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ABSTRACT

The geomorphology of Taiwan is characterized by marked changes in terrain, geological fractures, and frequent natural 
disasters. Because of sustained economic growth, urbanization and land development, the land cover in Taiwan has undergone 
frequent use changes. Among the various technologies for monitoring changes in land cover, remote sensing technologies, 
such as LiDAR, are efficient tools for collecting a broad range of spectral and spatial data. Two types of airborne LiDAR 
systems exist; full-waveform (FW) LiDAR and traditional discrete-echo LiDAR. Because reflected waveforms are affected 
by the land object material type and properties, the waveform features can be applied to analyze the characteristics specifically 
associated with land-cover classification (LCC). Five types of land cover that characterize the volcanic Guishan Island were 
investigated. The automatic LCC method was used to elucidate the spectral, geomorphometric and textural characteristics. 
Interpretation keys accompanied by additional information were extracted from the FW LiDAR data for subsequent statistical 
and separation analyses. The results show that the Gabor texture and geomorphometric features, such as the normalized digital 
surface model (nDSM) and slopes can enhance the overall LCC accuracy to higher than 90%. Moreover, both the producer 
and user accuracy can be higher than 92% for forest and built-up types using amplitude and pulse width. Although the wave-
form characteristics did not perform as well as anticipated due to the waveform data sampling rate, the data provides suitable 
training samples for testing the waveform feature effects.
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1. INTRODUCTION

Land cover is the physical material on the Earth’s sur-
face, including grass, asphalt, trees, bare ground, and water. 
Although these terms are frequently used interchangeably, 
land cover is distinct from land use, which refers to how 
people use the land for socioeconomic activities (Comber 
et al. 2005). Changes in land use and land cover (LULC) 
are the critical driving forces of change in atmospheric, 

climatic, and ecological systems (Feddema et al. 2005; 
Pielke 2005). Changes in LULC occur because of natural 
hazards such as typhoons and earthquakes, and human ac-
tivities such as deforestation. Taiwan comprises a land area 
of approximately 36000 m2, featuring plains (26.68%), 
hills (27.31%), and mountains (46.01%). The mountain-
ous regions encompass high mountain valleys with deep 
and fault-knit environments, fragile geological features, 
abrupt slopes and steep rivers. According to the National 
Fire Agency (2007), 270 natural disaster events occurred 
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in Taiwan from 1958 - 2007, including typhoons (71.1%), 
floods (15.0%), and earthquakes (8.5%). Strong, sustained 
economic growth has driven urbanization and land devel-
opment, causing frequent changes in the types of LULC. 
Compounding the rapid development effects, these consid-
erable LULC changes have coincided with the destruction 
of natural environments and the improper use of soil and 
water resources. Thus, extant land-cover information should 
be updated promptly, efficiently and continually. Accurate 
land-cover mapping provides crucial information that facili-
tates resource management, planning and intergovernmental 
cooperation for addressing global warming and minimizing 
biodiversity reduction. Traditional methods for land-cover 
mapping include photogrammetry and remote sensing. The 
types of sensors used for land-cover mapping are passive 
(e.g., optical satellite or digital camera), active (e.g., radar 
or LiDAR), or a combination of both. Previous aerial survey 
payload sensors have been equipped with film-type aerial 
cameras; however, these have been superseded by metric 
digital cameras. In addition to capturing images comprised 
of red, green, and blue (RGB) bands in the visible spectra, 
metric digital cameras can capture images in the near-infra-
red (NIR) band. The advantages of employing remote sens-
ing technology to examine LULC include extensive range, 
immediacy and periodicity of the obtainable information. 
Remote sensing technology can be applied to monitor cur-
rent changes in LULC (Chang et al. 2012b).

