065	1061	1065	1062	1063	1063	1060	1061	1063	1065	1065
Ages (1σ		16	17	19	18	18	18	17	21	23	19	23	17	22	21	22	17	27	18	15	19	19	19	18	16	16	15	17	16	16	16
	²⁰⁷ Pb/ ²³⁵ U		1075	1068	1054	1077	1102	1031	1068	1059	1079	1099	1043	1052	1043	1078	1052	1038	1049	1064	1071	1049	1055	1054	1064	1038	1072	1065	1044	1087	1127	1086
	1σ		24	26	29	27	26	29	25	34	36	28	37	27	36	32	35	26	45	27	23	30	30	29	27	25	24	22	26	23	22	23
	²⁰⁷ Pb/ ²⁰⁶ Pb		1100	1079	1041	1108	1184	959	1081	1055	1108	1171	966	1031	866	1110	1027	993	1024	1067	1089	1018	1043	1033	1069	987	1091	1073	1010	1137	1249	1128
	1σ	zircons	0.00221	0.00222	0.00245	0.00282	0.00248	0.00253	0.00228	0.00286	0.00334	0.00259	0.00314	0.0024	0.00286	0.00287	0.00298	0.00222	0.00371	0.00241	0.00218	0.00254	0.00262	0.00264	0.00257	0.0021	0.00224	0.00191	0.00232	0.00223	0.00217	0.0022
	²⁰⁸ Pb/ ²³² Th	standard	0.05265	0.05137	0.05082	0.0608	0.05543	0.05574	0.05353	0.05293	0.05982	0.05129	0.05196	0.05189	0.05192	0.05403	0.05257	0.05127	0.0531	0.05281	0.05386	0.05288	0.05291	0.06126	0.05851	0.05176	0.05408	0.05012	0.05532	0.05482	0.05394	0.05541
	10		0.0031	0.00309	0.00341	0.00338	0.00332	0.00332	0.00317	0.00373	0.00404	0.00348	0.00396	0.00322	0.0038	0.00367	0.00385	0.00306	0.00461	0.00326	0.00296	0.00342	0.00345	0.00339	0.00323	0.003	0.00308	0.00286	0.00316	0.00301	0.00301	0.00303
ratios	²⁰⁶ Pb/ ²³⁸ U		0.1794	0.17924	0.17878	0.17909	0.17909	0.17969	0.17922	0.17908	0.17959	0.1793	0.17966	0.17916	0.17954	0.1792	0.17948	0.17885	0.17898	0.17911	0.17923	0.17955	0.17898	0.17961	0.17906	0.17926	0.17932	0.1788	0.17886	0.17921	0.17955	0.17957
Isotope	1σ		0.04634	0.04746	0.05169	0.05209	0.05203	0.04919	0.04773	0.05977	0.06575	0.05568	0.0628	0.04846	0.06023	0.05878	0.06035	0.04559	0.07588	0.04943	0.04347	0.05227	0.053	0.05157	0.04933	0.04328	0.04638	0.04132	0.04683	0.04524	0.04739	0.04545
	²⁰⁷ Pb/ ²³⁵ U		1.88391	1.86286	1.82319	1.88769	1.96163	1.75945	1.8637	1.83805	1.89287	1.95077	1.79192	1.81808	1.79209	1.89112	1.81733	1.7808	1.81016	1.85059	1.87241	1.8104	1.82678	1.82442	1.85205	1.78022	1.87443	1.85303	1.79638	1.91742	2.03378	1.91278
	1σ		0.00205	0.00209	0.00229	0.00231	0.00232	0.00216	0.00211	0.00264	0.0029	0.00247	0.00276	0.00214	0.00264	0.0026	0.00266	0.00201	0.00335	0.00219	0.00192	0.0023	0.00234	0.00227	0.00218	0.00191	0.00205	0.00183	0.00207	0.002	0.0021	0.00201
	²⁰⁷ Pb/ ²⁰⁶ Pb		0.07618	0.0754	0.074	0.07648	0.07948	0.07105	0.07545	0.07448	0.07648	0.07895	0.07237	0.07363	0.07242	0.07657	0.07346	0.07224	0.07337	0.07495	0.07578	0.07314	0.07404	0.07368	0.07503	0.07204	0.07583	0.07518	0.07285	0.07761	0.08216	0.07727
	. D/U		2.861	2.902	2.833	2.837	2.843	2.825	2.907	2.842	2.907	2.917	2.851	2.889	2.778	2.842	2.828	2.868	2.8	2.804	2.81	2.792	2.893	2.809	2.923	2.883	2.917	2.855	2.8	2.805	2.811	2.793
	Analysis		91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500	91500

on open open of	Concortance																												
	1σ		43	41	42	55	50	35	31	33	33	33	36	37	36	37	33	35	36	33	34	37	33	37	43	32	35	39	40
