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ABSTRACT

Qiangtang Basin is expected to become important strategic petroleum exploita-
tion area in China. However, little research has been done on the Permian strata in
this area. This paper presents Lower Permian Zhanjin Formation geochemical data
from the Jiaomuri area, reconstructing the paleo-depositional environment and pro-
viding information for further petroleum exploration. The geochemical characteristics
of 19 samples were investigated. These geochemical samples show a developed mud
flat characteristic with light rich clay content. The geological data were used to con-
strain the paleoredox environment, which proved that these sediments were deposited
mainly beneath a slightly oxic water column with relatively low paleoproductivity as
evidenced by the P/Ti (mean of 0.07) and Ba/Al (mean of 20.5). Palaeoclimate in-
dexes such as the C-value (0.24-1.75) and Sr/Cu (1.28-11.58) reveal a humid climatic
condition during Zhanjin Formation sediment deposition. The w(La)x/w(Yb)y ratio
values indicate a fast sedimentary rate during the deposition period.

Constraints for paleoenvironment and
paleoclimate. Terr. Atmos. Ocean.
Sci., 28,271-282, doi: 10.3319/
TA0.2016.08.08.01

1. INTRODUCTION

The Qiangtang Basin is located in the northern part of
the Qinghai-Tibet Plateau. This region covers the eastern
section of the Tethys structural domain, which is known to
be rich in oil and gas reserves (Ding et al. 2013). Tectonical-
ly, Qiangtang Basin is bounded by the Gangdise-Nyenchen
Tanglha and Hox Xil-Bayankala plates (Fig. 1). The basin
has complex structures whose tectonic framework can be
described as “one uplift bounded by two depressions” (Hu
et al. 2015). Paleozoic- Mesozoic marine sedimentary strata
occur extensively throughout the basin, preserving a com-
plete Qinghai-Tibet Plateau sequence.

This large, onshore basin is the biggest residual pe-
troleum-bearing basin on the Qinghai-Tibet Plateau and
has been the subject of an important strategic petroleum
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exploitation area in China. In recent years a number of in-
vestigations including geological surveys, geochemical
exploration, geophysical surveys, and laboratory analysis
have been taken to evaluate the exploration potential of this
region (Guo et al. 2008; He et al. 2012; Ding et al. 2013;
Fu et al. 2013). Previous studies confirmed more than 200
oil/gas shows from Mesozoic formations (Fu et al. 2013)
and obtained important paleoenvironment research results
in the Triassic and Jurassic Qiangtang Basins (Wang et al.
2007; Feng et al. 2010; Song et al. 2013a, b). However, rela-
tive studies on Paleozoic sedimentary strata are still sparse.
In 2012, cores from the Qiangzi 5 Well were successfully
acquired in the Jiaomuri area. These core samples ascer-
tained the existence of Permian hydrocarbon accumula-
tion in the Qiangtang Basin uplift zone (Song et al. 2014).
Using organic geochemical analysis Cao et al. (2015)
suggested that the Lower Permian Zhanjin Formation
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source rock organic matter generally derived from marine
low-grade aquatic organisms and thermally evolved into
a mature stage. However, based on the significant differ-
ences in the organic geochemical parameters, Song et al.
(2014) indicated that the oil hydrocarbons in dolomite may
not be derived from its adjacent Zhanjin Formation silty
mudstone. These cores also provide an excellent chance to
understand the sedimentary condition during the Permian
period in Qiangtang Basin, but have been barely discussed
in the literature.

This study presents Low Permian sediment geochemi-
cal data from the Qiangzi 5 Well in the Qiangtang Basin
central uplift. Based on the chemical analysis an attempt is
made to reveal the hydrodynamic conditions, paleoclimate
and redox conditions, with the aim at reconstructing the
depositional environment and providing information for pe-
troleum exploration in Qiangtang Basin.