A LiDAR system is comprised of multiple subsystems; 
namely, a global positioning system (GPS), inertial mea-
surement unit and laser scanner. Currently, the high vol-
umes of spatial data collected within a short period using 
LiDAR systems are typically used for quantitative analyses 
and modeling in geology, coastal erosion and geomorphol-
ogy studies. Airborne LiDAR technology can be used to 
collect multiple laser returns at pulse repetition rates of up 

to 500 KHz. The positional accuracy of the resultant laser 
pulse return is typically at the decimeter level. Thus, the ob-
tained standard airborne LiDAR survey products include all 
points, ground points, digital surface models (DSMs) and 
digital elevation models (DEMs). Two types of airborne Li-
DAR system are currently available; full-waveform (FW) 
and discrete-echo LiDAR. The return signal in discrete echo 
LiDAR systems is filtered to export multiple echoes. For 
each transmitted laser pulse only three to seven echoes are 
typically used to record the intensity and three-dimensional 
coordinates. However, FW LiDAR systems can record the 
entire waveform for each transmitted laser pulse. A wave-
form typically involves responses per nano-second, with a 
maximum of 255 echoes obtained (Fig. 1); permitting an 
exceptionally high level of information to be preserved. Ad-
ditional land information and high-density point-cloud data 
can be acquired to improve the accuracy of digital terrain 
models (DTMs) (Mücke 2008; Wagner et al. 2008). Be-
cause the reflected waveforms are affected by the material 
type and properties of detected land objects, the waveform 
features can be applied to analyze the physical characteris-
tics associated with land-cover classification (LCC) (Neuen-
schwander et al. 2009). LiDAR systems have been used in 
close-range or aerial topographical surveys to classify veg-
etation in forested areas and map disasters (Knabenschuh 
and Petzold 1999; Wehr and Lohr 1999; Thiel and Wehr 
2001; Beraldin et al. 2010).

Three frequently used methods for surveying the sta-
tus of land cover are ground aerial and space borne surveys 
(Lillesand et al. 2004; Liu et al. 2009) or a combination of 
these methods (Galli et al. 2008). The ground survey method 
was first employed in Taiwan for land-use censuses between 
1993 - 1995 (Huang et al. 2007). Ground surveys are slow 
but highly accurate. When an inventory area is large acces-
sibility tends to be low. Therefore, neither near-real-time 

Fig. 1. Full-waveform (FW) LiDAR system return signal (Doneus et al. 2008).
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surveying nor complete coverage is possible. Conversely, 
photographic or image interpretation approaches are not 
subject to accessibility problems. Aerial photography and 
high special resolution stereoscopic images have been used 
frequently to characterize geometric boundaries and attri-
butes. These approaches can be used to resolve and clearly 
define individual land-cover objects. Manual, semiautomat-
ic and automatic interpretations of photographic data have 
been used. Manual interpretation requires adequately trained 
personnel to delineate land-cover objects from stereoscopic 
images or orthorectified images. However, the conventional 
approach for interpreting photographic images is time con-
suming and labor intensive (Lillesand et al. 2004; Huang et 
al. 2007). Automatic LCC is based on certain criteria and 
algorithms (i.e., image classification methods) that are ad-
vantageous because of their objectivity. Several researchers 
have attempted to identify patterns or objects by applying 
pixel-based classification methods such as the maximum 
likelihood (ML) method, artificial neural networks (ANNs) 
(Zurada 1992; Barlow et al. 2003; Chang and Liu 2004), and 
support vector machines (SVMs) (Zhu and Blumberg 2002; 
Foody and Mathur 2004; Camps-Valls and Bruzzone 2005; 
Chang et al. 2010). Traditional methods for classifying re-
mote sensing data are based on statistical analyses (e.g., the 
ML method) and priori statistical information (e.g., probabil-
ity distributions). According to the Hughes effect, increasing 
the number of data bands requires using additional training 
samples; otherwise, the classification criteria performance 
is degraded. ANNs are both powerful and versatile compu-
tational tools for organizing and correlating information to 
solve problems that are exceedingly complex, poorly under-
stood or excessively resource intensive. However, a trained 
network is a black box, in which the internal workings of the 
network are unknown. The derived solution is typically a lo-
cal extreme value (Bischof et al. 1992). SVMs are novel pat-
tern recognition models based on adaptive learning methods. 
An SVM can be employed to process high-dimensional data 
and these models have become increasingly used in appli-
cations involving remote sensing. Some SVM models have 
been used in LULC classification projects, the experimental 
results of which showed that SVM models are more accurate 
compared with alternative supervised classification methods 
(Chang et al. 2012a).

