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ABSTRACT

Landslides are one of the most destructive geological disasters affecting Japan every year, resulting in huge losses in 
life and property. Numerous susceptibility studies have been conducted to minimize the risk of landslides; however, most 
of these studies do not differentiate landslide types. This study examines the differences in landslide depth, volume and the 
risk imposed between shallow and deep-seated landslide types. Shallow and deep-seated landslide prediction is useful in 
utilizing emergency resources by prioritizing target areas while responding to sediment related disasters. This study utilizes 
a 2-m DEM derived from airborne Light detection and ranging (Lidar), geological information and support vector machines 
(SVMs) to study the 1225 landslides triggered by the M 6.8 Chuetsu earthquake in Japan and the successive aftershocks. Ten 
factors, including elevation, slope, aspect, curvature, lithology, distance from the nearest geologic boundary, density of geo-
logic boundaries, distance from drainage network, the compound topographic index (CTI) and the stream power index (SPI) 
derived from the DEM and a geological map were analyzed. Iterated over 10 random instances the average training and testing 
accuracy of landslide type prediction was found to be 89.2 and 77.8%, respectively. We also found that the overall accuracy 
of SVMs does not rapidly decrease with a decrease in training samples. The trained model was then used to prepare a map 
showing probable future landslides differentiated into shallow and deep-seated landslides.
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1. INTRODUCTION

Landslides are induced by earthquakes, rainfall, snow 
melt and human intervention, resulting in significant casual-
ties and property damage every year around the world. The 
annual losses due to landslides are more than those of any 
other type of natural disasters (Guzzetti et al. 1999; García-
Rodríguez et al. 2008). As indicated by Turner and Schuster 
(1996) this trend will continue and become clearer under 
the influence of urbanization, economic development, de-
forestation and increased regional precipitation in landslide-
prone areas due to changing climate.

Both shallow failures and erosion into bedrock play 
important roles in shaping landscapes in mountainous areas 
(Oguchi 1996). However, previous studies tended to focus 

on the spatial prediction of only a single type of landslide 
(Lee et al. 2008; Cheng et al. 2010; Chen et al. 2013; Chang 
et al. 2014). Few studies have differentiated the probabili-
ties for shallow and deep-seated landslides.

Shallow and deep-seated landslides innately differ in 
their size, extent and the risk posed (Zêzere et al. 2005). 
Such landslide types reflect a variety of environmental and 
geological factors (Turner and Schuster 1996; Schmidt et al. 
2001; Roering et al. 2005). Differentiating the two landslide 
types is helpful in evaluating the geomorphic hazards con-
tributing to hillslope erosion and sediment discharge for the 
protection of human settlements and infrastructures (Dramis 
and Sorriso-Valvo 1994; Korup 2005, 2006; Larsen et al. 
2010; Lin et al. 2013). Some studies focused on the factors 
controlling the occurrence of deep-seated landslides. Roer-
ing et al. (2005) applied an algorithm developed from the 
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relationship between hillslope angle and curvature to differ-
entiate large, deep-seated landslides from debris flows and 
shallow slope failures. May (2007) developed an automated 
algorithm that granted the identification and mapping of 
deep-seated landslides over a wide area.

Landslides are regarded as a nonlinear system and 
therefore a sophisticated mathematical approach is required 
for their analysis. The landslide prediction methods devel-
oped in recent years (Guzzetti et al. 1999, 2006; Chang et 
al. 2014; Dou et al. 2014; Hoopes et al. 2014) may not al-
ways maintain their stability and reliability when used with 
a smaller training dataset (Crowther and Cox 2006). On 
the contrary, support vector machines (SVMs) have been 
known to work well even with smaller training datasets 
(Chi et al. 2008). Huang et al. (2002) found that SVMs with 
smaller training data was more persistently accurate and 
stable than the maximum likelihood classification (MLC), 
decision tree classification (DTC) and artificial neural net-
work (ANN) classification with larger training data. SVMs 
have been widely applied in various fields including remote 
sensing, computer science, pattern recognition and econom-
ics (Marjanović et al. 2009; Bui et al. 2012a).

