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AbsTrAcT

The earthquake-alarm model developed by Chen and Chen (Nat. Hazards 
2016) is investigated to validate its forecasting performance for the 2016/2/6, ML 
6.6 Meinong, Taiwan earthquake. This alarm model is based on geoelectric field 
skewness and kurtosis anomalies. The model parameters, such as the detection range 
and predicted time window, allow us to estimate the empirical relationships between 
geoelectric anomalies and large earthquakes. As a result, the skewness and kurtosis 
anomalies are shown to appear before the Meinong earthquake on the four neighbor-
ing stations (LIOQ, WANL, KAOH, and CHCH). According to the model analysis a 
time lag exists between anomaly clusters and earthquakes, depending on local geo-
logical features, as well as the durations over which anomalies are continuously ob-
served, which might also display time dependence. In conclusion, this alarm model is 
able to correlate earthquakes and geoelectrical anomalies, with promising usefulness 
in forecasting large earthquakes.
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1. InTrodUcTIon

This work investigates an earthquake-forecasting al-
gorithm based on geoelectric field skewness and kurtosis 
(Chen and Chen 2016). The ML 6.6 Meinong earthquake hit 
the southern part of Taiwan (120.54°E, 22.92°N) at 03:57 
AM, 2016/2/6 (UTC+8) at a depth of 14.64 km, causing the 
death of over one hundred people, the collapse of tens of 
buildings, and other significant infrastructure damage (cf. 
the listed Website links: GEER Association 2016; NCDR 
2016; Wikipedia 2016). Earthquake forecasting, therefore, 
is a critical task. The effective earthquake forecasting should 
provide information that includes the time, location, magni-
tude and probability for an impending earthquake. Effective 
forecasting should also help scientists simulate shaking haz-
ard maps, as well as warn the public in areas that are likely 
to be seriously damaged if a large earthquake strikes.

The physical mechanisms of earthquake rupture pre-
cursors are still debated, but possible models have been pro-

posed. Those models include positive hole charge carriers 
(Freund 2007; Freund et al. 2009; Freund and Pilorz 2012), 
the piezoelectric effect of quartz (Nitsan 1977), the electro-
kinetic effect due to water filtration (Ishido and Mizutani 
1981), pressure stimulated currents (Varotsos and Alexo-
poulos 1984b) arising from the (re)orientation of electric 
dipoles due to lattice defects (Londos et al. 1996) formed 
mainly in the ionic constituents of rocks, and so forth. Of the 
many kinds of earthquake precursors, earthquake forecast-
ing using geoelectromagnetic fields is claimed to have some 
promising potential (Varotsos and Alexopoulos 1984a, b; 
Kawase et al. 1993; Varotsos et al. 1993, 2006a, b, 2008, 
2009, 2011a, 2013; Uyeda et al. 2000, 2002; Eftaxias et al. 
2004, 2007, 2013; Telesca et al. 2004, 2005, 2008, 2009; 
Orihara et al. 2009, 2012; Eftaxias 2010; Ramirez-Rojas 
et al. 2013; Chen and Chen 2016). Chen and Chen (2016) 
built their forecasting algorithm on the previous analogy be-
tween large earthquakes and critical points, suggesting that 
both mechanical and electromagnetic signals should feature 
generic symptoms, including increased autocorrelation,  
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increased variance, varied skewness, increased kurtosis, etc. 
(Sornette and Sornette 1990; Sornette and Sammis 1995; 
Bowman et al. 1998; Sammis and Sornette 2002; Varotsos 
et al. 2003; Scheffer 2009; Scheffer et al. 2009; Dakos et 
al. 2012). Varotsos et al. (2006a, b, 2008) developed the 
natural time analysis (NTA), applied it to their seismic elec-
tric signals (SESs), and suggested that long-range temporal 
correlations increase prior to large earthquakes. Eftaxias 
and his team analyzed the power law distributions in pow-
er spectral densities (Eftaxias et al. 2004, 2007) and used 
non-extensive statistical physics (Eftaxias 2010; Eftaxias et 
al. 2013) to investigate seismogenic electromagnetic emis-
sions. They concluded that those emissions are associated 
with the earthquake preparation process. Telesca and his 
team applied multifractal detrended fluctuation analysis 
(MFDFA) (Telesca et al. 2004, 2005) and the Fisher Infor-
mation Measure (FIM) (Telesca et al. 2009) to geoelectric 
datasets in different seismic areas. They found clear cor-
relations with the largest earthquakes that occurred within 
the monitored area during the observation period. Before 
the 2011/3/11 Mw 9.0 Tohoku, Japan earthquake, geoelec-
tromagnetic anomalies and many other precursors had been 
reported (Ouzounov et al. 2011; Varotsos et al. 2011b; Sar-
lis et al. 2013; Xu et al. 2013; Skordas and Sarlis 2014; Han 
et al. 2015; Kamiyama et al. 2016).

Evidence of the precursory nature of these indexes 
proposed in these previous works was provided via depen-
dence measures, but without tests of their forecasting skills 
or within systematic analyses on full time series. To solve 
the ambiguity, Chen and Chen (2016) developed a model 
to examine the empirical relationship between earthquakes 
and anomalous geoelectric field statistics. They proposed 
the “Geoelectric Monitoring System’s Time of Increased 
Probability” (GEMSTIP) model and applied this model to 
estimate the occurrence time of the anomalies, the predicted 
time window for the earthquakes and other parameters asso-
ciated with the anomalies. The GEMSTIP model, as a ruler 
measuring the distance between two points, helps us un-
derstanding the empirical connection between earthquakes 
and geoelectric fields. This paper provides a validation step 
for this model using the available datasets from 2013/1/16 
to 2015/12/31 as the training set, and the datasets from 
2016/1/1 to 2016/3/31 as the forecasting set. We expect that 
the best parameters obtained from the training period allow 
us to forecast the ML 6.6 Meinong earthquake.

Chen and Chen (2016) found time lags between two 
earthquakes with ML ≥ 6 and their preceding clustered anom-
alies. A time lag is the elapsed time between the end time 
of the clustered precursory anomalies and an earthquake oc-
currence. We modify their model in this paper by taking the 
time-lag effect into account. Other questions addressed in this 
paper are as follows: (1) What is the best model, the original 
one or the modified one? (2) Why does a time-lag effect ex-
ist? (3) What should be the optimal training window size for 

better forecasting performances? Answering those questions 
may help to obtain a deeper understanding of the potential 
links between earthquakes and the geoelectric field.

2. dATA

The earthquake catalog is routinely processed and re-
leased by the Central Weather Bureau (CWB) of Taiwan. 
The geoelectric field is registered by the Geoelectric Moni-
toring System (GEMS), which is maintained by Prof. Chien-
Chih Chen and his team. We used all ML ≥ 5 earthquakes and 
calculated the skewness and kurtosis of the daily geoelectric 
field distribution, using a sampling rate of 1 Hz (cf. Chen 
and Chen 2016). Figure 1 shows the geoelectric station spa-
tial distribution and the earthquakes with ML ≥ 5. The solid 
magenta star is the 2016/2/6 ML 6.6 Meinong earthquake, 
and LIOQ is the nearest station to this event. We used both 
the earthquake catalog and geoelectric data from 2013/1/16 
to 2015/12/31 as the training set, and data from 2016/1/1 
to 2016/3/31 as the forecasting set. We also selected differ-
ent training windows in the training period (2013/1/16 to 
2015/12/31) to discuss the effect of the training window size 
on the forecasting performances. The training windows thus 
span from 180 days to 1080 days, with a step of 90 days, 
simply denoted as (180:90:1080) (days). The first train-
ing set spans from 2015/7/5 to 2015/12/31 with a training 
window of 180 days. The second training set spans from 
2015/4/6 to 2015/12/31 with a training window of 270 days. 
The third training set spans from 2015/1/6 to 2015/12/31 
with a training window of 360 days, and so forth. The end 
time for all training sets is 2015/12/31. In the forecasting 
period spans from 2016/1/1 to 2016/3/31. Seven target earth-
quakes are denoted as colorful stars in Fig. 1. Four of them 
are inland and around LIOQ, the others are located on the 
eastern coast.