This study therefore used an SVM model integrating 
spectral, geomorphometric, waveform, and textural features 
to conduct LCC. Geomorphometric features were generated 
from a LiDAR-based DEM and DSM. Five types of land 
cover that characterize Guishan Island, a volcanic island 
in eastern Taiwan, were used in an experiment to perform 
accuracy assessment on LCC. Moreover, the interpretation 
keys with additional information that were extracted from 
FW LiDAR (e.g., amplitude and pulse width) were also 
evaluated to determine the relationship with various types 
of land cover.

2. METHODOLOGY

Orthorectified aerial images in the NIR band and FW 
LiDAR data were employed in this study to extract spectral 
features [i.e., the normalized differential vegetation index 
(NDVI)] and greenness index), geomorphometric features 
[i.e., the normalized digital surface model (nDSM)], slope, 
and aspect), waveform features from the LiDAR data [i.e., 
amplitude and pulse width (Lin and Mills 2010)], and their 
corresponding textural features (i.e., variance, entropy, and 
Gabor filter). The nDSM obtained by subtracting the DSM 
and DEM entails the normalized height of objects above 
the bare ground surface. Subsequently, an SVM method 
was employed to assess the LCC accuracy. The waveform 
patterns for various types of land cover were characterized 
using a statistical method. The method for extracting the 
waveform and Gabor texture features and the principle of 
the SVM model implemented in this study are detailed in 
the following section. For further details regarding the other 
LiDAR-derived features and classifications, please refer to 
Chang et al. (2010, 2012a)

2.1 Extraction of Waveform and Texture Features
2.1.1 Waveform Features

To ensure that the sample data fit the function model 
waveform decomposition methods for obtaining FW Li-
DAR data assume that a return pulse is a distribution func-
tion model. The most frequently used models form a sym-
metric distribution (e.g., Gaussian) (Wagner et al. 2006), 
asymmetric Weibull function (Jutzi and Stilla 2006), or 
log-normal distribution (Liao 2013). Point-cloud data (LAS 
1.3 file format) were imported into the Terra Scan software 
version 009.014 in this study (Terrasolid, Finland). The 
process for extracting and exporting the waveform data as 
an ASCII text file required using the waveform function. 
The amplitude and pulse width were then derived using the 
Gaussian decomposition method. Except for the two men-
tioned waveform features, a normalized amplitude feature 
obtained based on the amplitude value divided by the total 
amount of amplitude was calculated as a waveform feature 
to reduce the gain offset effects.

2.1.2 Gabor Texture Feature

The Gabor filter, which is a linear filter with an im-
pulse response defined according to a harmonic function 
multiplied by a Gaussian function, is ideally localized based 
on the uncertainty principle in both spatial and frequency 
domains. Thus, a Gabor filter can be highly selective in both 
position and frequency in enhancing the texture boundaries 
detection (Vyas and Rege 2006). The Gabor filter-related 
segmentation paradigm is based on a filter bank model, in 
which several filters are applied simultaneously to an input 
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image. The filters focus on a specific range of frequencies. 
If an input image contains two unique texture areas, the lo-
cal frequency difference between the areas is used to detect 
the textures in one or more filter output sub images.

