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ABSTRACT

A 3-D finite difference method is applied in this study to investigate a spontaneous rupture within a fault system which 
includes a primary thrust fault and two strike-slip sub-faults. With the occurrence of a rupture on a fault, the rupture condition 
follows Coulomb’s friction law wherein the stress-slip obeys the slip-weakening fracture criteria. To overcome the geometri-
cal complexity of such a system, a finite difference method is encoded in two different coordinate systems; then, the calculated 
displacements are connected between the two systems using a 2-D interpolation technique. The rupture is initiated at the center 
of the main fault under the compression of regional tectonic stresses and then propagates to the boundaries whereby the main 
fault rupture triggers two strike-slip sub-faults. Simulation results suggest that the triggering of two sub-faults is attributed to 
two primary factors, regional tectonic stresses and the relative distances between the two sub-faults and the main fault.
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1. INTRODUCTION

The primary fault in a highly complex fault system is 
usually accompanied by several branch faults. The 1992 
Landers earthquake (Mw 7.3), 1998 Antarctic earthquake 
(Mw 8.1) and 1997 Kagoshima earthquake (Mw 6.0) are all 
good examples (Kase and Kuge 2001). It is necessary to 
understand the interactions between these faults when an 
earthquake occurs. For this purpose, the rupture processes 
of the main fault and those of the branch faults caused by 
stress changes induced from the failure of the main fault 
must be investigated. Meanwhile, the dynamic behavior of a 
fault system within a short time period, from a few seconds 
to just tens of seconds, should be inferred from observations. 
The rupture processes include initiation, propagation, and 
arrest of ruptures (Aki 1979; Lindh and Boore 1981; Scholz 
1990). Entire rupture processes are controlled primarily by 
physical and geological conditions of the fault system. 

Before the 1990s, fault braches were not included in 
the models used for the studies of dynamic rupture pro-
cesses (Das and Aki 1977; Miyatake 1980; Day 1982; Mi-

kumo et al. 1987). But current studies had considered the 
occurrence of a mainshock and additional stresses which are 
generated in the source area and its surroundings and, per-
haps, trigger subsequent events within branch faults (King 
and Cocco 2001; Wang and Chen 2001; Wang et al. 2003, 
2010; Lin and Stein 2004; Ma et al. 2005; Chan and Stein 
2009). Recently, this type of fault interaction, especially for 
a strike-slip fault system has been widely studied by earth 
scientists. One of the notable examples is the San Andreas 
fault in California (Harris and Day 1993; Yamashita and 
Umeda 1994; Kase and Kuge 1998, 2001). Deffontaines et 
al. (1994, 1997) first pointed out possible interactions be-
tween a thrust front and transfer faults in Taiwan.

The stress changes in a source area and its surrounding 
areas due to a failure of a thrust fault has garnered much at-
tention by seismologists. For example, Ma et al. (1999) stud-
ied the spatial stress re-distribution caused by the devastat-
ing 1999 Mw 7.6 Chi-Chi earthquake which ruptured along 
the thrust-type Chelungpu fault. From the focal mechanism 
of the mainshock and aftershocks of the Chi-Chi earthquake, 
Mozziconacci et al. (2009) investigated the interaction be-
tween the Chelungpu fault and the Sanyi-Puli transfer fault 
zone (a strike-slip fault zone). Mozziconacci et al. (2013) 
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investigated the interaction between the thrust main fault 
of the 2006 Mw 6.1 Taitung earthquake and its strike-slip 
sub-faults. The geologic map of active faults in Taiwan (Lin 
et al. 2000) shows several strike-slip faults (from south to 
north) which are indeed located near respective main thrust 
faults. For example, in both the northern and southern ends 
of the Chelungpu fault there are two sub-faults (Lee et al. 
2003, 2011). The two sub-faults are not purely strike-slip 
faulting because both exhibit a dip-faulting component. 
To simplify the problem, we investigate the interaction 
between a thrust and two strike-slip faults. In the model, 
the thrust fault and two strike-slip faults are perpendicu-
lar to one another, and the fault geometry is similar to the 
Chelungpu fault system. This type of study is particularly 
important for seismically active areas which have a higher 
population density, are highly industrialized, and have a his-
tory of destructive earthquakes. Taiwan is a typical example 
(Wang 1998, 2008). The 1906 M 7.1 MeiSan earthquakes 
(cf. Wang 1998), the 1935 M 7 HsinChu-Taichung earth-
quake (Miyamura 1985; Wang 1998), and the 1999 Mw 7.6 
Chi-Chi earthquake (Ma et al. 1999) all occurred in highly-
populated areas of Taiwan. 