2. GEOLOGICAL SETTING AND SAMPLING

The Jiaomuri area is situated at the center of the
Qiangtang Basin central uplift zone (Fig. 1). The Longmu
Co-Shuanghu suture runs across the northern study area,
separating the study area strata into the Gondwana affili-
ated stratigraphic system of south Qiangtang Basin and the
Yangtze affiliated stratigraphic system of north Qiangtang
Basin (Jin 2002) (Fig. 1). Typical limestone, volcanic clas-
tic rocks, siliceous rocks, and clastic sedimentary rock in-
terfingers developed in this area (Zhai et al. 2004). Permian
radiolarian siliceous rocks (Li et al. 2007) indicate that the
area was in a deep ocean/bathyal ocean environment. The
Permian strata in the Qiangtang Basin are mainly exposed
in the west to Shuanghu Special District (Zhang et al. 2013).
The Low Permian Zhanjin Formation is generally distribut-
ed along the Jiaomuri-Zhisai area, whose strata profile show
tufaceous sandstones/mudstones and basic volcanic rocks,
locally intercalated with thin medium bedded micritic lime-
stone and micrite. These rocks show some structural flysch
facies characteristics feeding trace fossils and turbidite.

The samples were collected for the present study from
fine-clastic sedimentary cores from the Qiangzi 5 Well.
This well was drilled by the Chengdu Institute of Geol-
ogy and Mineral Resources in the Jiaomuri area (Fig. 1),
revealing 1001 m Lower Permian Zhanjin Formation and
Middle Permian Longge Formation succession strata. The
drilling cores show that, lithologically, the Zhanjin Forma-
tion consists of a dolomite section (867 - 1011 m interval
of the well), volcanic breccia section (698 - 867 m), and
fine-clastic sediments section (413 - 698 m, Fig. 2) bottom-
up. It is in conformable contact with the overlying Longge
Formation micritic limestone. A total of 19 core samples
were collected from the fine-clastic sediments section of the
Zhanjin Formation. The samples are composed mainly of
pelitic siltstone, silty mudstone and siltstone.

3. METHODOLOGY

Major and trace elements analyses were performed at
the CNNC Beijing Research Institute of Uranium Geology
laboratory, following the method of the Chinese National
Standard DZ/T 0223-2001. Each sample was first smashed
into small pieces and further separated into grain size less
than 200 mesh using standardized dry sieving.

Major element concentrations were obtained using an
X-ray fluorescence spectrometer (AB-104L, PW2404) for
the subsequent analytical procedures: each powdered sam-
ple weighed 0.4 g and was equably stirred in Ni-pots with
anhydrous Li,B,0, and dissolved with NH,Br 120 mg mL"
liquid and suitable oxidant. The Ni-pots were then placed
into the CLAISSIE sampling machine for liquation accord-
ing to the procedure presented. Afterwards, the high-tem-
perature melts were placed into molds and finally encased
into plastic bags for preservation in desiccators. X-ray data
were converted into concentrations using a computer pro-
gram based on the matrix correction method. The accuracy
was estimated to be < 2% for all major element oxides.

Trace element concentrations, including REEs, were
measured using ELEMENT XR ICP-MS. The procedure is
as follows. Powders were first weighed (25 mg) and placed
in a high pressure-resistant beaker with a 1:1 mixture of
HF-HNO; and heated for 24 h at 80°C to be evaporated.
Next, 1.5 mL HNOs, 1.5 mL HF, and 0.5 mL HCIO, were
added, respectively, after the solutions were evaporated to
nearly dry. The beakers with solutions were then capped for
digestion within a high-temperature oven at 180°C for at
least 48 h until the samples were completely dissolved. The
solutions were then diluted with 1% HNO; to 50 mL for
determination. The accuracy was estimated to be 5% for all
trace elements.

4. RESULTS

The major, trace and rare earth elements analyses and
relative ratio results for 19 samples from the Qiangzi 5 Well
are given in Tables 1,2, and 3. The average enrichment fac-
tors for the selected major and trace elements are shown in
Figs. 3 and 4. Enrichment factors (EF) are used to describe
the enrichment of a sedimentary rock element, defined us-
ing the following equation:

EF = (Csample/CAl sample)/(cstandard/CA] standard) ( 1)

Average shale (AS; Wedepohl 1978, 1991) concentrations
are utilized as the standard in this study.