Gabor filters can be configured to have various shapes, 
bandwidths, center frequencies and orientations by adjust-
ing the corresponding parameters. The filter can thus be 
configured to pass any spatial frequency elliptical region.
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In Eq. (1), xv  and yv  characterize the spatial extent and 
bandwidth of the filter for determining the effective size of 
neighboring pixels for the weighted summation. i  specifies 
the orientation of the Gabor filters and λ is the wavelength 
at which the cosine factor cos( x2r /λ) determines the pre-
ferred spatial frequency 1/λ of the receptive field function 
g(x, y). A filter exhibits a strong response to an edge with a 
normal parallel to the orientation i  of the sinusoid. In 1946 
Gabor proposed expanding a wave based on Gaussian wave 
packets (e.g., a sine wave multiplied by a Gaussian func-
tion). If a signal is modulated by a Gaussian window of a 
certain width and central time, a Fourier expansion of the 
modulated signal then returns a measure of the local spec-
trum. Although such a spectrum is not unique because the 
width of the Gaussian window is arbitrary, local spectra are 
highly useful. If a collection of local spectra is computed 
for a series of window positions, the result is the time-fre-
quency decomposition known as a Gabor transformation. 
When two textures differ in a given image a Gabor filter is 
configured to produce a step change in the output O(x, y) at 
the texture boundaries (Hwang et al. 2011). A Matlab code 
was applied in this study to generate the Gabor texture im-
age. After applying a trial-and-error approach we applied 
0.2 or 0.1 for f, and 2.0 for xv  and yv . The optimal texture 
image was derived using a window size with the filter set at 
9 × 9 with a zero orientation angle.

2.2 SVMs

The SVM was proposed by Vapnik to address the 
problems of pattern classification and nonlinear regression 
by minimizing the structural risk (Vapnik 1998). Based on 
the structural minimization risk principle in computational 
learning theory, SVMs are designed to identify the separat-
ing hyper plane based on the maximal margin to differenti-
ate between positive and negative samples from a training 
set. The simplest type of SVM is a binary classifier, which 
determines whether an input image belongs to one of two 
classes. The SVM requires a set of training samples com-

prising positive and negative samples to produce an SVM 
and the corresponding Class C. Positive samples belong to 
Class C. After the images are preprocessed all samples are 
translated into n-dimensional vectors.

There are two types of multiclass SVM systems; one-
versus-all and one-versus-one. The one-versus-all SVM 
must train k binary SVMs, where k is the number of classes. 
The ith SVM is trained using all samples of the ith class 
as positive samples and the remaining samples as negative. 
After all SVMs are established using positive and nega-
tive samples, the system trains all k SVMs. Thus, the SVM 
builds k decision functions. The decision values are com-
puted by the decision functions, and the maximal value and 
corresponding class in Eq. (2) are used as the resulting class 
to test the data.
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Where ( )x{  is a mapping function in mapping train-
ing data xi to high-dimensional space, w is a vector normal 
to the hyper plane, and b is the bias. By contrast, the one-
against-one SVM trains a corresponding SVMij for every 
combination of two classes (i.e., i and j). It therefore trains 
k × (k - 1)/2 SVMs to build k × (k - 1)/2 decision functions. 
For each input object all of the decision values are com-
puted and a voting algorithm is applied to determine which 
class the object belongs to. If sign (wij·x + bij) shows that x 
belongs to the ith class, then the vote count for that class in-
creases by one; otherwise, the vote count for the jth class in-
creases by one. Finally, x is predicted to be the class with the 
most votes. The LibSVM function in WEKA (version 3.6.1) 
was employed for the SVM classification in this study.

3. CASE STUDY

Two experiments were conducted in this study: experi-
ment 1 was designed to characterize the types of land cover 
based on the FW LiDAR pattern, and experiment 2 was de-
signed to assess the LCC accuracy based on various com-
binations of features. Experiment 1 was conducted to deter-
mine whether the waveform information could be applied to 
improve land-cover recognition. A river channel named the 
Taimali river corridor in Eastern Taiwan was surveyed us-
ing FW LiDAR in 2012 as the study area for experiment 1.  
The amplitude and pulse width of the waveforms were ex-
tracted as the primary features for analyzing various types 
of land cover. Statistical analysis was conducted to charac-
terize the significant features of various land-cover types. 
The eight land-cover types analyzed in this study were for-
est, wet sand, dry sand, asphalt, cement houses, grass, metal 
houses, and other artificial structures (Fig. 2). In addition to 
the mean and standard deviation of the amplitude and pulse 
width data, the nDSM and slope of DTM were calculated to 
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differentiate among the various types of land cover.
A separation measure was developed to indicate similar 