As mentioned earlier, the study of rupture processes in 
a complex fault system is not only necessary for academic 
purposes but also for seismic hazard estimates. In this study, 
a 3-D finite difference method is applied to simulate fault 
interaction and rupture processes in a model consisting of a 
main thrust fault linked with two strike-slip faults. The nu-
merical method developed by Wang (2005) will be applied 
in this study and described in detail below. 

2. METHODOLOGY

The present model consists of a main thrust fault and 
two strike-slip faults. Since we are unable to fully elucidate 
the free surface effects on rupture propagation, the three 
faults are located 4 km below the free surface in a homo-
geneous isotropic medium as shown in Fig. 1a. The main 
thrust fault (i.e., the central dipping plane in Fig. 1a and 
named the M-fault hereafter) is defined in the fault coordi-
nates represented by the X Y Zl l l coordinates. For simplifi-
cation, this system is called the F-coordinate. If the thrust 
M-fault has a dip angle of 45°, the grid points of the top 
edges of the two strike-slip type sub-faults are collocated 
with the grid points of the F-coordinate system and only 
one coordinate system can be used to describe both M- and 
strike-slip faults. Since the M-fault has a dip angle of 30°, 
the grid points of the top edges of the two strike-slip-type 
sub-faults cannot be located exactly at the F-coordinate 
grid points (see Fig. 2, along the Xl-axis). We need to de-
fine a new coordinate system. The two vertical strike-slip 
sub-faults (i.e., the slashed planes in Fig. 1a) that are per-
pendicular to the M-fault in the XYZ coordinates are the 
original coordinates called the O-coordinate. The northern 

and southern sub-faults (named the N-fault and the S-fault, 
respectively) are not directly connected to the M-fault, and 
each separates from the M-fault with 1 km. In the follow-
ing simulations, the dip angle, δ, of the M-fault is set at 30° 
and the strike is 0° (see Fig. 2) which is almost the average 
dip angle of numerous major thrusts in Taiwan such as the 
Chelungpu fault. The fault length and width of the M-fault 
are 8 and 4 km, respectively in the strike and dip directions. 
From the relationships of earthquake magnitude versus fault 
length inferred by Well and Coppersmith (1994), the mag-
nitude of the simulated event is 5.7 because the fault length 
of the main thrust fault is 8 km. 

The two sub-faults have the same length and width, 
which are 3.46 and 2 km, respectively. The depths of the top 
edges of the three faults are the same. The initial external 
regional stresses as shown in Fig. 1b are denoted by XXv ,  

YYv , and ZZv . Meanwhile, XXv  and YYv  are the maximum 
compressive stress and the second largest stress. The angle 
between the strike of the M-fault and the maximum com-
pressive stress is denoted by φ. Note that θ and φ are a pair 
of complementary angles. While ZZv  is the vertical stress 
normal to the M-fault.

The second-order 3-D finite difference method is ap-
plied to simulate ruptures on the M-fault and the transfer of 
ruptures to the N- and S-faults (Kase and Kuge 1998, 2001). 
In order to ensure that the calculations are made with high-
resolution (Olsen et al. 1997; Madariaga et al. 1998) and 
the 30°-dipping M-fault is completely and exactly located 
at the grid points, the grid lengths of the M-fault are set 
to be dxl = 0.2 km, dyl = 0.2 km, and dzl = 0.1 km in the 
F-coordinate. Because the top edges of the two sub-faults 
must be as high as the main fault, the two sub-faults can-
not be located exactly at the grid positions in the F-coor-
dinate (see Fig. 2, along the Xl-axis), we must let the grid 
lengths of the sub-faults be dx = 0.173 km, dy = 0.2 km, and  
dz = 0.1 km in the O-coordinate. The physical quantities on 
the grid points of the M-fault and sub-faults are connected 
through a 2-D interpolation technique. The numbers of grid 
points are 41 × 21 (along the Yl- and Xl-axes, respectively) 
in the F-coordinate for the M-fault and 21 × 21 (along the 
X- and Z-axes, respectively) in the O-coordinate for the N- 
and S-faults. 