4.1 Major Element Characteristics

Marine shales and mudstones can be regarded as the
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admixture of three end-member oxides: SiO, (detrital quartz
and/or biogenic silica), Al,O; (clay fraction), and CaO (car-
bonate content) (Ross and Bustin 2009). The Al,O; content
in the samples range from 10.21 - 17.44 wt.% (averaging
14.34 wt.%), which is close to the AS composition. The
SiO, contents are slightly lower than AS with the con-
centration varying from 32.92 - 62.02 wt.% (averaging
47.59 wt.%). CaO concentrations show wide variation re-
sults between 0.75 and 17.20 wt.% (averaging 6.39 wt.%).
In the Al,0;%5-Si0,-CaO*2 ternary plot (Brumsack 1989;
Fig. 5), the sediments plot relatively close to the Al,O; pole

and the carbonate content shows an increasing trend. Com-
pared with the AS composition the Zhanjin Formation sedi-
ments present a developed mud flat characteristic and light
richer clay content. No notable P and Mg enrichments occur
(Fig. 3). The Mn and Na concentrations show wide varia-
tions, while most samples show that the Fe and Ti contents
are more enriched than the AS composition. The good cor-
relation between TiO, and ALO; (r = 0.72) suggests either
the occurrence of Ti within clay lattices or that the detrital
material came from a constant source with limited winnow-
ing process effects (Ross and Bustin 2009).
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the Qiangzi 5 Well (AS composition from Wedepohl 1978, 1991).

25k

EF

s H} l l}lt ll_r

0

V Cr Co Ni Cu Rb Sr Nb Ba Ta Th U Zr Hf Y Pb Ga

Fig. 4. Fluctuation and average values of trace elements enrichment
factor plot (EF), relative to average shales (AS), for the samples from
the Qiangzi 5 Well (AS composition from Wedepohl 1978, 1991).
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ing the major components of the samples from the Qiangzi 5 Well.
(Color online only)

4.2 Trace Element Characteristics

On average, the most abundant trace elements in
the early Permian sediment samples are V (average
248.32 pg g, Cr (average 131.82 ug g'), Cu (average
11691 ng g'), Zn (average 120.63 pg g'), Sr (average
350.53 pg g, Zr (average 318.79 ng g'), and Ba (aver-
age 145.95 pg g'). All the other elements occur in amounts
smaller than 100 pg g'. In general, the trace element con-
centrations vary over a wide range (Table 2). According to
the EF values, elements V (EF = 1.16), Cu (EF = 1.56), Hf
(EF = 1.88), Zr (EF = 1.22), Sc (EF = 1.51), and Co (EF =
1.05) are slightly enriched. In contrast, Rb, Ba, Th, Y, U,
and Ta have an EF less than 0.6 and are therefore considered
to be depleted.

The distributions of high field strength elements are
controlled primarily by the alumino-silicate fraction (Ross
and Bustin 2009). The immobile element concentrations for
Zr, Hf, and Ga in the samples have good correlations with
ALO; (r = 0.83, 0.87, and 0.95, respectively). Therefore,
the enrichment of those elements may suggest the impact
of continental detritus during the depositional period (Plank
and Langmuir 1998). Nb-Ta and Hf-Zr can be regarded
as element pairs, essentially analogous to each other as
they are not fractionated during most geological processes
(Plank and Langmuir 1998). Due to the low mobility, Nb
and Hf enrichment are excellent indicators of detrital input.
In the Zhangjin Formation samples, Nb and Hf are slightly
enriched, which probably indicates that these elements are
transported through structural bonding or adhesion to clay
minerals (Taylor and McClennan 1985). The Sr concen-
tration ranges from 140 - 785 pg g' and exhibits a strong
positive correlation with the CaO content in the samples (r =
0.80), probably due to their occurrence in multiple mineral
phases and often affected by the carbonate content (Nesbitt
and Young 1982; Wei et al. 2004).

4.3 Rare Earth Element Characteristics

The total rare earth element content (3 REE) of Zhanjin
sediments range from 120.29 - 241.32 pg g with an aver-
age of 173.37 ug g'. The average value of those samples is
slightly higher than that of North American Shale Composi-
tion (NASC = 167.41 ug g'; Haskin et al. 1968) and lower
than that of Post-Archean Australian Average Shale (PAAS
=183.03 nug g'; Taylor and McClennan 1985) and Average
Shale (AS =207.2 ug g'; Wedepohl 1978, 1991). The light
rare earth element (XLREE) concentrations are obviously
higher than those of heavy rare earth elements (X HREE)
with the LREE/HREE ratios varying from 4.42 - 10.12.