3. METhods

This section is composed of (i) the “Geoelectric Moni-
toring System’s Time of Increased Probability” (GEMSTIP) 
analysis algorithm workflow, (ii) the original GEMSTIP 
model proposed in Chen and Chen (2016), (iii) the modified 
GEMSTIP model considering the time-lag effect, (iv) the 
priority-search area concept (PSA), and (iv) model ranking 
used to select the best model in similar performance cases.

3.1 GEMsTIP Analysis Algorithm Workflow

Chen and Chen (2016) developed the “Geoelectric 
Monitoring System’s Time of Increased Probability” (GEM-
STIP) model and tested the relationship between earth-
quakes with ML ≥ 5 and the anomalous skewness and kur-
tosis of geoelectric fields. Figure 2 shows the methodology 
workflow proposed in Chen and Chen (2016), which we 
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Fig. 1. Spatial distribution of the geoelectric stations and the earthquakes with ML ≥ 5 in Taiwan. Open stars are the earthquakes with ML e  [5, 6), 
and solid stars are the earthquakes with ML ≥ 6. Gray and dark stars are the earthquakes before 2015/12/31 within the training set, while pink and 
magenta stars are the earthquakes from 2016/1/1 to 2016/3/31 within the forecasting set. (Color online only)

Fig. 2. Flowchart of the GEMSTIP analysis algorithm.
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shall also follow in this paper. The skewness and kurtosis 
of the daily geoelectric field distributions for North-South 
(NS) and East-West (EW) components are first calculated. 
There are four indexes per day. The start and end time of a 
training period is selected next. Chen and Chen (2016) used 
the training period from 2012/1/1 to 2014/12/31, whereas we 
use the training period from 2013/1/16 to 2015/12/31 and 
also discuss the effect of different training windows between 
the start and end times. The upper and lower thresholds used 
to detect anomalies are defined for each index as the median 
±3 times the interquartile range in the selected time window 
(shown in the upper panel of Fig. 3). An anomalous index 
is detected if the observed index value is beyond one of 
the thresholds. The anomalous index number (AIN) is then 
counted and summed according to the anomalous indexes 
of the skewness and kurtosis per component (shown in the 
lower panel of Fig. 3). Note that AIN is a discrete value. The 
GEMSTIP model is finally applied to the AIN series and 
the target earthquakes. The best model parameters are then 
determined for the considered training window.

3.2 original GEMsTIP Model

We consider the Chen and Chen model (2016) as the 
original GEMSTIP model. In the original model the param-
eter vector Go is: Go = (Rad, Dep, tcg, Nthr, tthr, tobs, tpred), where 
the superscript O means the original GEMSTIP model. The 
meaning of each parameter is shown in Fig. 3. The param-
eter Rad is the radius for selecting earthquakes within the 
region centered at a given station. The parameter Dep is the 
depth above which we select earthquakes. The parameter tcg 

is the coarse-grained time of an earthquake. The parameter 
Nthr is a threshold number to label a day as anomalous if AIN 
≥ Nthr for that day. The parameters tthr, tobs, and tpred are time 
windows, which mean that if the number of anomalous days 
within the observation time window tobs is greater than or 
equal to the threshold duration tthr, then the immediate future 
time window tpred is alarmed as a time of increased probabil-
ity (TIP) (cf. Chen and Chen 2016). Note that the parameter 
tcg is equal to tpred hereafter.

We then define the coarse-grained earthquake (CGEQ) 
time function as follows:
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where Mag stands for the magnitude of the earthquake. We 
herein use Mag ≥ 5. We also define the prediction index 
time function, i.e., time of increased probability (TIP) as 
follows:
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where N(.) is a number-counting operator and te means 
the end time point of the observation time window tobs.  
Equation (2) means that when the number of AIN ≥ Nthr is 

Fig. 3. Schematic diagram of the GEMSTIP model. The upper threshold Uthr and the lower threshold Lthr are the median ±3 times of interquartile 
range of this index time series. An anomalous index number (AIN) is counted if the index is out of Uthr and Lthr. Note that AIN is integer in practice 
and the AIN series here is an exaggeration for easy explanation. An anomalous day is defined if AIN ≥ Nthr. If anomalous days in tobs are greater than 
or equal to tthr, then the time window tpred will be issued as TIP (time of increased probability). Note that it is not necessary that the anomalous days be 
consecutive. A large earthquake occurrence (red star) is coarse-grained by ± tcg/2. A continuous segment of TIP is denoted as tTIP, while a continuous 
segment of coarse-grained earthquake (CGEQ) is denoted as tCGEQ. A continuous segment of anomalies is denoted as tANO. (Color online only)
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greater than or equal to the value tthr in the period te - tobs ≤ 
t ≤ te, the TIP is declared to be 1 in the period te ≤ t ≤ te + 
tpred. Note that it is not necessary that the anomalous days 
are consecutive.

In Fig. 3, we see a continuous TIP segment and a con-
tinuous CGEQ segment. We denote them as tTIP and tCGEQ, 
respectively. We then define a continuously anomalous time 
tANO as follows:

t t t tANO TIP pred obs= - +  (3)

Imagine that the window set of tobs and tpred find anomalies in 
the tobs only one time, so that tTIP = tpred and tANO = tobs. Hence, 
the start time point of tANO is that of tTIP minus tobs, and the 
end time point of tANO is that of tTIP minus tpred.

Performing a binary classification, we compare CGEQ 
to TIP time series, and obtain:
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In Eq. (4), TP means the number of true positives, FP the 
number of false positives, FN the number of false negatives, 
and TN the number of true negatives. For example, CGEQ 
= (1, 0, 0, 0, 1) and TIP = (1, 1, 0, 0, 0). In this case, TP = 1 
based on the first elements of CGEQ and TIP, FP = 1 based 
on the second, FN = 1 based on the fifth, and TN = 2 based 
on the third and the fourth. We then define the model per-
formances as follows:
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In Eq. (5), C1 is the TN performance, F1 is the TP perfor-
mance, and R is the ensemble performance.

We set the parameters Rad = (30:5:60, 70:10:100) 
(km), Dep = (10:10:50, 100:50:300) (km), Nthr = (1:1:4), 
tthr = ( : : t1 1 3

2
obs ) (day), tobs = (5:5:30, 40:10:100) (day), 

tpred = (5:5:30, 40:10:100) (day). Note that the data format 
is (initial value : increment : end value) which means that 
the values of one parameter are from an initial value to an 
end value with an incremental step. The number of original 
tested models thus amounts to 1361360.

3.3 Modified GEMsTIP Model

Chen and Chen (2016) found that there is a time lag 

between a large earthquake and the clusters of geoelectric 
anomalies. We take the time-lag effect into consideration 
in this paper. We, hereafter, called the GEMSTIP model 
considering the time-lag effect as the modified GEMSTIP 
model.

The parameter vector GM is: GM = (Rad, Dep, tcg, Nthr, 
tthr, tobs, tpred, tlag), where the superscript M means the modi-
fied GEMSTIP model. The time lag parameter tlag is the 
elapsed time between the end of the observation time win-
dow tobs and the beginning of the predicted time window tpred 
(shown in the lower panel of Fig. 3), whereas the other pa-
rameters have the same meanings as in the original model. 
The parameter tcg is also equal to tpred hereafter.