clusters that were assumed to exhibit data density as a de-
creasing function of the distance from the cluster vector. The 
measure was applied to infer the appropriateness of the data 
partitions for comparing the relative appropriateness of vari-
ous data divisions. The measure depended on neither the num-
ber of analyzed clusters nor the method for partitioning the 
data. Furthermore, it could be used to guide a cluster-seeking 
algorithm. The four separation measures were divergence, 
transformed divergence (TD), Bhattacharyya distance (BD), 
and JM distance (JD). These separation measures were per-
formed using the SEPSIG function of Idrisi Taiga software 
(Clark Labs, USA). SEPSIG produced a table encompassing 
several sections, each detailing the separability among the 
band combinations of a specific pairwise combination of sig-
natures. Ultimately, an additional section detailed the mean 
separability for the entire signature group (calculated as the 
mean of all pairwise combinations). Within each section the 
left column specified all possible subset combinations for 
the total number of bands, while the right column specified 
the calculated value for the applied separability measure. A 
multiplier was applied to scale the TD measure into a useful 
range. Typical multipliers (2100 or 2000) were used (default 
value 2000), and the TD measure was applied as the mea-
surement index for validating the degree of discrimination 
between the defined signatures.

Guishan Island was the study area in experiment 2  
(Fig. 3). The island is the top of an andesitic stratovol-
cano based on the sea floor, exhibiting active fuma-
roles and solfataras. It has an area of 2.841 km2 and its peak 
is 401 m above sea level. The data set was captured using a 
Riegl LMS680i airborne LiDAR system (altitude, 1400 m; 
scanning frequency, 270 Khz) on 7 July 2011.

Orthophotos (spatial resolution, 10 cm) were gener-
ated from aerial photographs that were captured using direct 

georeferencing, and orthorectified using LiDAR DSM with-
out employing the ground control points. The NDVI was 
applied to normalize the adopted orthoimages, which were 
originally captured in the NIR band (Fig. 4a). The greenness 
index was calculated based on the spectral features. Cer-
tain geomorphometric features (e.g., the slope and nDSM) 
shown in Fig. 4b were applied in these experiments and their 
corresponding textural features (e.g., variance, entropy, and 
Gabor texture) were tested. Figure 4c shows a Gabor texture 
image generated from the aerial image.

The five types of land cover analyzed in this study 
area were broadleaf forest (code 1), grassy land (code 2), 
bare land (code 3), cement pavement (code 4), and built-up 
area (code 5). Figure 4d shows the ground truth (GT) by  

Fig. 2. The eight land-cover types defined for the first study area.

Fig. 3. The second study area : Guishan Island.
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combining the manual interpretation result from high-reso-
lution orthophotos and the second national land-use investi-
gation result in 2006 (Huang et al. 2007).

The experimental data were first imported into ENVI 
5.x (Exelis Visual Information Solutions, USA) to define 
the test regions for each type of land cover (ITT 2010). The 
processed image was subsequently overlapped with the GT 
image in ArcGIS 9.3 (ESRI, USA) to summarize the statis-
tical values for the spectral, geomorphometric, waveform 
and corresponding textural features within the test regions. 
The attributes and their corresponding codes were then ex-
ported as a data table, which was imported into WEKA as 

the training and testing data set. The accuracy of the pixel-
based SVM classification results was then assessed.