Fine resolution topographic data are necessary for geo-
morphological analyses of landslides (Glenn et al. 2006). 
McKean and Roering (2004) used high-resolution topo-
graphic data from airborne laser altimetry to identify earth 
flows by contrasting surface roughness and surface texture. 
We used a 2-m airborne Light detection and ranging (Lidar) 
DEM for our analyses. Lidar data have been used to create 
the detailed geomorphic maps that differentiate the types of 
landforms and characterize landforms including landslides 

(Ardizzone et al. 2007; Schulz 2007; Kasai et al. 2009; Van 
Den Eeckhaut et al. 2009; Pulko et al. 2014).

Intense earthquakes are important as preparatory and trig-
gering factors of landslides (Keefer 2000; Harp et al. 2011). 
In 2004, Niigata Prefecture in central Japan experienced an 
unprecedented number of landslides, including shallow and 
deep-seated landslides, triggered by the Chuetsu earthquake. 
Several studies were made on this event (Chigira and Yagi 
2006; Kieffer et al. 2006), and most of them focused on the 
contribution of geologic and geomorphic factors to landslide 
occurrence. This study incorporates the topographic and geo-
logical variables to predict the spatial differentiation of land-
slide types that may occur by future earthquakes using SVMs 
and relatively few training samples.

2. MATERIALS AND METHODS
2.1 Study Area

The study area is located in a mountainous re-
gion (Chuetsu) of Niigata Prefecture, Japan (Fig. 1). The  
300 km2 study area is situated at 138°47’E - 138°58’E 
and 37°14’N - 37°22’N, where the elevation ranges 
from 22 - 734 m with a mean of 206 m. Approximately  
2000 mm of precipitation, a few typhoons and heavy snow 
occur annually in this region. The area contains sedimentary 
and metamorphic rocks from the Paleogene to Quaternary 
periods (Takeuchi and Yanagisawa 2004). Land-use in the 
area is characterized by sparse settlements, agro-industrial 
activities such as paddy farming and deciduous broad-
leaved beech forests.

The area experienced an earthquake of magnitude 6.8 

Fig. 1. Location of the study area and distribution of landslides (data from NIED).
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on 23 October 2004, with the depth of the hypocenter be-
ing 13 km (Japan Meteorological Agency 2004; Fig. 2). The 
ground shaking caused by the earthquake and numerous af-
tershocks (four ≥ M 6 and ten M 5-6) triggered numerous 
shallow and deep-seated landslides (Fig. 3). The Fire and 
Disaster Management Agency of Japan (2004) reported that 
40 people died and 4496 were injured during this event. The 
property and infrastructure damage from landslides alone 
was initially estimated at US $8 billion, making it one of the 
costliest landslide events in history (Kieffer et al. 2006). It is 
therefore necessary to assess this event in great detail.

2.2 Data

Previous landslides are key to predicting the distribution 
of future landslides (Guzzetti et al. 1999). We used a land-
slide inventory prepared by the National Research Institute 
for Earth Science and Disaster Prevention (NIED), Japan, 
based on the aerial photograph interpretation (Fig. 1). The in-
ventory contains 895 shallow landslides and 330 deep-seated 
landslides with an average area of 187 and 9600 m2 respec-
tively (Fig. 4). Their minimum areas are 42 and 271 m2, and 
maximum areas are 28178 and 205461 m2, respectively. The 
inventory contains landslides represented by polygons; how-
ever, for this study, the landslide polygons were changed into 
points at the centroid of each landslide polygon, using Arc-
GIS 10.1, a GIS package from ESRI.