	²⁰⁸ Pb/ ²³² Th		1055	1060	1032	1108	1069	613	558	556	613	559	610	555	602	520	511	564	477	566	537	643	522	614	612	518	552	602	519
	1σ		17	16	17	20	19	8	7	~	7	~	~	~	~	~	~	7	~	7	7	7	7	~	6	~	~	8	6
(Ma)	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		1062	1062	1063	1063	1062	602	599	599	598	602	602	009	604	009	605	607	603	605	009	595	608	605	909	604	596	610	604
Ages	1σ		16	16	16	20	19	8	~	8	~	8	6	6	6	6	6	6	6	6	6	6	6	6	11	6	6	10	11
	$^{207}\mathbf{Pb}/^{235}\mathbf{U}$		1058	1044	1030	1066	1080	592	601	592	593	614	609	604	606	588	589	575	593	593	593	602	582	594	614	601	610	603	602
	1σ		24	24	26	32	29	20	19	20	19	19	19	21	20	24	22	22	23	21	21	21	22	22	25	21	21	24	26
	²⁰⁷ Pb/ ²⁰⁶ Pb		1052	1007	961	1070	1116	553	653	563	575	661	681	618	681	613	493	588	586	657	602	675	619	618	641	705	660	576	596
	1σ	zircons	0.00222	0.00214	0.0022	0.0029	0.00263	0.00176	0.0016	0.00169	0.00167	0.00168	0.00182	0.0019	0.00186	0.00188	0.00166	0.00176	0.00183	0.0017	0.00171	0.00191	0.00168	0.0019	0.00217	0.00164	0.0018	0.00199	0.00204
	²⁰⁸ Pb/ ²³² Th	standard	0.05356	0.05383	0.05238	0.05637	0.05431	0.0308	0.02798	0.02788	0.03077	0.02802	0.03065	0.02782	0.03025	0.02606	0.0256	0.02829	0.02388	0.0284	0.0269	0.03234	0.02616	0.03086	0.03075	0.02596	0.02767	0.03025	0.02599
	1σ		0.00304	0.003	0.00306	0.00366	0.00345	0.00128	0.00124	0.00128	0.00127	0.0013	0.00129	0.00134	0.00131	0.00134	0.00128	0.00126	0.0013	0.00126	0.00125	0.00127	0.00127	0.00131	0.00147	0.00128	0.00135	0.00143	0.00147
ratios	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$		0.17903	0.17909	0.1792	0.17936	0.17911	0.09783	0.09734	0.0974	0.09723	0.09786	0.09785	0.09756	0.09826	0.09752	0.09838	0.09877	0.09803	0.09844	0.09755	0.09665	0.09885	0.09838	0.09861	0.0982	0.09692	0.0993	0.09822
Isotope	1σ		0.04488	0.04328	0.04418	0.05757	0.05418	0.01476	0.01447	0.01476	0.01436	0.01526	0.01526	0.01586	0.01577	0.01667	0.01527	0.01517	0.01633	0.01538	0.01509	0.01569	0.01528	0.01602	0.01894	0.01577	0.01651	0.01759	0.01873
	$^{207}\mathbf{Pb}/^{235}\mathbf{U}$		1.83543	1.79592	1.75732	1.85582	1.89639	0.79064	0.80702	0.79067	0.7937	0.83123	0.82184	0.81245	0.8167	0.78487	0.78626	0.76157	0.79303	0.79236	0.79325	0.80932	0.7735	0.7942	0.83012	0.80804	0.82272	0.81086	0.80952
	1σ		0.00198	0.00191	0.00194	0.00254	0.0024	0.00119	0.0012	0.00119	0.00117	0.00124	0.00126	0.00129	0.00131	0.0014	0.00131	0.0013	0.00139	0.00131	0.00128	0.00132	0.0013	0.00133	0.00152	0.00134	0.00135	0.0014	0.00151
	²⁰⁷ Pb/ ²⁰⁶ Pb		0.07437	0.07274	0.07114	0.07505	0.0768	0.05862	0.0614	0.05888	0.05921	0.06161	0.0622	0.06041	0.0622	0.06025	0.05704	0.05957	0.05951	0.06152	0.05997	0.06204	0.06043	0.0604	0.06106	0.06289	0.06158	0.05923	0.05979
L / L 1			2.894	2.81	2.923	2.883	2.917	28.13	28.32	27.81	28.67	28.76	27.8	27.93	27.79	28.19	27.52	27.56	27.62	27.74	28.43	27.61	28.73	28.33	28.66	28.06	28.42	27.6	28.71
, and and	Allalysis		91500	91500	91500	91500	91500	GJ-1																					

APPENDIX 2

Hf isotope data	for detrital	zircons f	from Min	River an	d Jiu	long R	iver.