5. APPLICATION FOR PALEODEPOSITIONAL
ENVIRONMENT
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5.1 Hydrodynamic Condition

Hydrodynamics are the integrative effects of water
depth, wave base and current velocity. The preservative
quantity of organic matter in sediments generally increases
with decreasing hydro energy (Hunt 1979). Zr is usually en-
riched in coarse-grained sediments in the form of zircon, but
depleted in fine-grained sediments. Rb is deposited mainly
in low hydro energy environments and gathered in fine-
grained minerals such as clay minerals and mica. Hence, the
Zr/Rb ratio can quantitatively reflect hydrodynamic changes
as a proxy indication: a high Zr/Rb value usually suggests
a high-hydro energy environment and vice versa (Tenger et
al. 2006). As shown in Table 2, the Zr/Rb values of Zhanjin
Formation sediments range from 1.85 - 8.27 (averaging =
3.77). In Fig. 2, the Zr/Rb value is increasing bottom-up,
roughly indicating that the hydro energy increased over
time within the Zhanjin Formation sedimentation.

5.2 Palaeoclimate Significance

Palaeoclimate information is an important part of pa-
lacoenvironment reconstruction. The distribution, composi-
tion and relative concentrations of some trace elements in
sedimentary rock may reveal the palaecoclimatic variations.
It has been generally accepted (Cao et al. 2012) that Fe, Mn,
Cr, V,Ni, and Co are relatively enriched under moist condi-
tions. In contrast, the strengthening of water alkalinity due
to evaporation under arid conditions prompts saline miner-
als to precipitate; thereby Ca, Mg, K, Na, Sr, and Ba are
concentrated. For example, Zhao et al. (2007) applied the
C-value as a proxy for climate changes to study the Perm-
ian palaeoclimate of northwest Junggar Basin. The C-value
has been successfully used in palacoenvironment condition
reconstruction in the Qiangtang Basin and adjacent areas in
Tibet (Fu et al. 2016; Wang et al. 2017). The C-value is
calculated as:

2(Fe+Mn + Cr + Ni+ V + Co) )
2(Ca+Mg+Sr+Ba+K+Na) 2)

C -value =

As shown in Fig. 6, the C-values for the Zhanjin Formation
sediments range from 0.24 - 1.75 (average = 0.99), pointing
out a predominantly moist paleoclimate. Furthermore, the
C-values show a clear upward increase, suggesting the cli-
mate was becoming much moister during the Zhanjin For-
mation depositional period.

The Sr/Cu ratio index has also been used for palaeo-
climatic investigations (Meng et al. 2012; Jia et al. 2013).
Generally, high St/Cu ratios reflect a hot arid climate, while
low Sr/Cu ratios indicate a warm humid climate (Jia et al.
2013). Lerman (1978) proposed that St/Cu ratios between
1.3 and 5.0 suggest a warm humid climate, whereas a ratio
greater than 5.0 points to a hot arid climate. The Sr/Cu ratios
of the early Permian Zhanjin Formation samples from the
Qiangtang Basin range from 1.28 - 11.58, and the values of
most samples are lower than 5, with an average of 3.77. This
data distribution is consistent with the C-value (Fig. 2), also
supporting a humid to semi-humid climatic condition.

5.3 Palaeoredox Condition

Sediment formation redox conditions were determined
by analyzing several geochemical indicators. Previous stud-
ies demonstrated that the content of some redox-sensitive el-
ements, such as Cr, V, Th, Mn, Ni, Co, Mo, and U, in marine
sediments are generally controlled by the redox condition
and therefore considered as reliable redox tracers in the fields
of oceanography and environmental research (Yarincik et al.
2000). In oxic environments, Mo is present as stable MoO,*.
Conversely, in anoxic environments, S* can replace O* in
MoO,* and become enriched in the sediments (Crusius et
al. 1996; Algeo and Maynard 2004; Luo et al. 2013). Cru-
sius et al. (1996) suggested that 5 - 40 ug g! Mo implies an
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Fig. 6. The C-value [¥(Fe + Mn + Cr + Ni + V + Co)/2(Ca + Mg + Sr + Ba + K + Na)] of Zhanjin Formation samples, reflecting paleoclimate. The
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euxinic environment. The Mo contents in samples range
from 0.48 - 1.58 pg g' (average = 0.95 pg g'), showing no
enrichment tendency, which indicates that the samples were
deposited in an oxic environment.