Landslides are classified as deep and shallow in relation 
to the material and movement mechanism (Dai et al. 2011) 
(Fig. 5). NIED used the sliding plane depth to differentiate 
the two types: depth < 10 m = shallow and >10 m = deep-
seated. This landslide differentiation scheme is also used by 
Roering et al. (2003). Shallow landslides with surface soil 
mantle movement are smaller in volume than the deep-seat-
ed landslides with the movement of both surface mantle and 
underlying weathered bedrock. Deep-seated landslides more 
likely to cause large scale debris flows and landslide dams, 
with more disastrous consequences.

The thematic data used are summarized in Table 1. 
An airborne Lidar DEM with a spatial resolution of 2 m 
was provided by the Geospatial Information Authority of 
Japan in 2005 (Geographical Survey Institute 2007). The 
geological information used is based on the geological maps 
provided by the Geological Survey of Japan (Takeuchi and 
Yanagisawa 2004). All conditioning factors used are con-
tinuous except the categorical lithology data.

Landslide causative factor selection is the fundamental 
step in predicting landslides. This study assumes that fac-
tors previously used to study landslide susceptibility are 
equally useful in predicting the probable landslide types. 
We therefore considered landslide susceptibility studies by 
Guzzetti et al. (1999, 2006), Lee and Sambath (2006), Ca-
niani et al. (2008), Lee and Tsai, (2008), Lee et al. (2008), 
and Dou et al. (2009) for selecting the factors summarized 

in Table 2. The factors include several DEM derivatives: 
elevation, slope angle, aspect, curvature, distance from 
drainage network, the compound topographic index (CTI), 
and the stream power index (SPI), as well as lithology, dis-
tance from the nearest geological boundary and density of 
geological boundaries. The density of geological boundar-
ies was computed within a circle of 200 m radius based on 
Kawabata and Bandibas (2009) who studied the same area. 
The factors used were calculated using ArcGIS and the re-
sults are shown in Fig. 6.

Elevation greatly influences precipitation and vegeta-
tion due to its orographic effect. Slope angle is also an im-
portant factor that influences slope stability (Lee et al. 2008). 
Aspect can be an indirect measure of hydro-meteorological 
influences on vegetation and weathering and thus the resis-
tance of slope material (Kawabata and Bandibas 2009; Dou 
et al. 2014). Curvature controls hydraulic flow in relation to 
convergence and divergence and hence landslide occurrence 
(Dai et al. 2011). Shallow and deep-seated landslide differ-
entiation may depend on the lithology (Wieczorek and Jäger 
1996) that affects the thickness of weak beds. Groundwater 
and soil moisture conditions in relation to topography affect 
landslides (Zinko et al. 2005). Several topographic indices 
have been proposed to describe these conditions. CTI and 
SPI, developed by Beven and Kirkby (1979) and Gessler et 
al. (1995), respectively, are used in this study:

Fig. 2. Epicentral distribution of major earthquakes in and around mid-
Niigata prefecture region. Map: Courtesy of ESRI.
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Fig. 3. Figure of shallow (left) in the southwest of Nigorizawa Nagaoka city; and deep-seated (right) landslides in the western entrance of Haguro 
tunnel, Nagaoka city. Photographs: Courtesy of NIED, Japan.

(a) (b)

Fig. 4. Histograms showing characteristics of landslide types: (a) area of deep-seated landslide, (b) area of shallow landslide.

Fig. 5. Sketch of shallow landslides (left) and deep-seated landslides (right).

Classification Sub-classification GIS data type Scale or resolution Classes Source of data

Landslide inventory map Landslide Polygon coverage 1:50000 Continuous NIED

Geological map
Lithology Polygon coverage 1:50000 Categorical GSJ

Geological boundary Line coverage Continuous

Topographic map DEM ARC/INFO Grid 2 × 2 m Continuous GSI

Table 1. Thematic datasets used in the study.
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CTI = ln (As/tanβ) (1)

SPI = As × tanβ (2)

where As is the specific catchment area per unit channel 
width orthogonal to the flow direction (m2 m-1) and β is the 
slope angle expressed in degrees. CTI is strongly correlated 

with soil moisture, while SPI taking into account both slope 
and flow accumulation is correlated with erosion potential. 
These indices also provide information on soil depth and 
soil constituents (Moore et al. 1991; Florinsky 2011) sug-
gesting that they can be invaluable factors in predicting the 
landslide types (Wieczorek and Jäger 1996). Geological 
boundary density may reflect the tectonic activity that re-
sults in slope instability (Dou et al. 2014).