4. RESULTS AND DISCUSSION
4.1 Characterizing Waveform Patterns for Various 

Land-Cover Types

Numerous studies have confirmed that waveform 
data can yield land-cover information (Bretar et al. 2009; 
Neuenschwander et al. 2009; Alexander et al. 2010; Mallet 
et al. 2011), and additional high density point-cloud data 
can be acquired to improve DTM accuracy (Mücke 2008; 

(a)

(b)

(c)

(d)

Fig. 4. Partial used experimental data and ground truth in the second experiment. (a) NDVI image; (b) nDSM; (c) Gabor texture for the aerial image; 
(d) Ground Truth.
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Liao 2013). In addition, because the reflected waveforms 
are affected by the type of material and properties of de-
tected land objects, the waveform features (e.g., amplitude 
and echo width) can be applied to analyze specific charac-
teristics associated with LCC.

The waveform data extracted from certain LiDAR points 
located in proximity to each land-cover type were obtained 
using the waveform function in the Terra Scan software to 
confirm whether the actual types of land cover were in agree-
ment with specific waveform patterns. The full waveform 
plots for the sample points on the interested regions for the 
broadleaf forest, three man-made structures, asphalt pave-
ment, wet sand and dry sand are shown in Figs. 5a - c, re-
spectively. The horizontal axis is returned pulse and the ver-
tical axis is amplitude in Figs. 5a - c. As shown in Fig. 5a,  
waveforms for three sample points of the broadleaf forest 
type consisted of laser shots with multiple echoes (Mücke 
2008). This waveform characteristic should be affected by the 
canopy structure. However, only one major pulse occurred 
among the waveforms for the remaining types of land cover, 
as shown in Figs. 5b and c. Therefore, the number of pulses 
may be among the crucial features to discriminate the forest 
with other types of land cover in the experiment.

Table 1 lists the results from the features statistical anal-
ysis for the eight types of land cover. The descriptive statisti-
cal measures, such as normality (including mean and standard 
deviation), were performed using 30 point samples for each 
type. Because laser shots caused multiple echoes in the class 
forest, the echo with the maximum amplitude was used to 
calculate the mean and standard deviation for the correspond-
ing echo width. Table 1 shows that the low processing ac-
curacy of the point-cloud data filtering resulted in increased 
standard deviations among the nDSM and slope features of 
the forested areas. A similar amplitude and echo width trend 
is also apparent. Furthermore, the forest echo amplitudes are 
more scattered than those of the forest terrain echoes.

The statistical results for the wet sand amplitude values 
compared with dry sand indicate that the moisture content 
might have affected the waveform amplitude by weakening 
the reflection intensity. The amplitude increased when the 
signals were reflected by dry materials such as cement and 
metal houses or other man-made structures. The lower value 
distribution in the amplitude for the wet sand is due to the 
laser energy absorbed by the aqueous material. This infer-
ence should be further validated based on in situ moisture 
measures.

The statistical echo-width data results for the analyzed 
land-cover types differed from that of the amplitude; spe-
cifically, the echo-width values increased in areas that were 
characterized by comparatively low water content. For ex-
ample, the echo width was highest in grassy regions and 
areas featuring metal housing or other artificial structures 
(Chen et al. 2013).

Figure 6 shows a scatter diagram plotted by the aver-

age and standard deviation amplitude and pulse width val-
ues for the eight land-cover types shown in Table 1. The 
figure shows overlapping values for the grass and artificial 
structure waveform features, as well as for those of dry sand 
and asphalt surface. The samples for the class forest could 
contain different tree species; hence, the standard devia-
tion amplitude and echo width values in the class forest are 
higher than those for other land-cover types. An overlapping 
phenomenon also occurs in the broad-leaf forest and cement 
structure in this figure. These results indicate that the wave-
form features alone are ineffective for distinguishing the 
aforementioned land-cover types. However, the waveform 

(a)

(b)

(c)

Fig. 5. The waveform pattern for seven land cover types. (a) Broadleaf 
forest; (b) three structure objects; (c) asphalt, wet and dry sand.
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features have the potential to distinguish asphalt, cement 
structures, metal structures and wet sand as their clusters 
in different zones (Fig. 6). Table 2 lists the TD results after 
the pairwise signature separability combinations were deter-
mined. The dry and wet sand land-cover types were the only 
pair of land-cover types in which the TD value was less than 
1900. However, all pairs of land-cover signatures achieved 
acceptable separation.