The only difference between the modified model and 
the original one is:
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Comparing Eqs. (2) and (6), we see that the original GEM-
STIP model is a specific case of the modified GEMSTIP 
model when tlag = 0. The relationship between tANO and tTIP 
in the modified model is the same as in Eq. (3). However, 
imagine that the window set of tobs, tpred, and tlag find anoma-
lies in the tobs only one time, so that tTIP = tpred and tANO = tobs, 
but there is a time gap tlag between tANO and tTIP. Hence, the 
start time point of tANO is that of tTIP minus (tobs + tlag), and the 
end time point of tANO is that of tTIP minus (tpred + tlag).

We set the parameters Rad = (30:5:60, 70:10:100) 
(km), Dep = (10:10:50, 100:100:300) (km), Nthr = (1:1:4), 
tthr = ( : : t1 1 3

2
obs ) (days), tobs = (5:5:20, 30:10:100) (days), 

tpred = (5:5:20, 30:10:60) (days), tlag = (0:10:90) (days). The 
total number of tested modified models is 5603840.

3.4 Priority-searching Area

The priority-search area concept (PSA) is now intro-
duced. Chen and Chen (2016) plotted the C1-F1 diagrams 
to observe the model performance patterns and the location 
of the best model. However, it is not convenient to compare 
the C1-F1 patterns when the number of the models with dif-
ferent tested conditions is strongly increased. For the sake 
of simplifying the C1-F1 diagram comparisons, we divided 
the C1-F1 area into 7 PSAs, as shown in Fig. 4. PSA 1 cor-
responds to R > 1, C1 > 0.5, and F1 > 0.5; PSA 2 to R ≤ 1, 
C1 > 0.5, and F1 > 0.5; PSA 3 to R > 1 and F1 ≤ 0.5; PSA 
4 to R > 1 and C1 ≤ 0.5; PSA 5 to R ≤ 1, C1 > 0.5, and F1 
≤ 0.5; PSA 6 to R ≤ 1, C1 ≤ 0.5, and F1 > 0.5; and finally 
PSA 7 to C1 ≤ 0.5 and F1 ≤ 0.5. Intuitively, PSA 1 is the 
best region for the model performance, while PSA 7 is the 
worst region. Hence, PSAs 1 to 7 correspond to the model 
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performances in descending order. We looked for the cor-
responding PSA of each model and eventually determined 
the best model parameters for each PSA. Based on the PSA 
number, we are able to image the C1-F1 patterns without 
plotting the C1-F1 diagrams (cf. Figs. 4 and S3 of Chen 
and Chen 2016), which is rather helpful when comparing 
the enormous tested model sets. Moreover, when the best 
model occurred in PSA 5, 6, or 7, we did not use this as the 
best model.

3.5 Model ranking

Consider the original GEMSTIP model as an example 
and assume a ML 6 earthquake occurred 40 km from a given 
station, with a depth of 39 km. If the models GO

1  = (50, 40, 
2, 4, 10, 15) and GO

2  = (60, 40, 2, 4, 10, 15) have the same 
ensemble performance R, we prefer model GO

1  because the 
parameter Rad = 60 in GO

2  is overestimated in this case. Or 
if models GO

3  = (50, 40, 2, 4, 10, 15) and GO
4  = (50, 50, 

2, 4, 10, 15) have the same ensemble performance R, we 
choose model GO

3  because the parameter Dep = 50 in the 
model GO

4  is overestimated. One can imagine similar con-
siderations for the other parameters. This amounts to a kind 
of LASSO (least absolute shrinkage and selection operator) 
penalization of the parameters (Tibshirani 1996). We solve 
this problem using the spatial LASSO and temporal LASSO 
in order to rank the models. The spatial LASSO is the de-
tected volume:

L Dep RadS
2$=  (7)

The temporal LASSO is the ‘volume’ of anomalies:

L N tT thr thr$=  (8)

If there are models with the same best ensemble perfor-
mance R, we first choose the model with the minimum of 
the spatial LASSO LS. If models with the same R value still 
occur, we then choose the model with the minimum tem-
poral LASSO LT. In practice, we observed that the spatial 
LASSO is sufficient to rank models with similar R values 
most of the time.

4. rEsULTs

Figure 5 shows the skewness and kurtosis series at 4 
stations, which are nearest to the epicenter of the 2016/2/6 
ML 6.6 Meinong earthquake. LIOQ, the closest station (at 
17.30 km), exhibits anomalous skewness and kurtosis clus-
ters within 2015/6/18 to 2015/11/13, corresponding appar-
ently to the Meinong earthquake. There is thus a time lag of 
approximately 86 days between the end time of the anoma-
lous clusters and the earthquake occurrence. At WANL, the 

second nearest station (at 37.17 km), the skewness and kur-
tosis start to deviate from their thresholds from 2015/7/10. 
Yet, before, during and after the Meinong earthquake, the 
anomalies persist. Note that WANL started recording on 
2012/2/2, and thus features a gap in the data at the begin-
ning of its time series (Fig. 5b). A similar situation holds 
at KAOH, the third nearest station (at 39.30 km). KAOH’s 
skewness and kurtosis start to deviate from its thresholds 
from 2015/5/31, and keeps on up to the end of the data-
set. CHCH, the fourth nearest station (at 51.2 km), displays 
kurtosis deviating from its thresholds from 2015/9/16, but 
its skewness behaves relatively quiescently. For WANL 
and KAOH, we also observe different continuous anomaly 
durations from 2015/10/14 to 2016/3/31 and from 2015/6/1 
to 2016/3/31, respectively, before and after the Meinong 
earthquake occurrence. For other periods, at those 4 sta-
tions, there are other anomalies corresponding apparently to 
other large earthquakes. Because it is hard to determine the 
relationship using the naked eye, we applied the “Geoelec-
tric Monitoring System’s Time of Increased Probability” 
(GEMSTIP) model to quantitatively measure the relation-
ship between those anomalies and earthquakes.

After the GEMSTIP analysis, Fig. 6 shows the CGEQ-
TIP matching diagrams for the best original and modified 
models. We selected the training datasets from 2015/1/6 to 
2015/12/31 with a training window of 360 days to optimize 
the models. The training window of 360 days is the best 
option among those different training windows, which is 
discussed in section 5. The best model parameters are listed 

Fig. 4. Schematic diagram of priority-searching areas (PSA) of the C1-
F1 diagram. The vertical line is the TN performance C1 = 0.5, the 
horizontal line is the TP performance F1 = 0.5, and the quarter circle 
curve is the ensemble performance R = 1. PSAs 1 through 7 are ranked 
in descending order of performance. If the best model occurs in PSAs 
5, 6, or 7, it should not be used for forecasting. (Color online only)
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Fig. 5. Time series of skewness and kurtosis in the daily geoelectric field distribution at the 4 stations (a) LIOQ, (b) WANL, (c) KAOH, and (d) 
CHCH, which are close to the 2016/2/6 ML 6.6 Meinong earthquake. Red circles are NS component and blue dots are EW component. Green vertical 
lines are the earthquakes with ML e  [5, 6) within a radius of 100 km from a given station, and magenta vertical lines are the earthquakes with ML ≥ 
6. Note that the datasets begin from their own starting times to 2016/3/31. (Color online only)

(a)

(b)

(c)