Source dataset Conditioning factors Description or definition Significance

DEM

Elevation Height above the mean sea level Vegetation, climate, solar energy.

Slope Rate of change in elevation for each cell
Overland and sub-surface flow velocity, runoff 
rate, rainfall, vegetation, geomorphology, soil water 
content.

Aspect Downslope direction of the maximum rate of 
change in elevation Evapotranspiration, distribution of flora and fauna.

Curvature Curvature of the line parallel or perpendicular to 
the direction of the maximum slope Erosion or deposition.

Distance from drainage 
networks

The minimum distance from the closest drainage 
network Erosion, ground water condition and relative stability.

Compound topographic 
index (CTI)

CTI = ln(As/tanβ) with As specific catchment 
area per unit channel width orthogonal to the flow 
direction and β the slope angle

Also known as the topographic wetness index (TWI); 
it correlates with soil moisture.

Stream power index (SPI) SPI = As × tanβ Erosive power of overland flows, thickness of soil 
horizons.

Geological map

Lithology Lithological information as types Strength of the surface and direct control over most of 
the factors.

Distance from the nearest 
geological boundary

The minimum distance from the boundary of the 
nearest geological unit Stress, cohesion.

Density of geological 
boundaries Number of geological boundaries per unit area Stress, cohesion, tectonic activity.

Table 2. Landslide causative factors used in the study.

Fig. 6. Factors maps: (a) lithology, (b) slope angle, (c) aspect, (d) distance from drainage network, (e) density of geologic boundaries, (f) distance 
from the nearest geologic boundary, (g) curvature, (h) compound topographic index (CTI), (i) stream power index (SPI), and (j) elevation.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)
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2.3 SVMs Model

SVMs provide supervised learning models with associ-
ated algorithms based on the concept of optimal separating 
hyper plane and statistical learning theory (Vapnik 1998). 
SVMs are useful non-linear classifiers whose goal is to find 
the widest margin between two classes in a feature space. 
Figure 7 illustrates this concept: ovals and squares are two 
kinds of samples and the separating hyper plane (H) is one 
of possible planes which can separate the two classes; and 
the distance between the two dotted lines in Fig. 7 is called 
margin. The vectors which constrain the width of the mar-
gin are called the support vectors. Although SVMs are often 
considered easier to use than neural networks, inappropri-
ate parameter setting often leads to unsatisfactory results 
(Chang and Lin 2011).

SVMs involve a training phase using a training dataset. 
SVMs are not relatively sensitive to the size of training sam-
ples and may successfully perform with a limited number of 
training samples (Mantero et al. 2005; Foody and Mathur 
2006). Foody and Mathur (2004) demonstrated that only a 
quarter of the entire training data set was sufficient for high 
accuracy classification.

For a set of linear separable training vectors xi (i = 1, 
2, …, n), consisting of two classes represented as yi = ±1, 
SVMs try to obtain an optimal hyper plane by differentiat-
ing the two classes by solving the following optimization 
function (Vapnik 1998):

:Min w w c2
1

, ,

T
iiw b 1

1
p+

p
=/  (3)

Subjected to the constraints of the following equation:

( ) ,y w x b 1 0i
T

i i i$ $z p p+ -6 @  (4)

where w is a coefficient vector, b is the offset of the hy-

per plane from the origin, ip  is the positive slack variable,  
c (> 0) is the penalty parameter of the error term; and the 
kernel function is:

( , ) ( ) ( )k x x x xi j i
T

jz z=  (5)

Normally four basic kernel functions, linear (LF), polyno-
mial (PF), radial basis (RBF), and sigmoid (SF) functions, 
are used in the SVMs. Table 3 shows their formulas. LF is 
the simplest one; PF is non-stationary and well suited when 
all training data are normalized; SF is from the field of neural 
networks; and RBF depends on the distance from the origin.