4.2 Accuracy Assessment on LCC

Experiment 2 was designed to evaluate the effect of 
applied features on LCC accuracy. Based on the RGB bands 
in the orthophotos, the combination was gradually increased 
with the mentioned four kinds of features (e.g., NDVI, geo-
morphometric features, textural features, and waveform fea-
tures) in the LCC. Table 3 lists the various combinations 
of features examined in the LCC experiment accuracy as-
sessment after a trial-and-error test. In these combinations 
changes in land use may have been affected by the slope and 
aspect features. Therefore, these two parameters were also 
incorporated in the LCC experiment. The overall accuracy 

of these two feature sets is not significantly different from 
those derived from other feature sets.

Figure 7 shows the overall accuracy of the LCC based 
on various combinations of features and training samples 
of various sizes. The “1/3_training samples” represent one-
third of all samples randomly chosen as a training data set, 
and the others were used as a test data set for the accuracy 
assessment. The “1/2_training samples” represent half of the 
samples used in a training data set. Sets 22 and 23 yielded 
the highest overall accuracy levels (> 90%). Sets 16 - 17 
and 20 - 21 contained comparatively few features, yielding 
acceptable classification accuracy and indicating that the 
presence of geomorphometric features is a crucial factor for 
obtaining accurate LCC. Regarding the waveform features 
the normalized amplitudes were more accurate than the other 
waveform features (based on the results for sets 13 - 15). The 
Gabor texture was one of the most accurate textural features 
for LCC in this study (based on the results for set 12).

Figures 8a - e show the producer accuracy (PA) results 
and Figs. 9a - e show the user accuracy (UA) results for each 
type of land cover based on various combinations of fea-
tures and training samples of various sizes. Regarding the 

Land cover type
Amplitude (DN) Echo width (ns) nDSM (m) Slope (degree)

Average STDEV Average STDEV Average STDEV Average STDEV

Forest 63.6 16.1 15.9 3.91 14.829 4.153 32.389 6.864

Wet sand 30.47 5.34 8.53 2.37 0.195 0.186 1.672 0.238

Dry sand 48.6 13 14.5 2.71 0.031 0.159 1.062 0.532

Asphalt surface 45.3 8.27 13.67 1.91 -0.005 0.021 1.179 1.171

Cement house 59.8 7.94 16 1.31 5.677 1.987 4.948 0.81

Grass 83.97 16.53 20.03 2.9 0.088 0.168 4.834 4.304

Metal house 105 5.9 20.38 0.49 5.791 1.69 4.421 2.012

Other artificial structure 88.83 8.6 19.33 0.85 0.033 0.044 1.49 0.666

Table 1. Statistical results for eight land-cover types.

Fig. 6. The scatter diagram of waveform features for eight land cover types.
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Transformed divergence Forest Wet sand Dry sand Asphalt surface Cement house Grass Metal house Other artificial structure

Forest

Wet sand 2000

Dry sand 2000 1853.33

Asphalt surface 2000 2000 1972.88

Cement house 2000 2000 2000 2000

Grass 2000 2000 1999.56 1999.9 2000

Metal house 2000 2000 2000 2000 1999.99 2000

Other artificial structure 2000 2000 1992.11 1998.82 2000 1994.03 2000

Table 2. A measure result of signatures separation (TD value).