(d)
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in Table 1. We then used the determined parameters to fore-
cast the earthquakes with ML ≥ 5 occurring from 2016/1/1 
to 2016/3/31. We first compared the CGEQ-TIP matching 
results in the training set. Overall, the original and modified 
models have a similar pattern for the CGEQ-TIP match-
ings. However, comparing their performances, the modified 
model ( C1t  = 0.99, F1 t  = 0.94, Rt  = 1.29) slightly out-
performs the original model ( C1t  = 0.97, F1 t  = 0.93, 
Rt  = 1.26). Note that, hereinafter, the operator .  means 

the average of a certain parameter over the 20 stations. 
The subscript t means the training set, while the subscript 
f means the forecasting set. For the original model, we ob-
tained Rad  = 64 (km), Dep  = 44.5 (km), Nthr  = 2, tthr  
= 10.85 (days), tobs  = 43.5 (days), tpred  = 48.75 (days) 
(averaged from Table 1a). For the modified model, we ob-
tained Rad  = 69 (km), Dep  = 49 (km), Nthr  = 2, tthr  
= 10.65 (days), tobs  = 49.5 (days), tpred  = 34 (days), tlag  

= 22.5 (days) (averaged from Table 1b). Those averages are 
summarized in Table 2. The average predicted time window 
tpred  in the modified model is smaller than that in the origi-

nal one, which allows us to point out more precisely when 
an earthquake will occur. Focusing on the forecasting set, 
the performances of the original model are C1 f  = 0.64, 
F1 f  = 0.34, and R f  = 0.83, while those of the modified 

model are slightly better with C1 f  = 0.70, F1 f  = 0.49, 
and R f  = 0.90. WANL forecasted the ML 6.6 Meinong 
earthquake and the other two earthquakes with ML ≥ 5 in 
both the original and modified models. On the other hand, 
LIOQ and YULI do not forecast the Meinong earthquake in 
the original model, but forecast the earthquake in the modi-
fied one. In the supplementary materials, Figs. S1 and S2 
show the CGEQ-TIP matching results of the original and 
the modified models with different training windows, and 
Tables S1 and S2 list their best model parameters.

(a)

(b)

Fig. 6. CGEQ-TIP matching diagrams of (a) the best original model and (b) the best modified model. The training set is from 2015/1/6 to 2015/12/31 
with a training window of 360 days, and the forecasting set is from 2016/1/1 to 2016/3/31. Black and blue horizontal lines are TIPs. Gray and green 
horizontals are CGEQs, the time expansions of earthquake occurrence. Open stars are the earthquakes with ML e  [5, 6), and solid stars are the 
earthquakes with ML ≥ 6. The gray-level part on the left concerns the training set, while the colorful part on the right deals with the forecasting set. 
Gray dotted lines are auxiliary guides for the eye. (Color online only)



Geoelectric Precursors to the 2016 Meinong Earthqauke 753

stan Rad (km) Dep (km) Nthr tthr (day) tobs (day) tpred (day) c1 F1 r PsA

SHRL 60 20 3 13 90 30 0.99 0.98 1.4 1

KUOL 90 20 2 3 5 10 1 1 1.41 1

TOCH 60 250 2 3 5 30 0.9 0.84 1.23 1

HUAL 70 20 2 5 70 40 0.97 0.97 1.38 1

ENAN 100 250 3 2 10 15 0.54 0.55 0.77 2

DAHU 100 20 1 5 25 30 1 0.99 1.4 1

LISH 45 20 1 8 15 30 1 0.98 1.4 1

SHCH 30 20 2 5 30 15 1 0.98 1.4 1

HERM 30 10 2 3 5 5 1 0 1 5

PULI 100 20 2 21 70 5 1 1 1.41 1

FENL 80 20 3 1 20 20 1 0.99 1.4 1

SIHU 30 10 4 4 5 5 1 0 1 5

DABA 100 20 1 4 5 40 1 0.99 1.4 1

YULI 80 50 4 1 5 15 0.92 0.72 1.17 1

CHCH 30 10 3 2 5 5 1 0 1 5

LIOQ 30 10 3 2 5 5 1 0 1 5

RUEY 55 20 1 11 30 60 0.99 0.99 1.4 1

KAOH 30 10 1 3 5 5 1 0 1 5

WANL 90 30 4 8 15 60 1 1 1.41 1

FENG 90 30 1 23 70 5 0.96 0.56 1.11 1

stan Rad (km) Dep (km) Nthr tthr (day) tobs (day) tpred (day) tlag (day) c1 F1 r PsA

SHRL 80 300 4 5 50 40 40 1 1 1.41 1

KUOL 90 20 3 35 100 60 90 0.94 0.84 1.25 1

TOCH 70 300 1 7 90 60 10 0.99 0.99 1.4 1

HUAL 90 20 1 13 90 60 10 1 1 1.41 1

ENAN 80 30 1 11 50 50 80 1 1 1.41 1

DAHU 100 20 1 7 50 15 10 1 1 1.41 1

LISH 60 20 1 19 50 20 60 1 1 1.41 1

SHCH 30 20 1 5 15 15 0 1 0.98 1.4 1

HERM 30 10 1 4 5 5 0 1 0 1 5

PULI 55 20 2 11 30 5 30 1 1 1.41 1

FENL 80 20 4 1 20 20 0 1 0.99 1.4 1

SIHU 30 10 4 13 20 5 0 1 0 1 5

DABA 100 20 3 7 20 15 10 1 1 1.41 1

YULI 100 30 1 17 100 60 30 1 1 1.41 1

CHCH 30 10 3 2 5 5 0 1 0 1 5

LIOQ 90 30 2 15 70 60 70 1 1 1.41 1

RUEY 55 30 2 15 80 60 0 1 1 1.41 1

KAOH 30 10 1 4 5 5 0 1 0 1 5

WANL 90 30 3 15 70 60 0 1 1 1.41 1

FENG 90 30 2 7 70 60 10 1 1 1.41 1

(a)

(b)

Table 1. Best GEMSTIP parameters of (a) the original model and (b) the modified model. The training set is 
from 2015/1/6 to 2015/12/31 with a training window of 360 days.
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Figure 7 shows plots of averages of the best param-
eters versus the size of the training windows. For the pa-
rameters Rad , Dep , Nthr , tthr , tobs , tpred  in both 
the original and modified models, and the parameter tlag

in the modified model, we see that changing the training 
window size changes slightly the average parameters. These 
results suggest that the inverted models are rather robust. 
The predicted time windows tpred  in the modified models 
are smaller than in the original models for all training win-
dow sizes, except for a training window of 180 days. The 
other average parameters have similar values in both the 
original and modified models. The original model proposed 
in Chen and Chen (2016) gives a predicted time window for 
an earthquake that is overestimated because of the time-lag 
effect between earthquake occurrence and geoelectric field 
anomalies. We truly improved the original model by consid-
ering the time-lag effect. Due to the smaller predicted time 
windows, we could forecast the earthquake occurrence time 
more accurately.

We next compared the average performances of the 
original models to those of the modified models when using 
different training windows. Figure 8 shows the plots of the 
average performances ( C1 , F1 , R ) versus the train-
ing windows (180:90:1080) (days) for both the original and 
modified models. We observe in Fig. 8a that the TN perfor-
mances C1t

o  and C1t
m  in the training sets (subscript t) of 

the original model (superscript o) and the modified model 
(superscript m) are mostly above 0.9, and slightly decrease 
with the increasing training windows size beyond 540 days. 
The TN performances C1 f

o  and C1 f
m  in the forecasting 

sets (subscript f) are all decreased by approximately 0.25 
when compared to the training TN performances C1t

o  
and C1t

m . Additionally, the forecasting TN performances 
C1 f

m  are mostly larger than C1 f
o  except for training win-

dows of 180 and 450 days. Focusing on Fig. 8b, the training 
TP performances F1 t

o  and F1 t
m  decrease approximately 

from 0.9 - 0.5 with increasing training window sizes. The 
forecasting TP performances F1 f

o  and F1 f
m  are approxi-

mately between 0.1 and 0.5. There are maxima of F1 f
o  and 

F1 f
m  with a training window of 360 days. In Fig. 8c, the 

training ensemble performances Rt
o  and Rt

m  decrease ap-
proximately from 1.30 - 1.05 as the training window size 
increases. The forecasting ensemble performances R f

o  and 
R f

m  are around 0.8.