In this study, the four kernel functions were employed. 
The 10 landslide controlling factors were normalized into 0 
to 1 to limit the dominating effect of large values:

( ) ( )
( )y Max x Min x

x Min x= -
-  (6)

where y is the normalized data value and x is the original 
data value. Partial input and targets for SVMs training sam-
ples after normalization are listed in Table 4.

In this study 1225 landslides were randomly divided 
into two groups: training and testing datasets. Varying train-
ing sample size (30, 40, and 50%) was used to test the ef-
fect of the size. The shallow and deep-seated landslides were 
assigned values of 1 and 0, respectively. Prior to the cal-
culations, the penalty parameter (c) was obtained using the 
cross-validation technique detailed in LIBSVM. LIBSVM 
is an integrated software used for support vector classifica-
tion, distribution estimation (one-class SVM and multi-class 
classification) and regression (Chang and Lin 2011). This led 
to lesser support vectors and significantly reduced time of 
calculation. To test the stability and reliability of the model, 
the process was iterated 10 times as done by other schol-
ars (Chang and Chao 2006; Pradhan et al. 2010; Bui et al. 
2012b). Each time a random set of landslides was selected for 

Fig. 7. Illustration of the optimal separating hyperplane.
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training, and the remaining data are used as the test samples. 
The SVMs model was operated on the platforms of Matlab 
2012a and LIBSVM.

Two separate SVMs were used in this study: one using 
only the landslide types as input to differentiate them, and the 
other using not only landslide types but also data for points 
in non-landslide areas as input. The non-landslide points 

were randomly selected from areas with no landslides.

3. RESULTS AND DISCUSSION

SVM model performance is directly related to kernel 
function and parameter selection. Each kernel was trained 
and tested; the prediction results for the two landslide types 

Kernel Formula Kernel parameters
Accuracy of prediction

Training Testing

Linear function (LF) ( , )k x x x xi j i
T

j= 69.76% 59.23%

Polynomial function (PF) ( , ) ( ) , 0k x x x x >i j i
T

j
ac Y Y= + c , Y 95.26% 72.81%

Radial basis function (RBF) ( , ) ( ), 0expk x x x x >i j i j
2c Y= - - c 94.38% 84.31%

Sigmoid function (SF) ( , ) ( ) ,tank x x h x x 0>i j i
T

jc Y Y= + Y 71.25% 62.37%

Table 3. SVMs kernel functions, their parameters and their overall accuracy.