-----------------	--------------	-----------	----------	----------	-------	--------	-------

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$arepsilon_{ m Hf}\left(t ight)$	T _{DM2}
				Min Rive	r				
MJ01-1	140	0.030061	0.000802	0.000967	0.000024	0.282223	0.000009	-16.9	2220
MJ01-2	229	0.022822	0.000021	0.000698	0.000002	0.282448	0.000010	-6.9	1668
MJ01-3	158	0.256246	0.000262	0.007430	0.000010	0.282429	0.000014	-9.9	1798
MJ01-5	457	0.038297	0.000830	0.001204	0.000022	0.282316	0.000018	-6.8	1836
MJ01-7	471	0.022218	0.000160	0.000922	0.000008	0.282592	0.000016	3.4	1208
MJ01-8	97	0.029338	0.000092	0.000918	0.000005	0.282715	0.000013	-0.4	1153
MJ01-9	151	0.156739	0.002176	0.004993	0.000070	0.282397	0.000013	-10.9	1836
MJ01-12	139	0.035523	0.000168	0.001095	0.000007	0.282429	0.000013	-9.6	1766
MJ01-13	243	0.027156	0.000988	0.000839	0.000030	0.282542	0.000013	-3.3	1462
MJ01-15	895	0.051039	0.001503	0.001618	0.000047	0.282129	0.000013	-4.1	1973
MJ01-16	2311	0.018007	0.000766	0.000602	0.000026	0.281278	0.000013	-1.9	2991
MJ01-17	369	0.023228	0.000198	0.000756	0.000007	0.282407	0.000011	-5.4	1685
MJ01-18	409	0.036025	0.000300	0.001192	0.000008	0.282230	0.000013	-10.9	2064
MJ01-20	417	0.025427	0.000206	0.000774	0.000006	0.282376	0.000011	-5.4	1719
MJ01-23	419	0.052249	0.000577	0.001727	0.000020	0.282303	0.000015	-8.2	1874
MJ01-24	1862	0.017808	0.000223	0.000548	0.000005	0.281642	0.000012	0.9	2440
MJ01-25	2497	0.011364	0.000280	0.000371	0.000006	0.280856	0.000010	-12.2	4021
MJ01-26	139	0.109775	0.000487	0.003077	0.000018	0.282514	0.000014	-6.8	1580
MJ01-27	173	0.043156	0.001489	0.001380	0.000042	0.282237	0.000013	-15.7	2193
MJ01-29	251	0.032370	0.000219	0.000987	0.000007	0.282412	0.000015	-7.8	1761
MJ01-30	919	0.102275	0.001917	0.003141	0.000051	0.282326	0.000016	2.4	1520
MJ01-31	1808	0.017626	0.000059	0.000525	0.000001	0.281464	0.000009	-6.6	2902
MJ01-32	483	0.001242	0.000111	0.000033	0.000004	0.282110	0.000011	-13.1	2269
MJ01-33	102	0.028703	0.000100	0.000904	0.000002	0.282500	0.000011	-7.9	1630
MJ01-34	149	0.031076	0.000355	0.001037	0.000011	0.282290	0.000010	-14.3	2064
MJ01-35	446	0.014731	0.000012	0.000462	0.000001	0.282303	0.000011	-7.3	1895
MJ01-36	153	0.078064	0.000559	0.002497	0.000014	0.282433	0.000015	-9.3	1749
MJ01-41	182	0.020796	0.000165	0.000721	0.000004	0.282076	0.000011	-21.1	2517
MJ01-42	147	0.029669	0.000634	0.000947	0.000016	0.282323	0.000011	-13.2	2014
MJ01-43	425	0.118893	0.001316	0.003882	0.000067	0.282400	0.000013	-5.3	1666
MJ01-44	498	0.032259	0.000352	0.001040	0.000013	0.282333	0.000013	-5.2	1755
MJ01-45	2387	0.006626	0.000137	0.000237	0.000004	0.281294	0.000012	1.1	2904
MJ01-46	231	0.022474	0.000030	0.000693	0.000001	0.282361	0.000009	-10.0	1906
MJ01-47	259	0.023813	0.000078	0.000610	0.000004	0.282364	0.000013	-9.2	1838
MJ01-48	465	0.027163	0.000161	0.000821	0.000002	0.282313	0.000011	-6.6	1824
MJ01-49	403	0.017166	0.000056	0.000541	0.000001	0.282286	0.000010	-8.8	1934
MJ01-50	814	0.039370	0.000295	0.001223	0.000009	0.282136	0.000015	-5.4	2012
MJ01-51	874	0.028858	0.000146	0.000770	0.000007	0.282171	0.000012	-2.6	1927
MJ01-52	428	0.028158	0.000518	0.000903	0.000014	0.282213	0.000011	-11.0	2082
MJ01-53	466	0.050020	0.001818	0.001497	0.000053	0.282445	0.000013	-2.1	1544
MJ01-54	1758	0.045828	0.000305	0.001361	0.000009	0.281558	0.000009	-5.4	2676
MJ01-55	153	0.037357	0.000241	0.001199	0.000008	0.282340	0.000012	-12.5	1954
MJ01-56	1774	0.008286	0.000076	0.000224	0.000001	0.281550	0.000011	-3.9	2829

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\mathrm{Hf}}\left(t ight)$	T _{DM2}
				Min Rive	r				
MJ01-57	1832	0.022120	0.000248	0.000672	0.000006	0.281611	0.000011	-1.0	2584
MJ01-58	1740	0.010120	0.000129	0.000315	0.000005	0.281608	0.000013	-2.8	2737
MJ01-59	613	0.040483	0.001270	0.001133	0.000037	0.282403	0.000013	-0.3	1541