When the rupture is initiated at the center of the M-
fault (marked by a star in Figs. 1a and b) at time t = 0, a de-
crease in the shear stress, v , from the maximum static fric-
tional stress (i.e., the stress drop) results in a displacement 
wherein the rupture then propagates outward when t > 0.  
This would induce stress changes in other non-ruptured ar-
eas (including sub-faults). When the shear stress exceeds 
the maximum static frictional stress in the sub-faults, addi-
tional ruptures could also occur. After a rupture occurs, the 
variation in shear stresses follows slip-weakening fracture 
criteria (Andrews 1976; Day 1982), as illustrated in Fig. 3,  
where 0v , sv , and dv  are, respectively, the initial shear 
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(a) (b)

Fig. 1. (a) The fault system is composed of a main thrust (the M-fault) and two strike-slip faults (the N- and S-faults). The faults are 4 km below the 
free surface. The main thrust with a strike in the Y-direction and a dip angle of 30° in the +X-direction is on the F-coordinate (XlYl Zl), while the 
other two sub strike-slip faults are on the O-coordinate (XYZ). (b) Plane view of the three faults is given in (a), with the two horizontal compress 
stresses, i.e.,  XXv and YYv , and the vertical stress ZZv .

Fig. 2. Vertical profile of grid points for the F-coordinate (in black) and O-coordinate (in white). The values at the white grids just above (marked by 
A) and below (marked by B) the M-fault plane are computed through 2-D interpolation from those at the black grids: A (in the O-coordinate) from 
�, �, �, and � (in the F-coordinate) and B (in the O-coordinate) from �, �, �, and � (in the F-coordinate). 

stress, the maximum static frictional stress, and the dynamic 
frictional stress; Dc is the critical displacement. When v  ex-
ceeds sv , a rupture is initiated and the slip, d, increases with 
time. When d < Dc, v  decreases linearly with increasing d 
as displayed by a straight line between sv  and dv  in Fig. 3. 
When d = Dc, v  is equal to dv .

3. BOUNDARY CONDITIONS

In a homogeneous and isotropic medium, the wave 
equation is:

u u u, ,i j ji i jjt m n n= + +p ^ h  (1)
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where u is displacement, t  is density, and m  and n  are Lamé 
constants. Except at the location of the initial rupture on the 
fault plane; the displacements and velocities are all zero: 

u u u u u ux y z x y z= = = = = =0 0l l l^ h (2)

u u u u u ux y z x y z= = = = = =0 0l l lo o o o o o^ h (3)

The initial external stresses are represented by:
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Where XXv  and YYv  are the stresses along the directions 
of two horizontal compressive stresses which are in an in-
ward direction as shown in Fig. 1b and ZZv  is in the vertical  
direction.

To calculate the stresses on the M-fault, the initial 
stresses must be rotated from the O-coordinate onto the F-
coordinate using the following two steps. First, the initial 
regional stresses are rotated φ degrees counter-clockwise to 
the Z-axis (Fig. 1b). Thus, 

A Az z
Tv z v z=l ^ ^h h (5)

Where Az z^ h is the rotational matrix with a symmetric axis in 
the vertical direction. Second, the initial regional stresses are 
rotated d  degrees counter-clockwise to the Y-axis. Thus,

A Ay y
Tv d v d=m l^ ^h h (6)

where Ay d^ h is the rotational matrix with a symmetric axis 
in the direction of the strike. The normal stress on the M-
fault is now:

nor
M

zzv v= m  (7a)

and the shear stress is:
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where dn  is the dynamic frictional coefficient. For the non-
initial crack grids, the direction, ri  of the rupture is identi-
fied from the shear stress from zxvm  and zyvm  in Eq. (7b) and 

1tanr zx zyv vi = - m m^ h.
Similarly, for the N- and S-faults the applied regional 

stresses are rotated by φ degrees counter-clockwise onto the 
O-coordinate, as shown in Eq. (6). For these two sub-faults, 
the normal stress is:

nor
N

yyv v= l  (8a)

and the shear stress is:

0due toshr
N

yx yzv v v= =l l^ h (8b)

The boundary conditions for the M-fault in the F-coordinate 
are:

u continu usox =l  (9a)

u continuousy =l  (9b)

u continuousz =l  (9c)
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When the fault breaks, the boundary conditions are 
Eqs. (9c) and (10c), and the shear stress obeys slip-weaken-
ing fracture criteria (see Fig. 3); thus,