Type Elevation Slope Aspect Curvature Density of geological 
boundary

Distance from 
drainage network

Landslides (target values)
(1, 0, 0) = deep

(0, 1, 0) = shallow
(0, 0, 1) = non-landslide

non-landslide 0.1862 0.1675 0.7516 0.2313 0.2222 0.2714 0 0 1

non-landslide 0.1970 0.2952 0.4871 0.2545 0.7823 0.0428 0 0 1

non-landslide 0.2824 0.0905 0.2792 0.2536 0.2838 0.3347 0 0 1

deep 0.0228 0.3355 0.0473 0.2516 0.4106 0.0518 1 0 0

deep 0.0562 0.5063 0.8478 0.2468 0.4706 0.1312 1 0 0

deep 0.0700 0.4798 0.8495 0.2536 0.4619 0.0631 1 0 0

shallow 0.4310 0.0095 0.7516 0.2554 0.1152 0.0147 0 1 0

shallow 0.4080 0.0667 0.9786 0.2554 0.1241 0.0147 0 1 0

shallow 0.4497 0.4067 0.1854 0.2528 0.1521 0.0147 0 1 0

deep 0.2114 0.5017 0.9613 0.2572 0.1826 0.4758 1 0 0

deep 0.2163 0.1865 0.8253 0.2506 0.2033 0.3733 1 0 0

shallow 0.4794 0.5104 0.2249 0.2462 0.2325 0.0147 0 1 0

shallow 0.4176 0.1233 0.7273 0.2542 0.1172 0.0147 0 1 0

shallow 0.4310 0.0095 0.7516 0.2554 0.1152 0.0147 0 1 0

shallow 0.4080 0.0667 0.9786 0.2554 0.1241 0.0147 0 1 0

shallow 0.4497 0.4067 0.1854 0.2528 0.1521 0.0147 0 1 0

shallow 0.4286 0.3098 0.2846 0.2510 0.2112 0.0147 0 1 0

shallow 0.4451 0.2773 0.7070 0.2688 0.3700 0.0147 0 1 0

shallow 0.4306 0.0538 0.3574 0.2596 0.3545 0.0147 0 1 0

non-landslide 0.3299 0.1215 0.8615 0.2076 0.2331 0.5122 0 0 1

non-landslide 0.3373 0.0903 0.2788 0.1975 0.3628 0.3347 0 0 1

deep 0.0189 0.3004 0.9941 0.2423 0.4322 0.0374 1 0 0

deep 0.1811 0.3794 0.8790 0.2564 0.2769 0.3214 1 0 0

deep 0.1590 0.3130 0.8507 0.2606 0.2774 0.2903 1 0 0

deep 0.0635 0.3947 0.9786 0.2657 0.4352 0.1495 1 0 0

deep 0.0549 0.4451 0.8359 0.2555 0.4472 0.1057 1 0 0

Table 4. Partial inputs and targets for SVMs training samples.
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from the 10 factors for each kernel (Table 3) show that the 
PF sample training accuracy is the highest (95.26%) fol-
lowed by that of RBF (94.38%). RBF outperformed for 
the testing samples (84.31%) and was hence selected as the 
SVMs kernel for this study. This classifier selection may be 
an SVM limitation because only one constraint is active at a 
time (Burges 1998; Kavzoglu et al. 2014).

The average back propagation (BP) technique accuracy 
using ANN applied to the same dataset from an unpublished 
work from the same authors, showing that for models trained 
with 50% of the data, the average training and testing accu-
racies obtained from SVMs (89.24 and 77.78%) are higher 
than those from BP (Table 5). The low standard deviation 
values across the iterations (< 5%) suggest the stability of 
the method. The results (not detailed here) show that deep-
seated landslides were classified more accurately (88.18%) 
than shallow landslides (76.99%), as visually represented in 
Fig. 8. This indicates the strong morphological signatures 
cast by deep-seated landslides while the imprints of shal-
low landslides were not correctly captured by the DEM used 
(Korup 2005; May 2007). Although we used the 2-m DEM, 
using higher resolution topographical information seems to 
be necessary to study shallow landslides in detail.

For the reduced size of the training dataset (30, 40, 
and 50%), the model performed equally well (Table 6 and  
Fig. 9). The models trained with 30 and 40% of the data 
yielded the average of overall accuracy of 75.1 and 75.24%, 
with the standard deviation of 2.93 and 2.43, respectively, 
which are very similar to the results obtained from the 50% 
training data. This agrees with Burges (1998) , Huang et al. 
(2002), Chi et al. (2008), and Kavzoglu et al. (2014) in terms 

of the stability of SVMs even with fewer training datasets, 
compared to other models like ANN.