5. dIscUssIon

In this work, we found that of the four nearest stations 
to the ML 6.6 Meinong earthquake, the clustered anomalous 
skewness and kurtosis in LIOQ became relatively quiescent 
prior to the Meinong earthquake. We consider this as the 
time-lag effect. Chen and Chen (2016) also observed time 
lags for two earthquakes with ML ≥ 6 in 2013 near PULI. 
Varotsos and his team also found time lags between SESs 
and earthquakes in Greece (Varotsos et al. 1993, 2009) and 
Japan (Varotsos et al. 2013). In rock experiments, Triantis 
et al. (2008) found the pressure stimulated current record-
ings (PSC) featured a peak before failure. They speculated 
that the time lags were produced by the formation of the 
fracture plane. This plane forms at high stresses and the 
extensive cracking process that is associated with it limits 
the available conductive path in the sample bulk, inducing 
a consequent obstacle on the emitted PSC. We applied the 
modified GEMSTIP model to quantify the time lag between 
the defined anomalies and earthquakes. However, not all 
stations show such a time-lag effect. When observing the 
column corresponding to the time lag tlag in Table 1b, almost 
all stations in the coastal region display no time-lag, such 
as SHCH, HERM, FENL, SIHU, CHCH, RUEY, KAOH, 
and WANL, while stations in the central mountain region 
possess one. We suspect that the time lag depends on the lo-
cal geology. The observed low resistivity under the central 

Model Type Rad (km) Dep (km) Nthr tthr (day) tobs (day) tpred (day) tlag (day)

Original 64 44.5 2 10.85 43.5 48.75 0

Modified 69 49 2 10.65 49.5 34 22.5

Model Type c1t F1t rt c1f F1f rf retrained c1f retrained F1f retrained rf

Original 0.97 0.93 1.26 0.64 0.34 0.83 0.56 0.39 0.81

Modified 0.99 0.94 1.29 0.7 0.49 0.9 0.62 0.53 0.88

(a)

(b)

Table 2. Averages of (a) best parameters and (b) performances of the original and modified models. The 
training set is from 2015/1/6 to 2015/12/31 with a training window of 360 days.

Note:  * The term “retrained” means that the datasets of CHCH and KAOH are reselected to re-optimize the 
GEMSTIP models. The (re)training set of CHCH is from 2012/4/26 to 2013/4/20 with a training window 
of 360 days, while the (re)training set of KAOH is from 2013/4/1 to 2014/3/26 with a training window of 
360 days.
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(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 7. Line charts of averages of best parameters versus training windows of the original and modified models for (a) the average Rad, (b) the aver-
age Dep, (c) the average Nthr, (d) the average tthr, (e) the average tobs, (f) the average tpred, and (g) the average tlag. (Color online only)
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mountain region suggests the presence of abundant ground 
water (Chen and Chen 1998, 2000; Chen et al. 1998; Ber-
trand et al. 2009, 2012). In the initial stage, small-scale ir-
reversible deformations and fractures occur that generate 
electromagnetic radiation. Hence, the skewness and kurtosis 
of the geoelectric field vary largely. However, the abundant 
ground water starts to saturate those newly formed (or reac-
tivated) cracks. It may also interfere with currents generated 
by the irreversible deformations. The generated electromag-
netic radiation can then decay significantly when passing 
through the crack-saturated area. This scenario is depicted 
in Fig. 9. This might explain why there is a relative quies-
cence in skewness and kurtosis in the geoelectric field just 
prior to large earthquakes at stations deployed in the satu-
rated area.

Besides the time-lag effect, we found that the duration 
of anomalous skewness and kurtosis periods vary. Con-
sider SHRL, KUOL, TOCH, and HUAL for instance (in 
Fig. S2e of the supplementary materials): the continuous 
TIP times tTIP have different durations. Based on Eq. (3), 
it is suggested that the durations of lasting anomalies tANO 
are also different. The varied lasting anomalous times seem 

to rely on the preparation process of different earthquakes. 
This phenomenon suggests that the earthquake preparation 
processes are different even within the same region. There-
fore, when analyzing geoelectric fields in order to forecast 
an earthquake, the varied lasting anomalous times largely 
affect the forecasting performance. The different durations 
of lasting anomalies not only have a spatial dependence but 
also a temporal dependence within the same region. This 
issue might be solved by relating it to the crustal parameters 
that mainly influence the electrical structure, such as perme-
ability, porosity and so on.

The forecasting TP performance F1 f
m  = 0.49 with a 

training window of 360 days is larger than F1 f
o  = 0.34. For 

training windows larger 360 days, F1 f
o  and F1 f

m  have 
similar values. The better forecasting performance is pro-
duced by smaller predicted time window values tpred in the 
modified model. YULI and LIOQ in the modified model 
can identify earthquakes in the forecasting set, whereas they 
cannot in the original model. On the other hand, the larger 
tpred of the original model easily leads to longer TIP times 
tTIP, and to longer coarse-grained earthquake times tCGEQ. 
This situation leads to unreasonable forecasts. Therefore, it 

(a) (b)

(c)

Fig. 8. Line charts of average model performances versus training windows, (a) the TN performance C1, (b) the TP performance F1, and (c) the 
ensemble performance R. Black lines with circles are the training performances of the original models, and blue lines with circles are for the 
forecasting performances. Black lines with squares are the training performances of the modified models, and blue lines with squares are for the 
forecasting performances. The red circle is for the forecasting performances of the retrained original model, and the red square is the forecasting 
performances of the retrained modified model. The operator .  means the average of parameters for the 20 stations. The superscript o means the 
original model, the superscript m means the modified model, the subscript t means the training set, and the subscript f means the forecasting set. 
(Color online only)
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is necessary to consider the performances (C1, F1, R) and 
also the size of the predicted time window tpred. The training 
ensemble performances Rt

o  and Rt
m  are nearly equal for 

the models with 180 through 540 days training windows, 
and start decreasing for the models with training windows 
of 630 days and above. The forecasting ensemble perfor-
mances R f

o  and R f
m  for the 360 day training window are 

higher in the 180 through 540 day training windows. Conse-
quently, we conclude that the modified model truly outper-
forms the original one, and assume the modified model with 
a training window of 360 days as the best option.

Focusing on the KAOH and CHCH stations in Fig. 6,  
the CGEQ-TIP matchings are all empty. They also do not 
give any alarm for the Meinong earthquake. This is because 
their best models are located within PSA 5, and their perfor-
mances C1 = 1 and F1 = 0. Hence, their best models have 
minimum parameters in the given ranges. For models lo-
cated within PSA 5, 6, and 7, there is less relationship be-
tween earthquakes and anomalies skewness and kurtosis in 
the training periods. When meeting this situation, we moved 
the training window back to the previous period in which 
there are large earthquakes and anomalies. We used the 
reselected training datasets to re-optimize the models, and 
obtain the best model, called the historic best model. This 
historic model is substituted for the original best model. 
Based on Figs. 5c and d, we selected the retraining periods 
from 2013/4/1 to 2014/3/26 for KAOH and from 2012/4/26 
to 2013/4/20 for CHCH. The historic best parameters for 
KAOH and CHCH are listed in Table 3. Figure 10 shows 
the new GEMSTIP matching diagrams for the original and 
modified models. We found that KAOH and CHCH can 
give alarms and identify an earthquake with ML ≥ 5, but 
they cannot identify the Meinong earthquake within their 
detection ranges. They share the common parameter Dep = 
10, but the depth of the Meinong earthquake is 14.64 km. In 
Fig. 8, we found that the retrained TP performances F1 f

o  

= 0.39 and F1 f
m  = 0.53 (marked as red symbols) are all 

increased compared to their original values, which suggests 
that substituting the historic best parameters solved this no 
TIPs and no CGEQs problem in the training set. Although 
the retrained TN performances C1 f

o  = 0.56 and C1 f
m  = 

0.62 both decrease, the retrained ensemble performances 
R f

o  = 0.81 and R f
m  = 0.88 remained almost the same.