MJ01-60	466	0.080449	0.000575	0.002434	0.000022	0.282301	0.000012	-7.5	1860
MJ01-61	2363	0.017519	0.000101	0.000568	0.000003	0.281212	0.000009	-3.0	3205
MJ01-62	163	0.320117	0.001768	0.010241	0.000061	0.282762	0.000019	1.7	1013
MJ01-63	155	0.056064	0.000853	0.001801	0.000028	0.282308	0.000013	-13.6	2024
MJ01-64	447	0.018369	0.000131	0.000545	0.000005	0.282401	0.000011	-3.8	1678
MJ01-65	139	0.076933	0.003620	0.002590	0.000123	0.282633	0.000016	-2.5	1313
MJ01-66	144	0.038104	0.000523	0.001207	0.000015	0.282450	0.000014	-8.7	1713
MJ01-67	146	0.035743	0.001705	0.001084	0.000050	0.282320	0.000015	-13.3	2000
MJ01-68	429	0.015514	0.000072	0.000465	0.000002	0.282337	0.000016	-6.4	1800
MJ01-69	2316	0.010870	0.000233	0.000319	0.000006	0.281348	0.000013	1.2	2825
MJ01-70	107	0.019469	0.000194	0.000592	0.000004	0.282513	0.000013	-7.3	1598
MJ01-71	1574	0.022870	0.000795	0.000638	0.000019	0.281460	0.000016	-12.1	3067
MJ01-73	229	0.045479	0.000655	0.001316	0.000022	0.282364	0.000013	-10.0	1851
MJ01-74	1684	0.012102	0.000225	0.000323	0.000005	0.281448	0.000011	-9.7	3053
MJ01-76	492	0.051406	0.001225	0.001536	0.000038	0.282284	0.000014	-7.3	1862
MJ01-77	2089	0.001655	0.000009	0.000044	0.000000	0.281332	0.000012	-4.2	3060
MJ01-78	117	0.042729	0.000546	0.001370	0.000019	0.282517	0.000015	-7.0	1582
MJ01-79	102	0.015853	0.000277	0.000459	0.000008	0.282653	0.000014	-2.4	1288
MJ01-80	137	0.022651	0.000317	0.000741	0.000012	0.282430	0.000013	-9.6	1762
MJ01-81	371	0.012421	0.000172	0.000292	0.000006	0.282273	0.000011	-9.9	1980
MJ01-82	419	0.040933	0.000302	0.001192	0.000011	0.282342	0.000014	-6.7	1786
MJ01-83	2506	0.013330	0.000063	0.000418	0.000002	0.281046	0.000011	-5.3	3299
MJ01-84	1672	0.000627	0.000010	0.000016	0.000000	0.281585	0.000010	-4.8	2656
MJ01-85	1664	0.000837	0.000010	0.000021	0.000000	0.281364	0.000010	-12.8	3171
MJ01-86	240	0.014052	0.000194	0.000464	0.000005	0.282443	0.000016	-6.8	1679
MJ01-87	103	0.041433	0.000230	0.001272	0.000004	0.282589	0.000017	-4.7	1432
MJ01-88	426	0.027080	0.000166	0.000902	0.000007	0.282506	0.000015	-0.6	1425
MJ01-89	224	0.028151	0.000755	0.000887	0.000020	0.282413	0.000018	-8.3	1746
MJ01-90	1621	0.009423	0.000061	0.000299	0.000003	0.281411	0.000014	-12.4	3128
MJ01-91	100	0.030247	0.000210	0.000962	0.000004	0.282756	0.000017	1.1	1061
MJ01-92	358	0.028265	0.000114	0.000911	0.000002	0.282523	0.000012	-1.5	1429
MJ01-93	393	0.027227	0.000277	0.000872	0.000007	0.282460	0.000015	-3.0	1543
MJ01-94	395	0.018386	0.000036	0.000569	0.000000	0.282361	0.000012	-6.3	1771
MJ01-95	404	0.039277	0.000103	0.001207	0.000005	0.282362	0.000011	-6.3	1763
MJ01-96	410	0.037372	0.000199	0.001173	0.000004	0.282279	0.000011	-9.1	1935
MJ01-97	1742	0.022556	0.000376	0.000669	0.000009	0.281467	0.000013	-8.1	2895
MJ01-98	2336	0.011417	0.000120	0.000372	0.000002	0.281117	0.000012	-6.7	3361
MJ01-99	98	0.034012	0.000126	0.001135	0.000005	0.282513	0.000014	-7.5	1606
MJ01-100	351	0.047334	0.000447	0.001370	0.000010	0.282557	0.000014	-0.6	1350
MJ01-101	1762	0.011824	0.000100	0.000353	0.000003	0.281446	0.000013	-8.1	2960
MJ01-102	426	0.021909	0.000251	0.000808	0.000008	0.282286	0.000013	-8.4	1927
MJ01-103	398	0.043372	0.000253	0.001591	0.000011	0.282348	0.000014	-7.0	1786

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\rm Hf}(t)$	T _{DM2}
				Min Rive	r	<u>.</u>			
MJ01-105	181	0.012533	0.000231	0.000448	0.000007	0.282142	0.000012	-18.8	2370
MJ01-106	1715	0.009727	0.000021	0.000271	0.000000	0.281505	0.000013	-6.9	2821
MJ01-107	151	0.181106	0.003046	0.005696	0.000101	0.282356	0.000019	-12.4	1951
MJ01-108	154	0.023769	0.000271	0.000776	0.000008	0.282425	0.000015	-9.4	1765
MJ01-109	420	0.020490	0.000159	0.000770	0.000005	0.282379	0.000018	-5.2	1710
MJ01-110	136	0.017338	0.000255	0.000572	0.000007	0.282137	0.000016	-20.0	2409
MJ01-111	1414	0.011133	0.000074	0.000349	0.000003	0.281587	0.000017	-10.9	2833