Fig. 3. The slip-weakening fracture criteria for shear stress, v , 0v  is 
the initial shear stress; sv  is the maximum static frictional stress; dv  is 
the dynamic frictional stress; and Dc is the critical displacement. When 
v  > sv , the slip starts. When the slip is less than Dc, v  decreases lin-
early with increasing slip. When the slip reaches Dc, v  = dv . 
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where u u u u u 2r x x y y
2 2D = - + -+ - + -

l l l l l^ ^h h  is the slip in the di-
rection of the rupture; ui

+  and ui
-  are the displacements on 

the hanging wall and the footwall of the fault, respectively; 
sn  is the static frictional coefficient. The boundary condi-

tions for the N- and S-faults in the original coordinates are:

u continuousx =  (12a)

u continuousy =  (12b)

u continuousz =  (12c)

likewise the stresses are continuous:
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Similarly, when a fault rupture occurs, the boundary 
conditions are Eqs. (12b) and (13b); the shear stress obeys 
the slip-weakening fracture criteria. Thus, we have:

( )D u u D
shr
N
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S s yy

c

s yy d yy
r r c

d yy

1
v v

n v
n v n v

n v

D D= = -
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where u u u u u 2r x x y y
2 2D = - + -+ - + -^ ^h h . 

As mentioned above, the fault edges are located 4 km 
below the free surface. Nevertheless, the free surface bound-
ary condition proposed by Ilan and Loewenthal (1976) is 
used. The absorption boundary method is used for 3-D fi-
nite differences (Higdon 1991). The wave equations are re-
placed by central finite difference equations. The boundary 
conditions on the fault are derived following the procedures 
suggested by Horikawa (1996) (see the Appendix for an ex-
ample of the calculations of z zv l l  and uxl  on the M-fault). A 
detailed description of the derivation of stresses and slip can 
be found in Wang (2005).

The rupture starts from the M-fault center (marked with 
a star in Fig. 1a) where the finite difference is performed on 
the F-coordinate (i.e., the Xl, Yl, and Zl axes) per the black 
circles connected with the dashed lines in the vertical profile 
of Fig. 2. The grid points on the O-coordinate are denoted by 
white circles, and the difference values on the white circles 
are retrieved from those at the black grid points in two hang-
ing blocs and two foot blocs of the M-fault by means of a 
2-D interpolation (Press et al. 1992). For example, the val-
ues at black grid points �, �, �, and � (in the F-coordinate 
system) in the hanging bloc are used to interpolate the val-
ues at white grid point A (in the O-coordinate system). Simi-
larly, the value at grid point B in the foot bloc is interpolated 
from those at �, �, �, and �. Note that the values at two 
pairs of grid points, i.e., � and � as well as � and �, on the 
M-fault plane are the same before the rupture, yet become 
different afterwards because of the slip discontinuity on the 
ruptured plane. A similar interpolation is performed for all 
of the white grid points that are right above and right below 
the fault plane. At this step, the slips at the grid points are in 
the F-coordinate system and must be rotated into the O-co-
ordinate system; they must be rotated onto the O-coordinate 
for the computations of the 3-D finite differences in these 
coordinates for the remaining grid points.

4. PARAMETERS AND STABILITY CONDITIONS 

The values and orientations of initial external stresses 
given in Table 1 were taken from Kase and Kuge (1998, 
2001) and were tested through numerical simulations by 
Wang (2005). The stresses can trigger the strike-slip sub-
faults due to the break of the thrust main fault. From Cou-
lomb’s friction law (Harris and Day 1993), the shear stress 
and the maximum static frictional stress in spatial and tem-
poral distribution are described by the following equation:

( ) ( ) ( )s t t ts nor nor shr shr
0 0n v v v vD = + - +  (15)

where nor
0v  is the initial normal stress on the sub-fault; ( )tnorv  

is the change of normal stress on the sub-fault at time t;  
shr
0v  is the initial shear stress on the sub-fault; and ( )tshrv  is 

the change of shear stress on the sub-fault at time t.
When ( )s tD  is negative, the segment can be trig-

gered to rupture. From the initial external stresses given in  
Table 1, the relation between φ and sD  on the two strike-
slip sub-fault planes at t = 0 s is shown in Fig. 4. Obviously, 
the minimum of sD  is at φ = 30°, thus indicating that the 
sub-faults can be most easily triggered at φ = 30°. There-
fore, the simulations and numerical tests of parameters in 
use are made only at φ ± 1° for each φ. 