The modified GEMSTIP model may help to forecast 
earthquakes, but some problems remain. For instance, op-
timizing the large number of models is extremely time-
consuming and increasing the execution efficiency will be 
one important task. The abovementioned issue of the lasting 
anomalous time tANO also should be carefully investigated 
to increase the forecasting accuracy of large earthquakes. 
The selection of ways to quantify the success rate of a given 
model should be considered. We choose a C1-F1 diagram 
to optimize the GEMSTIP models. However, there are other 
performance scores in a binary classification, such as a ROC 
diagram, a Molchan diagram, etc. We have to understand the 
advantages and disadvantages of those performance scores 
and select the suitable ones for the GEMSTIP models.

In summary, the GEMSTIP model is useful in esti-
mating the empirical relationship between earthquakes and 
anomalous statistical geoelectric field indexes. We first 
showed that the anomalous skewness and kurtosis of the 
geoelectric field appearing before large earthquakes. We 
next showed that the time-lag effect can exist between the 
end of clustered anomalies and a large earthquake, and that 
this effect depends on the local geological features. Third, 
we found that the durations of continuous anomalies are 
different, which means that the preparation process of each 
earthquake is different and shows spatial and temporal de-
pendences. Finally, the GEMSTIP model identified the ML 
6.6 Meinong earthquake and other large earthquakes. The 
GEMSTIP model helps us to understand which factor af-
fects the connection between earthquakes and geoelectric 

Fig. 9. Model of the time-lag effect between geoelectric signals and earthquakes. The former cracks are saturated with fluids and form a fluid-
saturated area. The electromagnetic radiations generated by later cracking decay significantly when passing through the fluid-saturated area. The 
station above the fluid-saturated area (right side) registers less geoelectric anomalies by later cracking, whereas the other station keeps recording 
geoelectric anomalies. (Color online only)
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stan Rad (km) Dep (km) Nthr tthr (day) tobs (day) tpred (day) c1 F1 r PsA

CHCH 90 10 1 11 20 50 1 0.98 1.4 1

KAOH 90 10 1 11 50 60 1 0.98 1.4 1

stan Rad (km) Dep (km) Nthr tthr (day) tobs (day) tpred (day) tlag (day) c1 F1 r PsA

CHCH 90 10 1 11 20 50 0 1 0.98 1.4 1

KAOH 90 10 1 11 50 60 0 1 0.98 1.4 1

(a)

(b)

Table 3. Best GESMTIP parameters of (a) the original model and (b) the modified model with retrained CHCH 
and KAOH. The (re)training set of CHCH is from 2012/4/26 to 2013/4/20 with a training window of 360 days, 
while the (re)training set of KAOH is from 2013/4/1 to 2014/3/26 with a training window of 360 days.

(a)

(b)

Fig. 10. CGEQ-TIP matching diagrams of (a) the original model and (b) the modified model with retrained KAOH and CHCH stations. The training 
set is from 2015/1/6 to 2015/12/31 with a training window of 360 days, and the forecasting set is from 2016/1/1 to 2016/3/31. Note that only KAOH 
and CHCH were retrained using the periods of 2013/4/1 through 2014/3/26 and 2012/4/26 through 2013/4/20, respectively; hence, one should ne-
glect the TIP indexes of KAOH and CHCH in the training set from 2015/1/6 to 2015/12/31. (Color online only)
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fields (which even could be extended to any geophysical 
data), and also forecast large earthquakes. Although some 
problems remain to be resolved, this model is promising 
for building an earthquake-forecasting system and make it 
practical in the future.
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(a)

(b)

(c)

Fig. S1. CGEQ-TIP matching diagrams of the best original models with different training windows (Tw). (a) The training set is from 2015/7/5 to 
2015/12/31 (Tw = 180 days), (b) the training set from 2015/4/6 to 2015/12/31 (Tw = 270 days), (c) the training set from 2014/10/8 to 2015/12/31 
(Tw = 450 days), (d) the training set from 2014/7/10 to 2015/12/31 (Tw = 540 days), (e) the training set from 2014/4/11 to 2015/12/31 (Tw = 630 
days), (f) the training set from 2014/1/11 to 2015/12/31 (Tw = 720 days), (g) the training set from 2013/10/13 to 2015/12/31 (Tw = 810 days), (h) the 
training set from 2013/7/15 to 2015/12/31 (Tw = 900 days), (i) the training set from 2013/4/16 to 2015/12/31 (Tw = 990 days), and (j) the training 
set from 2013/1/16 to 2015/12/31 (Tw = 1080 days). Black and blue horizontal lines are TIPs, while gray and green ones are CGEQs. Open stars are 
earthquakes with ML e  [5, 6), while solid ones are earthquakes with ML ≥ 6. Gray-level part is the training set, while colorful part is the forecasting 
set. Gray dotted lines are auxiliary.



Chen et al.Sup:2

(d)

(e)

(f)

Fig. S1. (Continued)
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Fig. S1. (Continued)
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(j)

Fig. S1. (Continued)

(a)

(b)

Fig. S2. CGEQ-TIP matching diagrams of the best modified models with different training windows (Tw). (a) The training set is from 2015/7/5 to 
2015/12/31 (Tw = 180 days), (b) the training set from 2015/4/6 to 2015/12/31 (Tw = 270 days), (c) the training set from 2014/10/8 to 2015/12/31 
(Tw = 450 days), (d) the training set from 2014/7/10 to 2015/12/31 (Tw = 540 days), (e) the training set from 2014/4/11 to 2015/12/31 (Tw = 630 
days), (f) the training set from 2014/1/11 to 2015/12/31 (Tw = 720 days), (g) the training set from 2013/10/13 to 2015/12/31 (Tw = 810 days), (h) the 
training set from 2013/7/15 to 2015/12/31 (Tw = 900 days), (i) the training set from 2013/4/16 to 2015/12/31 (Tw = 990 days), and (j) the training 
set from 2013/1/16 to 2015/12/31 (Tw = 1080 days). Black and blue horizontal lines are TIPs, while gray and green ones are CGEQs. Open stars are 
earthquakes with ML e  [5, 6), while solid ones are earthquakes with ML ≥ 6. Gray-level part is the training set, while colorful part is the forecasting 
set. Gray dotted lines are auxiliary.
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Fig. S2. (Continued)
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(f)
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Fig. S2. (Continued)
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(i)

(j)

Fig. S2. (Continued)
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(a)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 3 13 90 30 0.99 0.98 1.4 1
KUOL 90 20 2 3 5 10 1 1 1.41 1
TOCH 60 250 2 3 5 30 0.9 0.84 1.23 1
HUAL 70 20 2 5 70 40 0.97 0.97 1.38 1
ENAN 100 250 3 2 10 15 0.54 0.55 0.77 2
DAHU 100 20 1 5 25 30 1 0.99 1.4 1
LISH 45 20 1 8 15 30 1 0.98 1.4 1
SHCH 30 20 2 5 30 15 1 0.98 1.4 1
HERM 30 10 2 3 5 5 1 0 1 5
PULI 100 20 2 21 70 5 1 1 1.41 1
FENL 80 20 3 1 20 20 1 0.99 1.4 1
SIHU 30 10 4 4 5 5 1 0 1 5
DABA 100 20 1 4 5 40 1 0.99 1.4 1
YULI 80 50 4 1 5 15 0.92 0.72 1.17 1
CHCH 30 10 3 2 5 5 1 0 1 5
LIOQ 30 10 3 2 5 5 1 0 1 5
RUEY 55 20 1 11 30 60 0.99 0.99 1.4 1
KAOH 30 10 1 3 5 5 1 0 1 5
WANL 90 30 4 8 15 60 1 1 1.41 1
FENG 90 30 1 23 70 5 0.96 0.56 1.11 1