MJ01-112	137	0.034510	0.000436	0.001159	0.000011	0.282445	0.000018	-9.1	1732
MJ01-113	429	0.030272	0.000124	0.000972	0.000004	0.282359	0.000016	-5.8	1753
MJ01-114	1679	0.016953	0.000075	0.000524	0.000003	0.281471	0.000013	-9.3	2936
MJ01-115	1690	0.006885	0.000392	0.000201	0.000012	0.281456	0.000013	-9.2	2938
MJ01-117	1727	0.013308	0.000016	0.000410	0.000001	0.281503	0.000016	-6.9	2828
MJ01-118	146	0.041588	0.000293	0.001373	0.000007	0.282298	0.000019	-14.1	2054
MJ01-119	2356	0.013068	0.000036	0.000379	0.000001	0.281041	0.000013	-8.9	3439
MJ01-120	422	0.014963	0.000043	0.000451	0.000001	0.282299	0.000013	-7.9	1881
MJ01-121	374	0.024260	0.000597	0.000742	0.000019	0.282400	0.000013	-5.5	1690
MJ01-122	1646	0.030688	0.000272	0.000877	0.000009	0.281414	0.000014	-12.4	3102
MJ01-123	1443	0.024646	0.000118	0.000697	0.000002	0.281485	0.000013	-14.3	3057
MJ01-124	758	0.012959	0.000031	0.000396	0.000002	0.282233	0.000014	-2.8	1820
MJ01-125	145	0.031481	0.000245	0.000983	0.000005	0.282289	0.000015	-14.4	2071
MJ01-126	106	0.047722	0.000578	0.001448	0.000019	0.282563	0.000016	-5.6	1491
MJ01-129	478	0.030609	0.000156	0.000951	0.000003	0.282816	0.000015	11.5	700
MJ01-130	249	0.013671	0.000306	0.000447	0.000010	0.282347	0.000014	-10.0	1878
MJ01-131	162	0.035350	0.000187	0.001192	0.000007	0.282348	0.000014	-12.0	1934
MJ01-132	472	0.044008	0.000905	0.001311	0.000026	0.282385	0.000016	-4.0	1675
MJ01-133	1803	0.021494	0.000133	0.000627	0.000004	0.281453	0.000015	-7.2	2907
MJ01-134	840	0.013196	0.000120	0.000406	0.000003	0.282006	0.000014	-9.0	2271
MJ01-135	2765	0.030582	0.000301	0.000925	0.000010	0.281095	0.000016	1.4	3134
MJ01-136	664	0.020173	0.000431	0.000665	0.000013	0.281972	0.000021	-14.2	2459
MJ01-137	1759	0.022184	0.000135	0.000692	0.000003	0.281523	0.000013	-5.8	2785
MJ01-138	714	0.042057	0.001101	0.001217	0.000026	0.282306	0.000016	-1.6	1711
MJ01-139	1602	0.006238	0.000281	0.000163	0.000009	0.281462	0.000013	-10.9	2978
MJ01-140	1102	0.018323	0.000098	0.000584	0.000004	0.281584	0.000014	-18.2	3039
MJ01-141	1500	0.015311	0.000040	0.000469	0.000000	0.281460	0.000012	-13.6	3064
MJ01-142	677	0.028306	0.000606	0.000969	0.000020	0.282044	0.000012	-11.5	2302
MJ01-143	104	0.033591	0.000770	0.001058	0.000021	0.282590	0.000014	-4.7	1429
MJ01-144	237	0.022534	0.000059	0.000713	0.000001	0.282436	0.000014	-7.2	1690
MJ01-145	1992	0.010032	0.000891	0.000361	0.000033	0.281364	0.000014	-5.7	2964
MJ01-146	1742	0.014127	0.000327	0.000426	0.000009	0.281442	0.000014	-8.8	2953
MJ16-01	170	0.034202	0.000366	0.001048	0.000010	0.282361	0.000011	-11.3	1899
MJ16-03	388	0.067393	0.000247	0.001965	0.000004	0.282395	0.000029	-5.7	1713
MJ16-04	1857	0.019431	0.000276	0.000482	0.000009	0.281340	0.000017	-9.8	3107
MJ16-05	145	0.052231	0.000398	0.001376	0.000012	0.282349	0.000013	-12.3	1941
MJ16-06	163	0.040939	0.000383	0.001165	0.000011	0.282314	0.000015	-13.2	2007
MJ16-07	130	0.029114	0.001145	0.000752	0.000028	0.282387	0.000012	-11.3	1864

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\mathrm{Hf}}\left(t ight)$	T _{DM2}
	,			Min Rive	r				
MJ16-08	1666	0.017543	0.000139	0.000429	0.000002	0.281454	0.000016	-10.0	2972
MJ16-10	436	0.043012	0.001129	0.001278	0.000039	0.282311	0.000021	-7.4	1859
MJ16-12	1831	0.021971	0.000055	0.000530	0.000001	0.281531	0.000017	-3.7	2713
MJ16-13	2695	0.012786	0.000104	0.000303	0.000001	0.280876	0.000016	-6.8	3576
MJ16-14	1884	0.023166	0.000953	0.000594	0.000021	0.281452	0.000017	-5.4	2858
MJ16-15	145	0.037809	0.000076	0.000992	0.000002	0.282249	0.000025	-15.8	2160
MJ16-16	1776	0.021916	0.000547	0.000629	0.000020	0.281218	0.000016	-16.2	3430
MJ16-17	2191	0.038535	0.000490	0.000933	0.000010	0.281492	0.000016	2.5	2615
MJ16-18	1810	0.012297	0.000772	0.000330	0.000022	0.281524	0.000016	-4.2	2727
MJ16-19	875	0.029169	0.000491	0.000796	0.000011	0.282272	0.000016	1.0	1677