From the tests, we find that the two strike-slip sub-
faults (i.e., the N- and S-faults) can be triggered to rupture 
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Maximum compressional stress: XXv  (MPa) 58.0

Minimum compressional stress: YYv  and ZZv  (MPa) 20.0

Initial shear stress: 0v  (MPa) 15.2

Dynamic frictional stress: dv  (MPa) 5.52

Maximum static frictional stress: sv  (MPa) 16.56

P-wave velocity: a  (km s-1) 4.6

S-wave velocity: b  (km s-1) 2.66

Density: t  (g cm-3) 2.5

Critical displacement: Dc (m) 0.1

Static coefficient of friction: sn 0.6

Dynamic coefficient of friction: dn 0.2

Grid length in time: dt (s) 0.01

M-fault

Length: LM (km) 8.0

Width: WM (km) 4.0

Strike, Dip, Rake 0º, 30º, 60º

N-fault

Length: LN (km) 3.46

Width: WN (km) 2.0

Strike, Dip 90º, 90º

S-fault

Length: LS (km) 3.46

Width: WS (km) 2.0

Strike, Dip 90º, 90º

Table 1. The parameters and their values used in numerical simulations. 

only when 18° < φ < 42° and the range of φ depends on the 
fault system. The initial stresses on the fault system are XXv

, YYv  and ZZv . We must transfer them from the tectonic sys-
tem to the fault plane. This gives the angle ( )1tan zx zyv v- m m ,  
which is the maximum shear stress direction. According to 
the tectonics, the maximum stress direction will be a raked 
direction of the fractured fault. In this study, the rake an-
gle of the main fault is set to be 60°, so that the φ angle is 
26.57°. The sampling time interval, dt, is required to meet 
the computational stability of the finite differences (Kelly et 
al. 1976), i.e.,

dt ds 2 2# ba +  (16)

where ds is the grid size; and a  and b  are, respectively, the 
P- and S-wave velocities. Thus, for ds ≥ 0.05 km dt = 0.01 s 
can meet the stability condition of Eq. (16).

Although the rupture velocity cannot be determined 
from this model, several authors (e.g., Andrews 1976; Das 
and Aki 1977; Day 1982; Harris and Day 1993) stated that 
the rupture velocity can be identified from the difference 
between the maximum static frictional stress ( sv ) and the 
initial stress ( 0v ) as well as from the difference between 
dynamic frictional stress ( dv ) and initial stress ( 0v ). An-
drews (1976) and Das and Aki (1977) defined the parameter 
S by the four stresses to represent the differences on rupture 
velocities, i.e., 

( ) ( )S 0s d0v v v v= - -  (17)

When S ≥ 1.63, the rupture velocity is less than the Rayleigh-
wave velocity, and it increases with rupture length and even-
tually approaches the latter. By contrast, when S < 1.63, the 
rupture velocity starts from the sub-Rayleigh velocity and  
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increases with rupture length and can in fact be greater than 
the S-wave velocity or even approach the P-wave velocity 
(Aki and Richards 1980; Wang 1996, 2012). The sub-Ray-
leigh velocity is the velocity of rupture waves which is slower 
than the velocity of Rayleigh waves. In this study, for the rup-
tures on the thrust fault and the triggering on two sub-faults, 
the set of the initial external stresses is shown in Table 1. Ob-
viously, the value of S is smaller than 1.63 on the M-fault, and 
thus the rupture velocity can approach the P-wave velocity. 

5. SIMULATION RESULTS

Using the parameters listed in Table 1 along with φ =  
26.57° (or θ = 63.43°), which gives a rake of 60° in the fi-
nite difference computations, and the initial rupture occurs 
at the center of the M-fault (designated as a star in Fig. 1).  
The equal-time contours of ruptures on the three faults are 
illustrated in Fig. 5, in which the view is set to be in the 
direction perpendicular to the fault plane and from the hang-
ing wall. In Fig. 5, the numbers represent the times of rup-
tures in seconds. When t = 0 ~ 1 s (Figs. 5a - c), the M-fault 
starts to rupture from its center (Fig. 5a) and when the rake 
is 60°, the rupture velocity is faster along the dip than along 
the strike. In this time period, the ruptures propagate out-
ward, while the S- and N-faults are still locked. Overall, it 
takes about 1.71 s to make the M-fault completely rupture. 
Figure 5d shows that the S- and N-faults start to rupture at  
t ~1.37 s. The S-fault (see the left panel) and N-fault (see 
the right panel) are both triggered at a depth of 5 km, but the 
ruptures on the two sub-faults propagate along the opposite 
directions. The two sub-faults continue to rupture for about 
2.23 s (Fig. 5f). It is noted that the asymmetric rupture pat-
terns on the S- and N-faults are caused by different ruptures 

from the M-fault: downward and upward ruptures on the 
S- and N-faults, respectively.