(b)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 3 13 60 100 0.99 0.99 1.4 1
KUOL 30 10 4 4 5 5 1 0 1 5
TOCH 60 250 1 2 5 70 1 1 1.41 1
HUAL 90 20 2 5 50 70 0.95 0.95 1.34 1
ENAN 30 20 3 15 100 60 0.77 0.68 1.03 1
DAHU 100 20 1 5 25 30 1 0.99 1.4 1
LISH 45 20 1 10 20 100 0.9 0.86 1.24 1
SHCH 100 20 1 15 80 40 0.98 0.98 1.38 1
HERM 30 10 2 3 5 5 1 0 1 5
PULI 55 20 4 3 40 30 1 0.98 1.4 1
FENL 80 20 2 8 30 15 1 1 1.41 1
SIHU 30 10 4 7 10 5 1 0 1 5
DABA 100 20 1 4 5 40 1 0.97 1.39 1
YULI 100 30 1 5 10 30 0.94 0.92 1.32 1
CHCH 30 10 3 2 5 5 1 0 1 5
LIOQ 90 30 1 33 80 90 1 0.99 1.41 1
RUEY 55 30 2 7 40 60 1 1 1.41 1
KAOH 30 10 1 3 5 5 1 0 1 5
WANL 90 30 3 10 15 60 1 1 1.41 1
FENG 90 30 1 17 60 50 0.96 0.96 1.35 1

Table S1. Best parameters of the original GEMSTIP models with different training windows 
(Tw). (a) The training set is from 2015/7/5 to 2015/12/31 (Tw = 180 days), (b) the training set 
from 2015/4/6 to 2015/12/31 (Tw = 270 days), (c) the training set from 2014/10/8 to 2015/12/31 
(Tw = 450 days), (d) the training set from 2014/7/10 to 2015/12/31 (Tw = 540 days), (e) the 
training set from 2014/4/11 to 2015/12/31 (Tw = 630 days), (f) the training set from 2014/1/11 
to 2015/12/31 (Tw = 720 days), (g) the training set from 2013/10/13 to 2015/12/31 (Tw = 810 
days), (h) the training set from 2013/7/15 to 2015/12/31 (Tw = 900 days), (i) the training set 
from 2013/4/16 to 2015/12/31 (Tw = 990 days), and (j) the training set from 2013/1/16 to 
2015/12/31 (Tw = 1080 days).
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(c)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 4 7 90 40 1 0.98 1.39 1
KUOL 70 100 1 19 30 100 0.99 0.97 1.38 1
TOCH 30 20 1 21 100 100 0.95 0.9 1.31 1
HUAL 90 20 1 13 90 80 1 1 1.41 1
ENAN 30 20 3 15 100 90 0.81 0.69 1.06 1
DAHU 100 20 2 5 25 30 1 0.99 1.41 1
LISH 45 20 2 25 100 100 0.96 0.92 1.33 1
SHCH 30 20 2 5 30 15 1 0.98 1.4 1
HERM 30 10 1 4 5 5 1 0 1 5
PULI 55 20 4 2 20 70 1 0.99 1.4 1
FENL 80 20 3 3 30 15 1 0.98 1.4 1
SIHU 30 10 4 10 15 5 1 0 1 5
DABA 100 20 2 4 5 40 1 0.97 1.39 1
YULI 80 20 1 29 70 100 0.98 0.97 1.38 1
CHCH 30 10 3 2 5 5 1 0 1 5
LIOQ 90 30 2 39 100 80 0.85 0.65 1.07 1
RUEY 45 150 4 3 90 25 1 0.99 1.41 1
KAOH 30 10 2 4 5 5 1 0 1 5
WANL 90 30 3 3 40 100 0.91 0.9 1.28 1
FENG 90 30 2 9 70 50 0.89 0.79 1.19 1

(d)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 1 9 20 100 0.98 0.97 1.37 1
KUOL 70 100 1 45 100 100 0.93 0.78 1.22 1
TOCH 70 20 1 8 15 30 0.9 0.58 1.07 1
HUAL 90 100 2 7 100 60 0.97 0.97 1.38 1
ENAN 30 20 4 11 100 100 0.84 0.68 1.08 1
DAHU 100 20 2 11 90 15 0.97 0.72 1.21 1
LISH 45 20 2 25 100 100 0.97 0.92 1.34 1
SHCH 80 30 2 5 40 50 1 0.98 1.4 1
HERM 30 10 1 4 5 5 1 0 1 5
PULI 55 20 1 43 80 70 1 0.99 1.41 1
FENL 30 20 2 6 15 50 1 0.99 1.41 1
SIHU 30 10 4 53 80 5 1 0 1 5
DABA 100 20 1 29 90 10 1 0.95 1.38 1
YULI 40 50 1 51 90 100 0.96 0.87 1.29 1
CHCH 30 10 3 3 5 5 1 0 1 5
LIOQ 70 20 3 3 5 30 1 0.97 1.39 1
RUEY 55 20 3 13 100 60 0.97 0.84 1.28 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 100 30 1 21 100 50 0.89 0.74 1.16 1
FENG 90 30 1 11 90 50 0.89 0.83 1.22 1

Table S1. (Continued)
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(e)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 1 8 20 100 0.98 0.96 1.37 1
KUOL 90 20 3 9 100 100 0.78 0.53 0.94 2
TOCH 70 20 1 17 70 80 0.85 0.67 1.08 1
HUAL 90 100 1 7 100 40 0.79 0.74 1.08 1
ENAN 30 20 4 11 100 100 0.9 0.72 1.15 1
DAHU 100 20 4 6 10 50 0.94 0.61 1.12 1
LISH 45 20 2 25 100 100 0.97 0.9 1.32 1
SHCH 30 20 2 11 90 30 0.99 0.93 1.36 1
HERM 30 10 1 4 5 5 1 0 1 5
PULI 55 20 2 35 80 70 1 0.99 1.4 1
FENL 80 20 3 5 100 15 1 0.97 1.39 1
SIHU 30 10 4 61 100 5 1 0 1 5
DABA 100 20 4 7 80 30 0.97 0.64 1.16 1
YULI 40 50 3 27 100 100 0.96 0.87 1.3 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 70 20 3 3 5 30 0.97 0.64 1.16 1
RUEY 70 30 2 23 70 30 0.91 0.69 1.15 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 90 20 1 41 100 100 0.92 0.77 1.2 1
FENG 90 100 1 5 30 50 0.82 0.79 1.14 1

(f)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 2 9 80 100 0.94 0.89 1.3 1
KUOL 90 20 3 9 100 100 0.82 0.53 0.98 2
TOCH 70 20 1 17 70 80 0.88 0.67 1.1 1
HUAL 80 20 2 1 5 100 0.78 0.69 1.04 1
ENAN 30 20 4 11 100 100 0.91 0.71 1.16 1
DAHU 100 20 4 6 10 50 0.95 0.61 1.13 1
LISH 45 20 2 29 100 100 0.98 0.9 1.33 1
SHCH 30 20 3 3 30 100 0.99 0.94 1.36 1
HERM 30 10 3 3 5 5 1 0 1 5
PULI 100 20 4 5 40 25 0.98 0.72 1.21 1
FENL 80 20 3 4 30 15 0.98 0.74 1.23 1
SIHU 30 10 4 67 100 5 1 0 1 5
DABA 100 20 4 2 5 80 0.73 0.67 0.99 2
YULI 100 30 2 49 80 30 0.87 0.65 1.09 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 90 30 1 15 50 80 0.7 0.55 0.89 2
RUEY 70 30 2 12 30 20 0.92 0.59 1.1 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 90 20 1 33 100 100 0.89 0.84 1.23 1
FENG 90 30 1 7 50 40 0.79 0.7 1.06 1