MJ16-20	862	0.039053	0.000779	0.001041	0.000018	0.282296	0.000016	1.4	1641
MJ16-21	1845	0.028006	0.000165	0.000674	0.000004	0.281465	0.000018	-5.9	2860
MJ16-22	106	0.028127	0.000333	0.000756	0.000010	0.282590	0.000022	-4.6	1428
MJ16-23	418	0.043351	0.000778	0.001090	0.000018	0.282294	0.000017	-8.4	1905
MJ16-24	1823	0.032185	0.000131	0.000752	0.000003	0.281506	0.000019	-5.0	2788
MJ16-25	116	0.044748	0.001381	0.001105	0.000030	0.282460	0.000020	-9.0	1712
MJ16-26	388	0.016626	0.000072	0.000369	0.000002	0.282305	0.000016	-8.4	1885
MJ16-28	2656	0.021292	0.000093	0.000537	0.000002	0.280919	0.000013	-6.6	3534
MJ16-29	1683	0.068076	0.000390	0.001733	0.000011	0.281878	0.000018	3.9	2129
MJ16-30	156	0.032325	0.000331	0.000838	0.000010	0.282348	0.000017	-12.1	1935
MJ16-31	224	0.031720	0.000389	0.000782	0.000010	0.282262	0.000022	-13.6	2085
MJ16-32	2278	0.022973	0.000553	0.000650	0.000017	0.281286	0.000017	-2.4	2983
MJ16-33	216	0.022117	0.000310	0.000585	0.000008	0.282419	0.000023	-8.2	1740
MJ16-34	427	0.023062	0.000232	0.000583	0.000007	0.282291	0.000019	-8.1	1898
MJ16-35	431	0.014683	0.000444	0.000390	0.000011	0.282359	0.000020	-5.6	1741
MJ16-36	419	0.030850	0.000901	0.000771	0.000022	0.282332	0.000019	-6.9	1814
MJ16-37	469	0.035972	0.000512	0.000895	0.000013	0.282496	0.000017	-0.1	1423
MJ16-38	2209	0.021256	0.000326	0.000524	0.000009	0.281397	0.000021	0.2	2773
MJ16-39	1855	0.061979	0.001543	0.001475	0.000037	0.281609	0.000020	-1.6	2601
MJ16-40	964	0.039162	0.000094	0.000932	0.000005	0.281963	0.000019	-8.1	2311
MJ16-41	222	0.029683	0.000238	0.000810	0.000005	0.282081	0.000020	-20.1	2483
MJ16-42	1957	0.020695	0.000697	0.000532	0.000020	0.281349	0.000017	-7.3	3031
MJ16-43	232	0.035693	0.001447	0.000901	0.000033	0.282509	0.000021	-4.8	1535
MJ16-44	224	0.023299	0.000119	0.000585	0.000004	0.282484	0.000021	-5.8	1591
MJ16-45	459	0.036926	0.000343	0.000966	0.000007	0.282583	0.000022	2.8	1235
MJ16-46	1821	0.021953	0.000292	0.000532	0.000007	0.281573	0.000018	-2.4	2627
MJ16-47	2742	0.030218	0.000312	0.000841	0.000008	0.281049	0.000022	-0.5	3236
MJ16-48	97	0.043706	0.000368	0.001082	0.000008	0.282493	0.000020	-8.2	1650
MJ16-50	227	0.034669	0.000253	0.000845	0.000005	0.282433	0.000019	-7.5	1706
MJ16-51	1881	0.022506	0.000644	0.000558	0.000014	0.281465	0.000018	-4.9	2827
MJ16-52	161	0.085637	0.001527	0.002044	0.000034	0.282405	0.000021	-10.1	1813
MJ16-53	1787	0.018956	0.000435	0.000467	0.000012	0.281417	0.000017	-8.6	2982
MJ16-54	2504	0.031714	0.000409	0.000793	0.000009	0.281273	0.000018	2.1	2890
MJ16-55	1873	0.049442	0.000409	0.001192	0.000012	0.281671	0.000022	1.4	2434
MJ16-56	1892	0.013517	0.000457	0.000326	0.000008	0.281353	0.000018	-8.4	3047

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\rm Hf}(t)$	T _{DM2}
				Min Rive	r	<u>.</u>			
MJ16-57	233	0.021324	0.000214	0.000537	0.000003	0.282249	0.000022	-13.9	2104
MJ16-58	438	0.041841	0.000557	0.001039	0.000012	0.282359	0.000022	-5.6	1749
MJ16-59	2441	0.028546	0.000108	0.000757	0.000004	0.281291	0.000023	1.3	2884
MJ16-60	133	0.053976	0.000829	0.001318	0.000022	0.282327	0.000021	-13.4	1997
MJ16-61	421	0.073973	0.002135	0.001884	0.000048	0.282361	0.000021	-6.1	1768
MJ16-62	109	0.070645	0.001992	0.001891	0.000057	0.282542	0.000022	-6.3	1536
MJ16-63	953	0.116861	0.001329	0.002770	0.000031	0.282304	0.000022	2.6	1639
MJ16-64	1793	0.037020	0.000535	0.000897	0.000010	0.281396	0.000025	-9.8	3057
MJ16-65	407	0.083487	0.000570	0.002052	0.000013	0.282324	0.000021	-7.8	1861
MJ16-66	1868	0.048718	0.000164	0.001190	0.000005	0.281525	0.000018	-3.9	2755
MJ16-67	145	0.049241	0.000421	0.001232	0.000010	0.282238	0.000020	-16.2	2186
MJ16-68	2713	0.035476	0.000239	0.000866	0.000003	0.280955	0.000021	-4.6	3459
MJ16-69	227	0.035191	0.000210	0.000859	0.000006	0.282471	0.000020	-6.2	1621
MJ16-71	1862	0.043034	0.000661	0.001039	0.000017	0.281714	0.000024	2.9	2334
