The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates

Yiqiong Zhang, Chin-Ho Tsai, Nikolaus Froitzheim, and Kamil Ustaszewski

Fig. S1. P-T diagram (simplified after Maruyama et al. 1986) showing calculated metamorphic conditions and P-T-t paths suggested for high-pressure rocks in the Yuli belt with various metamorphic parageneses, as well as for a chlorite-mica schist from the metasedimentary unit (bold path-8). Type-I (Amp + Qz + Ep + Gar + Chl + Rt/Ttn; Type-II: Pg + Amp + Qz + Ep + Gar + Chl + Ttn + Bt + Mag), Type-III (Amp + Qz + Ab + Ep + Gar + Rt + Hem + Ttn), and Type-IV (Amp + Ep + Pg+ Qz + Ab) are from Tsai et al. (2013). Mineral abbreviations follow those of Whitney and Evans (2010). Other abbreviations are Zeo, zeolite facies; PP, prehnite-pumpellyite facies; PA, pumpellyite–actinolite facies; PrA, prehnite-actinolite facies; GS, greenschist facies; EA, epidote-amphibolite facies; AM, amphibolite facies; BS, blueschist facies; AEC, amphibole eclogite facies. Sources: (1) Baziotis et al. 2017; (2) Tsai et al. 2013; (3) Sandmann et al. 2015; (4) Beyssac et al. 2008; (5) Lan et al. 1996; (6) Lo 2018; (7) Chiang 2003; (8) Conand et al. 2020.

The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates

Yiqiong Zhang, Chin-Ho Tsai, Nikolaus Froitzheim, and Kamil Ustaszewski

Reference	Area	Method	Deformation phases and age (if any)
Stanley et al. 1981	Southern Cross island highway	Schistosity and folding crosscutting relationships; Lithological correlations	 S1 = Cryptic S2 = Penetrative axial surface F2 = West vergent folds and faults S3 = NE strike; W dipping; Crenulation cleavage F3 = East verging; hinge plunge NE S4 = NE strike; NW dip; F4 = minor folds deforming F5 and F6 = kink folds; variable orientation; flexing of dominant schistosity
Pelletier and Hu 1984	Southern Cross Island Highway; East and South Taiwan	Structural analysis	 F0 = southward directed slumps D1 = EW to NW-SE compression; S1 = Axial planar T1 = west vergent thrust F2 = kink-folds verging to the East, backfolding S2 = Crenulation cleavage F3 = North verging, E-W axis
Hu and Tsan 1984	Southeastern Taiwan, Central Range	Structural and sedimentological analysis	 F0 = NS (EW depositional folds) S2 = NWW-SEE (NS-overturned tight folds and cleavage) D3 = bending of S2 cleavage
Faure et al. 1991	Central and Southern cross island highway	Microstructural analysis and synthesis of previous works	 S1 = fracture cleavage (in the W. slate belt) F1 = overturned to the west (in slate belt) L1 = non-coaxial, top to the NW shear sense D2 =3.5 Ma (Pelletier and Stephan 1986) F2 = overturned to the E., axis trend 100N (back folding); S2 = axial planar crenulation F3 = axis S dipping D4 = Normal faulting
Clark et al. 1992	Northern and Southern Cross Island Highway	Microstructural analysis (syntectonic fibrous growth orientation)	D1 ; D2 ; D3 = D2 ; D4 of Stanley et al. 1981 S1 = dipping ~40SE; L1 = updip; Clockwise rotation of elements + asymmetric folds and boudins \rightarrow non-coaxial (simple shear) S2 = crenulation cleavage with fanning structure F2 = west vergent folds and axis dipping ~35° to the NE L2 = indicate fold-axis parallel extension and left-lateral shear Normal Faults = σ 3 plunge towards the NE, parallel to S2

Table S1. Summary of deformation phases of the Yuli Belt metasediments from previous studies.

The Yuli Belt in Taiwan: Part of the suture zone separating Eurasian and Philippine Sea plates

Yiqiong Zhang, Chin-Ho Tsai, Nikolaus Froitzheim, and Kamil Ustaszewski

Reference	Area	Method	Deformation phases and age (if any)
			S3 = crenulation cleavage dipping NW, locally
			transposing S2 (in the east)
Fisher 1999; Fisher et al. 2002	Easternmost Backbone Slates	Structural and microstructural analysis	S2 = local crenulation, moderately W dipping
			F2 = axis gentle NE plunging.
			L2 = moderately NE dipping
			Normal Faults = late W-dipping
Yeh 2004	Eastern Central Range	Structural and microstructural analysis	S0 = 37/096, overturned
			S1 = 31/075 strong pervasive slaty cleavage
			S2 = 36/308 pervasive foliation
			F2 = kink-folds verging to the East;
			backfolding
			S3 = 27/215, slaty cleavage
			F3 = kink-folds verging to the North; fold axis
			21/025
			S4 = weak crenulation cleavage
			Normal Faults = 45/045, 45/205,
			top-to-NE/SW shear
Ho and Lo 2015	Shoufeng Hsi (Wanjung area)	Structural and microstructural analysis	S1 = commonly destroyed; in the microlithon
			S2 = moderately NW dipping
			F2 = east-vergence isoclinal folding
			S3 = sub-horizontal axial plane cleavage
			F3 = recumbent folds; fold hinge plunge NW
Но 2015	Southern Cross Island	Structural and microstructural	S1 ; S2 ; S3 of Ho and Lo 2015
	Highway	analysis	Normal Faults
Mondro et al.	Eastern Central Range	Syntectonic fibrous growth	S2 of Fisher et al. 2002
2017	(Eocene slates)	orientation	bulk coaxial strain and lateral extrusion effects