From the values of model parameters given in Table 1, 
the calculated value of S is 0.14 and less than 1.63. The rup-
ture velocity increases with rupture length and can be higher 
than the S-wave velocity or even approach the P-wave ve-
locity. From Fig. 5b, the break tip is 1.8 km and time is 0.5 s,  
so the rupture velocity is 3.6 km s-1, which is higher than 
the S-wave velocity. From Fig. 5c, the break tip is 3.7 km, 
so the rupture velocity is 3.7 km s-1. Results suggest an in-
crease in the rupture velocity with the rupture length. 

The time-dependent displacements for the three faults 
are shown in Figs. 6a - f. The maximum slip on the M-fault 
occurs at the center of the initial crack (Fig. 6a) and increas-
es with time. From Figs. 6e and f, we can see that when 
the displacement of M-fault does not change significantly, 
the fault is almost stable and thus the slip ceases. The two 
sub-faults start to rupture about at t = 1.37 s. However, their 
displacements are not zero before they break because the 
waves generated from the M-fault passed through the two 
sub-faults. This can be seen from the panels on the left and 
right in Fig. 6c. The displacements on the two sub-faults are 
basically the same, but the patterns are asymmetric. Small 
differences are observed at t = 2.5 s. The differences are 
attributed to different amounts of later reflections from the 
free surface at different depths. The variations in the time-
dependent shear stresses on the three faults are shown in 
Figs. 7a - f. Since the variations in normal stresses are very 
small, they are not displayed in Fig. 7. At t = 0, on the M-
fault, the stress drops occur only at the site where the initial 
crack occurs and does not change at others. At t = 0.5 ~ 1.5 s,  
the maximum shear stress appears at the boundaries between 
the cracked and un-cracked regions, as displayed by blue in 
Figs. 7b - d. These are crack tips which are ready to induce 
further cracks. At t = 2 and 2.5 s, the displacements within 
the M-fault are greater than the critical displacement (Dc)  
(see Fig. 3). In other words, when the slip distance is equal 
to Dc, the shear stress is equal to the dynamic frictional 
strength, and thus, does not decrease further (Figs. 7e and f).  
At t = 0 ~ 1 s, the shear stresses on the S- and N-faults 
change very little (see the left- and right-hand panels of 
Figs. 7a - c). At t = 1.5 s (Fig. 7d), significant increases in 
the shear stresses caused by the ruptures on the M-fault are 
observed in the left- and right-hand panels of Fig. 7d and 
trigger the failure of the two sub-faults. At t = 2 to 2.5 s, the 
ruptures occur on the two sub-faults with a similar propaga-
tion pattern as happened on the M-fault.

6. DISCUSSION

To study fault interaction, it is very important to locate 
the minimum distance from which the main fault is capable 
of triggering sub-faults. This distance may depend on the 
mainshock magnitude, the geometry of the main fault and 

Fig. 4. The relation between φ and sD  on the two strike-slip sub-fault 
planes at t = 0 s. 
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Fig. 5. Rupture propagation on the main thrust (central) from 0 to 2.5 s (a to f) and triggering of ruptures in two sub strike-slip faults (panel on the 
right-hand side for the S-fault and that on the left-hand side for the N-fault). It takes about 1.71 s for ruptures to extend from the initiation point 
to the entire M-fault. The two sub-faults are triggered at the time of about 1.37 s. The dashed line plotted on the two sub strike-slip faults are the 
projection of the intersection with the M-fault. 

(a)

(b)

(c)

(d)

(e)

(f)
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Fig. 6. Figure shows the time-dependent displacements of the three faults. There is the same description as mentioned in Fig. 5. The slip starts at 
the center of the M-fault (a) and reaches a steady value after the rupture is completed. The asymmetric displacement patterns are caused by upward 
(N-fault) and downward (S-fault) rupture propagations. 

(a)

(b)

(c)

(d)

(e)

(f)



Wang et al.818

Fig. 7. Figure shows the time-dependent displacements of the three faults. There is the same description as mentioned in Fig. 5. At t = 0, stress drop 
is only observed at the site where the initial crack occurs, while all other regions maintain regional stress. The stress drop extends outward with time, 
as shown in a to f. The maximum shear stress appears at the boundaries of the cracked and un-cracked regions, as indicated by the blue shading in 
b to d; these represent crack tips and are ready to induce further cracks. A similar phenomenon is observed for the N-fault (right side) and S-fault 
(left side).