MJ16-72	1827	0.008367	0.000342	0.000191	0.000008	0.281476	0.000020	-5.3	2809
MJ16-73	1878	0.046839	0.001680	0.001140	0.000041	0.281361	0.000018	-9.4	3101
MJ16-74	407	0.044161	0.000393	0.001103	0.000008	0.282320	0.000019	-7.7	1854
MJ16-75	2525	0.013630	0.000188	0.000328	0.000004	0.281361	0.000022	6.5	2638
MJ16-76	1858	0.025367	0.000280	0.000625	0.000005	0.281508	0.000017	-4.0	2754
MJ16-77	1344	0.051744	0.000066	0.001267	0.000001	0.281546	0.000016	-14.8	3015
MJ16-78	2531	0.041769	0.000821	0.001259	0.000022	0.281307	0.000019	3.1	2848
MJ16-80	105	0.028005	0.000785	0.000712	0.000017	0.282447	0.000020	-9.7	1745
MJ16-81	1872	0.036331	0.000216	0.000860	0.000004	0.281464	0.000020	-5.6	2860
MJ16-82	97	0.081189	0.002803	0.002072	0.000070	0.282617	0.000024	-3.9	1378
MJ16-83	826	0.041500	0.000186	0.001203	0.000007	0.282133	0.000023	-5.3	2027
MJ16-84	445	0.059479	0.001129	0.001693	0.000034	0.282372	0.000027	-5.2	1727
MJ16-85	223	0.024094	0.000393	0.000748	0.000010	0.282479	0.000017	-6.0	1604
MJ16-86	1510	0.062850	0.003244	0.001527	0.000079	0.281574	0.000026	-10.4	2875
MJ16-87	2299	0.032298	0.000477	0.000878	0.000011	0.281350	0.000019	0.0	2854
MJ16-88	1879	0.018216	0.000411	0.000450	0.000009	0.281432	0.000022	-6.0	2894
MJ16-89	2183	0.031744	0.001335	0.000798	0.000027	0.281157	0.000026	-9.4	3332
MJ16-90	226	0.020614	0.000089	0.000525	0.000001	0.282403	0.000025	-8.6	1768
MJ16-91	1564	0.034472	0.000263	0.000848	0.000009	0.281515	0.000023	-10.6	2929
MJ16-92	363	0.035693	0.001447	0.000901	0.000033	0.282509	0.000021	-1.9	1458
MJ16-93	1871	0.023651	0.000134	0.000585	0.000002	0.281405	0.000025	-7.3	2967
MJ16-94	2067	0.016983	0.000204	0.000442	0.000006	0.281322	0.000021	-5.6	3016
MJ16-95	233	0.019926	0.000185	0.000507	0.000005	0.282332	0.000030	-10.9	1923
MJ16-96	454	0.071255	0.006289	0.001910	0.000157	0.282362	0.000027	-5.4	1748
MJ16-97	945	0.022146	0.000460	0.000545	0.000012	0.281919	0.000027	-9.8	2402
				JiulongRiv	er				
JL01-01	239	0.048273	0.000278	0.001602	0.000013	0.282570	0.000011	-2.5	1401
JL01-02	2577	0.008652	0.000191	0.000277	0.000006	0.280902	0.000011	-8.6	3591
JL01-03	138	0.042849	0.000148	0.001490	0.000011	0.282464	0.000010	-8.4	1692
JL01-04	116	0.021981	0.000159	0.000796	0.000004	0.282680	0.000011	-1.2	1220
JL01-05	932	0.033752	0.000472	0.001002	0.000016	0.281779	0.000010	-15.4	2733

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\rm Hf}\left(t ight)$	T _{DM2}
				JiulongRiv	/er				
JL01-06	165	0.063960	0.001306	0.001862	0.000038	0.282551	0.000011	-4.8	1488
JL01-07	107	0.018282	0.000282	0.000562	0.000010	0.282682	0.000011	-1.3	1221
JL01-08	253	0.034910	0.000271	0.001190	0.000014	0.282419	0.000010	-7.5	1724
JL01-10	211	0.070666	0.000631	0.002266	0.000020	0.282488	0.000013	-6.1	1604
JL01-11	250	0.026931	0.000164	0.000799	0.000003	0.282413	0.000011	-7.7	1735
JL01-12	165	0.027485	0.000090	0.000798	0.000002	0.282402	0.000010	-10.0	1809
JL01-13	163	0.040173	0.000542	0.001306	0.000016	0.282559	0.000012	-4.5	1466
JL01-14	207	0.042849	0.000210	0.001429	0.000006	0.282530	0.000016	-4.6	1506
JL01-15	155	0.039230	0.001608	0.001236	0.000050	0.282687	0.000011	-0.1	1184
JL01-16	1474	0.029702	0.001294	0.000932	0.000044	0.281655	0.000013	-7.7	2683
JL01-17	153	0.050612	0.001376	0.001825	0.000053	0.282524	0.000019	-6.0	1552
JL01-18	238	0.040485	0.000286	0.001199	0.000005	0.282394	0.000011	-8.7	1788
JL01-19	125	0.033270	0.000808	0.001124	0.000027	0.282567	0.000011	-5.0	1468
JL01-20	110	0.034736	0.000613	0.001203	0.000018	0.282678	0.000010	-1.4	1231
JL01-21	158	0.020037	0.000474	0.000614	0.000011	0.282741	0.000013	1.9	1058
JL01-22	248	0.088196	0.001200	0.002452	0.000027	0.282405	0.000011	-8.3	1772
JL01-23	275	0.031200	0.001654	0.001000	0.000048	0.282641	0.000012	0.8	1215
JL01-24	158	0.063882	0.000709	0.001921	0.000017	0.282553	0.000012	-4.9	1485
JL01-25	1588	0.045133	0.000548	0.001287	0.000019	0.281572	0.000011	-8.5	2820