Figure 10 is the final map showing the probable land-
slide types (shallow and deep-seated) and non-landslide ar-
eas in the case of an earthquake of a magnitude similar to 
the Chuetsu earthquake, based on the SVMs and the caus-
ative factors. The prediction map has an overall accuracy of 
71.75%, which seems to be acceptable as the first trial of this 
kind in the study area and may provide a guideline for social 
preparation for future landslide hazards. From the figure we 
can also visualize that most of known-shallow and deep-
seated landslides are located in the corresponding probable 
zones. It should also be noted that the area with the probable 
deep-seated landslides is broader than that with probable 
shallow landslides. This result agrees with the landslide in-
ventory for the Chuetsu earthquake, including deep-seated 
landslides fewer in number (330, compared with 895 shal-
low landslides) but much larger in average area (9600 m2 
compared to 187 m2 for shallow landslides).

4. CONCLUSION

This study assumed that variations in topographic and 
geographic factors used for evaluating landslide susceptibil-
ity, are equally useful in predicting and differentiating shal-
low and deep-seated landslides. An inventory of landslides 
triggered by the M 6.8 Chuetsu earthquake and subsequent 
aftershocks in 2004, a 2-m Lidar DEM, geological data, and 
SVMs were used. The results with high accuracy suggest that 
our assumption is valid. The existing landslides matched the 
predictions in most cases. SVMs also outperformed ANN 

Iteration number
Accuracy (%) of SVMs Accuracy (%) of BP

Training (%) Testing (%) Training (%) Testing (%)

1 90.46 75.87 87.24 69.21

2 85.59 79.38 86.09 62.10

3 86.38 73.74 79.31 65.13

4 88.00 74.22 84.41 59.23

5 93.82 76.87 81.64 65.12

6 94.38 77.91 83.16 61.02

7 84.15 77.39 80.73 58.39

8 85.38 78.09 81.19 62.34

9 88.00 80.04 82.36 61.04

10 96.27 84.31 78.25 58.37

Min 84.15 73.74 78.25 58.37

Max 96.27 84.31 87.24 69.21

Standard deviation 4.04 2.89 2.71 3.27

Average 89.24 77.78 82.44 62.20

Table 5. Accuracy of the SVMs and BP model with the data equally (50%) divided into 
training and testing samples.
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Fig. 8. Map prepared using the confusion matrix obtained from classification of landslide types using SVM with 50% trainings sample (upper); 
representational aerial photographs (lower). Photographs: Courtesy of GSI, Japan.

Prediction accuracy (%) with the testing samples

Iteration number Model trained with 50% data Model trained with 40% data Model trained with 30% data

1 75.87 78.6 74.7

2 79.38 75.1 80.8

3 73.74 73.5 73.74

4 74.22 74.1 77.4

5 76.87 72.3 79.5

6 77.91 80.0 72.3

7 77.39 76.8 72.6

8 78.09 75.1 72.9

9 80.04 74.8 72.3

10 84.31 72.1 74.8

Min 73.74 72.1 72.3

Max 84.31 80.0 80.8

Standard deviation 2.89 2.43 2.93

Average 77.78 75.24 75.1

Table 6. Accuracy of the SVMs model using 30, 40, and 50% of the data to train the model.
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(BP) in terms of model stability and accuracy. Among the 
four SVMs kernels, RBF was selected after a comparative 
test. Moreover, reduction in the size of the training dataset 
from 50 - 30% of the total dataset did not significantly af-
fect the SVMs model accuracy confirming that SVMs work 
even with a smaller training dataset. However, we found 
that a higher resolution DEM is necessary for studying the 

details of shallow landslides.
Active geological processes like landslides play an im-

portant role in reshaping topography. Therefore, differenti-
ating the types of landslides is important for discussing the 
geomorphological evolution of hillslopes and also for sup-
porting the local government managing and mitigating local 
hazards. Further studies using not only a finer DEM but also 

Fig. 9. Prediction accuracy (testing samples) of the SVMs model using 30, 40, and 50% of the data to train the model.

Fig. 10. Map showing the probable occurrences of shallow and deep-seated landslides in the whole study area.
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other detailed information such as the peak ground accelera-
tion (PGA) and volume of landslides are necessary.
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