Trace element ratios have also been widely used as
palaeoredox proxies, such as U/Th, V/Cr, V/Sc, and Ni/
Co (Lewan and Maynard 1982; Jones and Manning 1994;
Wignall and Twitchett 1996; Kimura and Watanabe 2001).
Commonly, Th is unaffected by redox conditions, whereas
the U concentration will be enriched in sediments under
reducing conditions and be depleted from deposits under
oxidizing conditions. Wignall and Twitchett (1996) pro-
posed that anoxic environments lead to Th/U ratios that
range from O - 2 in the sediments. In the Zhanjin Forma-
tion samples, the Th/U ratios varied from 3.16 - 10.85 with
an average of 5.73, pointing out an oxic depositional envi-
ronment (Fig. 2). Additionally, V is also a redox-sensitive
element with concentrated tendency in deposits underlying
anoxic or near-anoxic waters (Lewan and Maynard 1982).
Jones and Manning (1994) indicated that the V/Cr ratio < 2
suggests an oxidation condition, while 2 - 4.25 implies su-
boxic conditions, and > 4.25 represents anoxic to euxinic
conditions. V/Cr ratio values range between 1.30 and 2.33
in the Zhangjin Formation samples with an average of 1.89,
suggesting that they were derived mainly from an oxic envi-
ronment (Fig. 2). Moreover, Kimura and Watanabe (2001)
suggested that a V/Sc value below 9 is a good sign of oxi-
dizing conditions. The V/Sc ratios of the Zhanjin Formation
sediments range from 1.76 - 10.98 with an average of 8.38,
displaying an oxic water environment. Jones and Manning
(1994) pointed out that Ni/Co ratios below 5 reflected an
oxic environment, whereas ratios above 5 suggested a sub-
oxic or anoic environment. The Ni/Co ratios of the Zhanjin
Formation sediments vary from 1.72 - 2.49 with an average
of 2.05. In the cross plots diagram (Fig. 7), Mo content, V/
Cr, Ni/Co, and V/(V+Ni) ratios were used as palacoredox
proxies for further determining the redox conditions. All
of the samples in this study are plotted in the oxic zone.

In conclusion, all redox-sensitive trace element parameters
are consistent in revealing that the Zhanjin Formation sedi-
ments were deposited beneath an oxic water column.

Ce anomalies (0Ce) in rare earth element distribu-
tion patterns are widely accepted as an effective indicator
for estimating the palacoredox environment (Holser 1997;
Shields and Stille 2001; Palfy and Zajzon 2012). In general,
OCe values present enrichment in reducing conditions. As
shown in Table 3, the dCe values of the samples range from
0.88 - 1.09 with a mean of 0.97, and the values of most of
the samples are lower than 1, showing a slightly depleted
OCe characteristic. These data may reflect a slightly oxic (or
dysoxic) condition during sediment deposition, supporting
the above result.

5.4 Paleoproductivity Proxies

N and P are the most important nutrient elements for
plankton. Paleoproductivity in a marine environment is con-
trolled mainly by the availability of N and P (Holland 1978;
Luo et al. 2013; Zeng et al. 2015). P is regarded as the ul-
timate limiting factor in marine environments and a major
constituent of skeletal material and plays a fundamental role
in many metabolic processes (Tyrrell 1999; Tribovillard et al.
2006). Consequently, P content is widely used as an indicator
for paleoproductivity. Organic matter and authigenic miner-
als may have a dilution effect on the absolute P content in
terrigenous detrital matter. In order to mitigate this effect, P/
Ti or P/Al is used to evaluate the paleoproductivity, because
Ti or Al generally originates from terrigenous detrital matter
(Algeo and Maynard 2004; Pujol et al. 2006; Algeo et al.
2011). In this study, the P/Ti ratios ranged from 0.04 - 0.12
with an average of 0.07 (Table 2), close to those for PAAS
(0.13) and far below that of the cherts (0.34) in the Ubara
section. According to Algeo et al. (2011), the chert facies
at Ubara section present moderate paleoproductivity during
their deposition. Therefore, the samples in the present study
were thought to be a characteristic of low paleoproductivity