JL01-26	103	0.034546	0.000366	0.001092	0.000014	0.282633	0.000012	-3.2	1335
JL01-27	197	0.069701	0.000589	0.001876	0.000011	0.282842	0.000011	6.1	818
JL01-28	251	0.036758	0.000197	0.001113	0.000006	0.282422	0.000010	-7.4	1717
JL01-29	148	0.114050	0.001148	0.003328	0.000018	0.282614	0.000013	-3.1	1363
JL01-30	2252	0.015607	0.000145	0.000477	0.000003	0.281207	0.000010	-5.5	3154
JL01-31	267	0.053562	0.000300	0.001793	0.000008	0.282392	0.000008	-8.3	1783
JL01-33	244	0.028748	0.000166	0.000847	0.000006	0.282404	0.000010	-8.2	1760
JL01-35	118	0.025736	0.000485	0.000829	0.000018	0.282713	0.000013	0.0	1145
JL01-37	1642	0.047665	0.000623	0.001355	0.000011	0.281499	0.000011	-10.0	2953
JL01-38	474	0.038773	0.000828	0.001261	0.000028	0.282142	0.000012	-12.6	2210
JL01-40	141	0.031526	0.000126	0.001013	0.000001	0.282515	0.000012	-6.5	1575
JL01-41	661	0.002901	0.000095	0.000083	0.000003	0.282010	0.000010	-12.7	2361
JL01-42	147	0.034211	0.000365	0.001130	0.000011	0.282575	0.000012	-4.3	1438
JL01-43	2241	0.017393	0.000221	0.000495	0.000004	0.280926	0.000012	-15.8	3766
JL01-44	134	0.039526	0.000767	0.001290	0.000025	0.282557	0.000013	-5.2	1486
JL01-45	254	0.031299	0.000884	0.000964	0.000028	0.282461	0.000014	-6.0	1628
JL01-46	162	0.021503	0.000477	0.000621	0.000011	0.282414	0.000012	-9.6	1783
JL01-47	1636	0.029979	0.000076	0.000826	0.000005	0.281517	0.000010	-8.9	2881
JL01-48	275	0.032616	0.000353	0.001058	0.000008	0.282760	0.000011	5.0	949
JL01-49	160	0.038752	0.000091	0.001189	0.000004	0.282349	0.000012	-12.0	1934
JL01-50	109	0.059846	0.001314	0.001936	0.000054	0.282657	0.000017	-2.2	1281
JL01-51	108	0.018644	0.000492	0.000580	0.000020	0.282724	0.000014	0.2	1126
JL01-52	235	0.027527	0.000203	0.000808	0.000004	0.282408	0.000011	-8.2	1755
JL01-53	119	0.045767	0.002293	0.001291	0.000057	0.282458	0.000013	-9.0	1716
JL01-54	110	0.045233	0.001101	0.001306	0.000047	0.282775	0.000018	2.0	1013
JL01-55	103	0.038154	0.000239	0.001211	0.000009	0.282536	0.000011	-6.6	1550

Analysis	Age (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\mathrm{Hf}}\left(t ight)$	T _{DM2}
				JiulongRiv	ver				
JL01-56	146	0.058291	0.000557	0.001939	0.000025	0.282500	0.000010	-7.0	1610
JL01-59	164	0.049661	0.000749	0.001547	0.000023	0.282463	0.000011	-7.9	1680
JL01-60	241	0.028716	0.000337	0.000820	0.000011	0.282419	0.000010	-7.7	1728
JL01-61	101	0.050997	0.000783	0.001477	0.000021	0.282660	0.000011	-2.3	1277
JL01-62	110	0.020147	0.000325	0.000593	0.000007	0.282693	0.000010	-0.9	1194
JL01-63	158	0.061347	0.000756	0.001936	0.000022	0.282529	0.000012	-5.8	1540
JL01-64	1834	0.027224	0.000119	0.000775	0.000003	0.281444	0.000010	-7.0	2918
JL01-65	149	0.055698	0.001164	0.001752	0.000023	0.282684	0.000011	-0.4	1197
JL01-66	149	0.035816	0.000461	0.001013	0.000011	0.282579	0.000011	-4.1	1428
JL01-67	162	0.046018	0.000576	0.001430	0.000018	0.282384	0.000012	-10.7	1856
JL01-68	240	0.021824	0.000119	0.000691	0.000006	0.282683	0.000010	1.6	1138
JL01-69	403	0.051759	0.001092	0.001520	0.000036	0.282348	0.000014	-6.9	1800
JL01-70	143	0.039916	0.000549	0.001272	0.000022	0.282568	0.000017	-4.6	1456
JL01-71	137	0.056865	0.000408	0.001957	0.000008	0.282541	0.000012	-5.8	1525
JL01-72	106	0.015529	0.000146	0.000456	0.000002	0.282405	0.000012	-11.1	1836
JL01-73	235	0.023750	0.000476	0.000679	0.000011	0.282447	0.000011	-6.9	1669
JL01-74	228	0.039647	0.000352	0.001146	0.000014	0.282387	0.000013	-9.2	1809
JL01-75	103	0.015642	0.000123	0.000461	0.000006	0.282658	0.000012	-2.2	1275
JL01-76	152	0.038625	0.000275	0.001191	0.000010	0.282540	0.000011	-5.4	1514
JL01-77	148	0.051151	0.000824	0.001645	0.000037	0.282516	0.000011	-6.4	1572
JL01-78	800	0.017803	0.000619	0.000510	0.000012	0.282325	0.000011	1.4	1594
JL01-79	1675	0.014747	0.000274	0.000506	0.000006	0.281383	0.000011	-12.5	3127
JL01-80	150	0.032358	0.000185	0.001037	0.000008	0.282589	0.000012	-3.7	1405