(a)

(b)

(c)

(d)

(e)

(f)
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sub-faults. Here, we will change the positions of the two 
sub-faults, as shown in Fig. 8, to investigate the possible 
effects of the spatial structure of the fault system triggering 
the two sub-faults. The northern and southern ends in each 
panel of Fig. 8 marked by two slashed rectangles represent 
the triggered ruptured source regions (denoted by TRSR) 
where there are larger stress changes. The TRSR can be 
clearly identified based on the M-fault model. Based upon 
rupture-time contours and the initial triggered rupture area 
in Fig. 5f, we believe that if the sub-fault can completely 
rupture, most of the sub-fault must be within the area where 
the ruptures of the main fault stopped first. It is found that 
such an area is in between 0 and 1.73 km (measured from 
the western edge of the M-fault) on the N-fault and in be-
tween 1.73 and 3.46 km on the S-fault. But, the TRSR would 
be distinct for different models and model parameters. This 
means that when a sub-fault or any part of the two sub-faults 
in a to-be-triggered region, it could be triggered and would 
completely rupture. When the two sub-faults in Fig. 8a  
are shifted somewhat to the western portion of the M-fault, 
their eastern edges are still on the western edge of the M-
fault. Hence, the two sub-faults are, respectively, inside and 
outside of the to-be-triggered regions. For this case, the N-
fault ruptures completely, and the equal-time contours of 
ruptures become narrower at the place near -1 km (in the 
X-direction). However, it is not easy to interpret this phe-
nomenon due to a complicated pattern of stress propagation. 
On the S-fault, only a local portion breaks and ruptures do 
not propagate over the entire fault plane. The incomplete 
rupture on the S-fault is due to low stresses exerted on it 
caused by the rupture on the M-fault. 

In order to shift the two sub-faults from the M-fault 
as mentioned above, we define the distance of 0.865 km to 
be a length unit. First of all, the two sub-faults are shifted 
3.46 km (or 4 length units), their respective eastern edges 
are on the western edge of the M-fault, move the two sub-
faults eastward by step in 1 unit length and calculating the 
triggering rupture until their respective western edges are 
on the eastern edge of the M-fault, as shown in Figs. 8a - i. 
Figures. 8a - g show that the N-fault is located in the north 
part of TRSR, and can be triggered with a complete rupture. 
But, in Figs. 8h and i, the N-fault is outside the TRSR, it will 
be triggered with an incomplete rupture. On the other hand, 
when the S-fault is located in the south part of TRSR, it can 
be triggered with a complete rupture, as shown in Figs. 8c - i.  
When the S-fault is outside the TRSR, it will be triggered 
with an incomplete rupture, as shown in Figs. 8a and b.

Obviously, simulations are carried to explore the trig-
gering effects resulting from the related positions, along the 
east-west direction, which are perpendicular to the strike 
direction of the M-fault to the sub-faults. Meanwhile, the 
simulations were also conducted to study the effects due to 
the change of the distances between the M-fault and the sub-
faults along the north-south direction which is parallel to the 

strike. Results are shown in Fig. 9. In Figs. 9a - e (i.e., the 
left and right panels for the S- and N-faults, respectively) we 
can see the modes of complete, incomplete, and non-trig-
gered ruptures for five different distances, i.e., 1.2, 1.6, 2.0, 
2.4, and 2.8 km, away from the M-fault in the north-south 
direction. The rupture pattern of the M-fault is the same as 
before and is not shown here again. Simulation results clear-
ly show that the two sub-faults can be triggered with com-
plete ruptures only when the separation distances are shorter 
than 2.0 km (Figs. 9a - c) and with partial ruptures when the 
separation distances are in between 2.0 and 2.8 km (Fig. 9d).  
On the other hand, the sub-faults cannot be triggered when 
the separation distance is longer than 2.8 km (Fig. 9e). Of 
course, the separation distance in controlling triggering is 
not fixed at the value of 2.8 km, and depends on the models 
with different directions and magnitudes of regional stress-
es. A key issue that cannot be ignored is the direction of 
the applied regional stress. According to our simulations, 
the two sub-faults of the model can be triggered only when 
the angle φ lies between 18° - 42° as mentioned by Wang 
(2005). We found that the TRSR is no longer located on 
either the northern or southern side of the M-fault when  
φ < 18° or φ > 42°. This means that the changes of shear 
stresses in the east-west component caused by the break of 
the M-fault are too small to trigger the two sub-faults. 