Oxic__ Dysoxic Suboxic/Anoxic ) 1')Oxiv: Dysoxic Suboxic/Anoxic 40 Oxic Dysoxic__Suboxic/Anoxic
= K
=
(@) ]2 ®) |¢ (©)
3 =
4 R =
X 2 30
=
N .
=3 £ E 0 ©
Q s 208 520
~ ~
> ¢
2b SIS ® &
@ =
2
[ ] o 07 < 10
1 =
=]
0 0.6 0 Dot
0 5 10 15 20 0 20 40 60 80 0 2 4 6 8 10
Ni/Co Ni/Co Ni/Co
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during the Zhanjin Formation sedimentation.

The barite accumulation rate shows a positive corre-
lation with primary productivity in the marine sediments
(Dymond et al. 1992; Paytan et al. 1996; Paytan and Griffith
2007). Dean et al. (1997) suggested Ba/Ti or Ba/Al can be
used to qualitatively assess the paleoproductivity. Ti or Al
is also used as the proxy to eliminate the dilution effect of
other components. Both ratios may represent the amount of
organisms in the ancient sea. In the Zhanjin Formation sedi-
ments, Ba/Al ratios vary from 6.4 - 102.6 with a mean of
20.5 (Table 2). Zeng et al. (2015) reported that the Changli-
ang Mountain marine oil shale in the North Qiangtang Basin
show moderate to high primary productivity, with the Ba/Al
ratios ranging from 49.2 - 124 and 85.6 - 212 (mean of 71.3
and 134, respectively). The Ba/Al ratios in the Zhangjin
Formation, by contrast, indicate relatively low paleopro-
ductivity.

5.5 Implication for Organic Matter Accumulation and
Dilution

The accumulation of organic matter in sediments de-
mand a specific environment generally considered to be re-
lated to three main controlling factors, including (1) high
primary productivity (input); (2) dysoxic to anoxic depo-
sitional environment (preservation); and (3) sedimentary
rate (dilution of organic matter) (Canfield 1989; Pedersen
and Calvert 1990; Tyson 2005; Bonis et al. 2010; Wei et al.
2012; Zeng et al. 2015; Fu et al. 2016).

As stated above, the Low Permian sediments in the
Qiangtang Basin were deposited under humid climatic con-
ditions. This condition is proper for living organisms (Fu et
al. 2016), but within the studied interval, the samples pres-
ent a relatively low paleoproductivity characteristic. In ad-
dition, several geochemical proxies indicate that the Zhanjin
Formation sediments were deposited beneath a slightly oxic
water column, which is unfavorable for organic matter pres-
ervation.

The w(La)y/o(Yb)y ratio values (ratio of La and Yb
normalized by the North American Shale Composite; Haskin
et al. 1968) are usually used to indicate the mudstone sedi-
mentary rate. If the sedimentary rate is fast, leading to weak
rare earth element fractionation, and the w(La)y/®w(Yb)y
value is close to 1 (Zeng et al. 2015; Fu et al. 2016), the av-
erage w(La)y/w(Yb)y ratio value for the Zhanjin Formation
sediments from the Qiangtang Basin is 0.87, suggesting a
fast sedimentary rate during deposition. The fast sedimen-
tary rate would result in organic matter dilution.

6. CONCLUSIONS

The geochemical characteristics of Zhanjin Formation
sediments from the Qiangtang Basin were investigated in
this study. The samples generally show a developed mud flat

characteristic with light richer clay content. Element contents,
ratio values as well as discrimination diagrams were used to
constrain the paleoredox environment. Those geochemical
data proved that these sediments were deposited mainly be-
neath a slightly oxic water column with relatively low paleo-
productivity as evidenced by the P/Ti (mean of 0.07) and Ba/
Al (mean of 20.5). Through geological analysis and compari-
son, the Jiaomuri area environment during Zhanjin Forma-
tion sediment deposition was unfavorable for organic matter
preservation. On the other side, the palacoclimate indexes
such as the C-value (0.24 - 1.75) and Sr/Cu (1.28 - 11.58)
reveal a humid climatic condition, which was suitable for
living organisms. The w(La)x/®w(Yb)y ratio values indicate a
fast sedimentary rate during the deposition period.
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