Set id content of features Set id content of features

Set 1 RGB Set 13 RGB + Pulse Width

Set 2 RGB + Greenees Set 14 RGB + Amplitude

Set 3 RGB + NDVI Set 15 RGB + normalized Amplitude

Set 4 RGB + DEM Set 16 RGB + DEM_Geomorphology

Set 5 RGB + nDSM Set 17 RGB + DSM_Geomorphology

Set 6 RGB + DEM_Aspect Set 18 RGB + Waveform features (Amplitude + Pulse width)

Set 7 RGB + DEM_Slope Set 19 RGB + Waveform features (normalized Amplitude + Pulse Width)

Set 8 RGB + DEM_Entropy Set 20 Spectrum + DEM_Geomorphology + Waveform

Set 9 RGB + DEM_Variance Set 21 Spectrum + DSM_Geomorphology + Waveform

Set 10 RGB + DSM_Entropy Set 22 Spectrum + DEM_Geomorphology + Waveform(nAmp + Pulse Width)

Set 11 RGB + DSM_Variance Set 23 Spectrum + DSM_Geomorphology + Waveform(nAmp + Pulse Width)

Set 12 RGB + Gabor texture

Table 3. Combination of used features.

Fig. 7. The land-cover classification (LCC) overall accuracy under different combination of features.
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(a)

(c)

(e)

(b)

(d)

Fig. 8. The producer accuracy (PA) for each land-cover type. (a) PA for the broad-leaf forest; (b) PA for the grass; (c) PA for the bare land; (d) PA 
for the cement pavement; (e) PA for the built-up area.
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(a)

(c)

(e)

(b)

(d)

Fig. 9. The user accuracy (UA) for each land-cover type. (a) UA for the broad-leaf forest; (b) UA for the grass; (c) UA for the bare land; (d) UA for 
the cement pavement; (e) UA for the built-up area.
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broadleaf forest, both the PA and UA approached 90% when 
all features were applied. The results were acceptable only 
when the Gabor texture was used (PA and UA > 85%). The 
accuracy for the grass areas was generally lower compared 
with that of the broadleaf forest areas in sets 16 - 17 (PA 
80%, UA 87%), and the accuracy was acceptable only when 
the Gabor texture used (PA and UA are higher than 80%). 
Regarding the bare land areas, acceptable results were ob-
tained (PA > 90%) regardless of the combination of features 
or the size of the training samples. However, UA should be 
considered because sets 16 - 17 and 20 - 23 yielded superior 
UA results (close to 90%). Regarding cement surfaces, the 
PA and UA were low because there were too few training 
samples in the uninhabited study area. Regardless of which 
combination of features was examined, acceptable PA and 
UA results (> 90%) were obtained for built-up areas, even 
when a low number of training samples was used. Both the 
PA and UA can be higher than 92% for the forest and built-
up types when using amplitude and pulse width.

5. CONCLUSION

After integrating the spectral, geomorphometric, wave-
form and textural features obtained using high-resolution 
aerial orthophotos and FW LiDAR data, we assessed and 
summarized the accuracy of LCC to determine the wave-
form patterns for various land-cover types. The experimen-
tal results yielded the following:
(1)  The highest overall accuracy (> 90%) was obtained when 

all features were applied. Adding the geomorphometric 
features markedly improved the LCC accuracy. Moreover, 
the Gabor texture was a highly effective textural feature 
for improving the accuracy. Although the performance of 
the waveform characteristics failed to meet the anticipat-
ed outcomes, the research data provide valuable training 
samples for testing the effects of waveform features.

(2)  Concerning each land-cover type, both the PA and UA 
results achieved adequate accuracy when all features 
were applied. Regarding the textural features, acceptable 
results were achieved when only the Gabor texture was 
used for the four defined land-cover types except cement 
surfaces. Both the PA and UA can be higher than 92% 
for the forest and built-up types by applying amplitude 
and pulse width. However, the poor classification results 
for the cement surfaces indicated that adequate training 
was difficult to obtain because the study area was an un-
inhabited volcanic island; thus, the island is categorized 
as a low-density development area.

(3)  The waveform features were successfully used to con-
duct LCC. The statistical results indicate that multiple 
pulses were present in the waveforms for forested areas, 
whereas only one pulse appeared in the waveforms for 
other land-cover types. Moreover, the level of moisture 
content might have affected the waveform amplitude 

in the LiDAR data by reducing the reflection intensity. 
Further testing is necessary to evaluate how waveform 
and textural features affect LCC accuracy.
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