7. CONCLUSIONS

In this study, we first develop and test a composite fi-
nite difference method to study the triggering and propaga-
tion of ruptures in a complex fault system with a main thrust 
and two strike-slip-type sub-faults which can be observed 
in central Taiwan. Two different grid sizes of the finite dif-
ferences are performed for two different coordinates which 
are connected to each other by using a 2-D interpolation and 
coordinate transformation. This makes simultaneous com-
putations for different faults geometrically possible thereby 
facilitating the study of fault interactions in such a compli-
cated fault system.

The direction of applied regional stress does, of course, 
play a very important role in fault interactions, but this is, 
to a certain extent, limited. With a fixed direction of re-
gional stress (φ = 26.57° in this study), the present simu-
lation results provide solid unambiguous evidence that the 
strike-slip-type sub-faults can be triggered and then rupture 
completely by the failure of a nearby thrust fault under two 
conditions. The first condition is that the strike-slip-type 
sub-fault must be located inside the range of a source re-
gion (TRSR) for to-be-triggered by the ruptures of the main 
thrust. The second condition is that the strike-slip-type sub-
fault is not too far away from the main thrust. When the two 
conditions do not exist on the strike-slip-type sub-faults, the 
rupture-time contours are narrow or the sub-faults cannot 
completely rupture even though they are triggered. 
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Fig. 9. The relationship between triggering with changes of the two sub-faults in the north-south direction. The distances between the M-fault and 
the sub-faults are: (a) for 1.2 km; (b) for 1.6 km; (c) for 2.0 km; (d) for 2.4 km; and (e) for 2.8 km. The complete ruptures can be observed only for 
distances less than 2.0 km.

(a)

(b)

(c)

(d)

(e)

In the present study, we simulate the rupture and trigger-
ing processes of a complex fault system composed by three 
faults. But, the real fault system is much more complicated  
than the present one. Hence, more studies will be conducted 
on the basis of numerical simulations to investigate the key 
factors, including the fault size, geometric patterns and ini-

tial regional stresses, in influencing the triggering distance 
in the near future. 
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APPENDIX

Here, the equations of normal stress ( z zv l l ) and dis-
placement (uzl ) on the M-fault are derived in detail. In the 
F-coordinate, the M-fault is on the Xl - Yl plane, and Zl 
is the normal direction. Taking the Taylor expansion of 

( , , , )u i j k t1z +l  in the Zl-direction leads to:
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Considering the Zl-component in Eq. (1), we have
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and it is rewritten as:

( )

( ) ( )
z
u t

u
x
u

y
u

x z
u

y z
u

2
1z

z z z

x y

2

2
2

2

2

2

2

2

2 22

2
2

2

2

2

2

2

2 2
2

2 2

2
m n

t n

m n

= +

- +

- + +

+

+ + +

+ +l

l l

l l l l

l

l l l

l l

R

T

S
S
S
S
S
S

V

X

W
W
W
W
W
W

 (A4)

The normal stress on the hanging wall of the M-fault is:
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Substituting Eqs. (A2) and (A4) into Eq. (A5) gives
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The same operation performed for the normal stress on the 
footwall leads to
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By performing [(A6) + (A7)]/2, the normal stress on the M-
fault is:
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In this model, the M-fault is on the Xl - Yl plane. 
When a rupture occurs, there are two components of stress 
drop changes, i.e., z xvD l l  and z yvD l l . From Eqs. (10a) to 
(10c), the boundary conditions are:
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For an un-cracked grid, the displacement at the grid point 
on the hanging wall is ( , , , )u i j k tx

+ . The Xl-component of 
Eq. (1) is:
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Therefore, we have
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Rewriting Eq. (A9) for the un-cracked grid leads to
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The Taylor expansion of ( , , , )u i j k t1x +l  in the Zl-direc-
tion is:
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Substituting Eqs. (A13) and (A14) into Eq. (A15) gives
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Therefore, we have
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From a similar derivation, the displacement at the grid point 
on the footwall, i.e., ( , , , )u i j k tx

-
l , is:
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By performing [(A17) + (A18)]/2, the equation of motion 
at an un-cracked grid obtained from Eq. (A19) and used to 
calculate displacement, uxl , is:
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For a cracked grid, the displacement at the grid point on the 
handing wall is ( , , , )u i j k tx

+ . From Eq. (A9), the boundary 
condition is:
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Therefore, we have
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Similar operations as from Eq. (A15) to Eq. (A17), the equa-
tion for a cracked grid is:
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Hence, the equation of motion for a cracked grid on the 
hanging wall is:
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From similar derivation, the equation of motion at the 
cracked grid on the footwall is:
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