Table S1. (Continued)
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(g)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 55 100 2 51 100 60 0.95 0.66 1.16 1
KUOL 55 100 1 16 25 100 0.95 0.64 1.15 1
TOCH 70 20 1 7 10 30 0.94 0.61 1.12 1
HUAL 60 40 1 17 100 100 0.93 0.58 1.1 1
ENAN 30 20 4 11 100 100 0.93 0.71 1.17 1
DAHU 100 20 4 5 10 50 0.95 0.61 1.13 1
LISH 45 20 2 29 100 100 0.98 0.9 1.33 1
SHCH 30 20 3 3 30 100 0.99 0.94 1.37 1
HERM 30 10 2 4 5 5 1 0 1 5
PULI 100 20 4 9 80 15 0.98 0.68 1.2 1
FENL 80 20 3 4 30 15 0.99 0.74 1.24 1
SIHU 30 10 4 67 100 5 0.98 0 0.98 5
DABA 100 20 4 2 5 70 0.69 0.55 0.88 2
YULI 100 30 4 23 100 30 0.88 0.63 1.08 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 90 30 2 3 5 80 0.61 0.51 0.79 2
RUEY 70 30 2 33 100 25 0.91 0.57 1.07 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 90 20 1 29 100 80 0.88 0.79 1.18 1
FENG 90 10 1 4 5 100 0.92 0.67 1.14 1

(h)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 4 7 90 40 0.97 0.65 1.17 1
KUOL 55 100 1 16 25 100 0.95 0.64 1.15 1
TOCH 70 20 1 7 10 30 0.95 0.61 1.13 1
HUAL 60 40 1 17 100 100 0.93 0.56 1.09 1
ENAN 30 20 4 11 100 100 0.94 0.71 1.18 1
DAHU 100 20 4 7 20 30 0.97 0.54 1.11 1
LISH 45 20 2 27 90 100 0.98 0.9 1.33 1
SHCH 30 20 3 5 70 40 1 0.96 1.38 1
HERM 30 10 2 4 5 5 1 0 1 5
PULI 100 20 2 63 100 60 0.92 0.59 1.09 1
FENL 80 20 3 4 30 15 0.98 0.62 1.16 1
SIHU 30 10 4 67 100 5 0.98 0 0.98 5
DABA 80 10 3 7 80 100 0.86 0.58 1.04 1
YULI 100 30 1 61 100 25 0.87 0.54 1.02 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 100 30 2 11 50 70 0.66 0.52 0.84 2
RUEY 70 30 2 31 100 30 0.87 0.51 1.01 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 90 20 1 31 100 100 0.81 0.77 1.12 1
FENG 90 10 1 4 5 100 0.93 0.67 1.15 1

Table S1. (Continued)
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(i)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 4 7 90 40 0.97 0.65 1.17 1
KUOL 55 100 1 16 25 100 0.96 0.64 1.15 1
TOCH 70 20 1 7 10 30 0.95 0.61 1.13 1
HUAL 80 20 1 17 100 90 0.88 0.51 1.01 1
ENAN 30 20 4 11 100 100 0.95 0.71 1.18 1
DAHU 100 100 1 5 25 30 0.85 0.52 0.99 2
LISH 80 10 3 13 80 70 0.97 0.73 1.21 1
SHCH 30 20 3 5 100 90 0.93 0.66 1.14 1
HERM 30 10 2 4 5 5 1 0 1 5
PULI 100 20 4 1 25 100 0.66 0.63 0.92 2
FENL 100 10 4 1 100 100 0.87 0.7 1.11 1
SIHU 30 10 3 67 100 5 0.98 0 0.98 5
DABA 55 20 4 6 10 40 1 1 1.41 1
YULI 100 30 4 25 100 25 0.87 0.52 1.01 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 90 30 2 7 25 100 0.6 0.52 0.79 2
RUEY 70 150 3 9 90 30 0.83 0.56 1 2
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 100 100 4 1 5 50 0.71 0.69 0.99 2
FENG 90 10 1 27 90 70 0.94 0.62 1.13 1

(j)
stan Rad Dep Nthr tthr tobs tpred c1 F1 r PsA
SHRL 60 20 4 7 90 40 0.98 0.65 1.17 1
KUOL 55 100 1 14 20 100 0.96 0.6 1.13 1
TOCH 70 20 1 7 10 30 0.95 0.61 1.13 1
HUAL 100 20 2 1 15 70 0.69 0.6 0.92 2
ENAN 30 20 4 11 100 100 0.94 0.68 1.17 1
DAHU 100 100 1 2 5 70 0.65 0.6 0.88 2
LISH 80 10 3 13 80 70 0.96 0.64 1.15 1
SHCH 30 20 3 7 90 25 0.98 0.57 1.13 1
HERM 30 10 2 4 5 5 1 0 1 5
PULI 55 20 3 2 5 50 0.81 0.51 0.96 2
FENL 30 20 3 1 5 80 0.77 0.61 0.98 2
SIHU 30 10 4 67 100 5 0.98 0 0.98 5
DABA 55 20 4 6 10 40 1 1 1.41 1
YULI 40 50 3 5 50 100 0.83 0.63 1.04 1
CHCH 30 10 4 4 5 5 1 0 1 5
LIOQ 100 20 2 7 25 90 0.69 0.59 0.91 2
RUEY 55 150 2 5 50 100 0.73 0.73 1.03 1
KAOH 30 10 3 4 5 5 1 0 1 5
WANL 100 100 4 1 5 50 0.75 0.69 1.02 1
FENG 90 10 1 29 90 70 0.95 0.62 1.14 1

Table S1. (Continued)
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(a)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 60 20 2 9 15 15 50 1 1 1.41 1
KUOL 90 20 2 3 5 10 0 1 1 1.41 1
TOCH 70 300 1 1 5 60 10 0.96 0.99 1.38 1
HUAL 70 20 2 3 60 60 0 0.98 0.99 1.39 1
ENAN 50 20 1 2 5 5 70 0.98 0.59 1.14 1
DAHU 90 20 1 4 10 30 0 1 0.98 1.4 1
LISH 45 20 1 4 5 5 20 0.99 0.67 1.19 1
SHCH 30 20 2 5 30 15 0 1 0.98 1.4 1
HERM 30 10 2 3 5 5 0 1 0 1 5
PULI 100 20 2 21 70 5 0 1 1 1.41 1
FENL 80 20 3 1 20 20 0 1 0.99 1.4 1
SIHU 30 10 4 4 5 5 0 1 0 1 5
DABA 100 20 1 4 5 40 0 1 0.99 1.4 1
YULI 90 50 1 1 5 60 20 0.95 0.99 1.38 1
CHCH 30 10 3 2 5 5 0 1 0 1 5
LIOQ 90 30 1 17 40 30 60 1 1 1.41 1
RUEY 55 30 1 7 30 40 20 1 1 1.41 1
KAOH 30 10 1 3 5 5 0 1 0 1 5
WANL 90 30 1 4 10 60 10 1 1 1.41 1
FENG 90 30 1 3 5 60 30 1 1 1.41 1

(b)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 60 20 2 9 15 15 50 1 1 1.41 1
KUOL 90 20 4 21 80 50 90 0.99 0.98 1.4 1
TOCH 70 300 1 5 60 60 10 0.98 0.99 1.39 1
HUAL 70 20 2 7 90 60 20 0.99 0.99 1.4 1
ENAN 50 20 2 9 40 60 90 0.99 0.99 1.4 1
DAHU 100 20 1 7 50 15 10 1 1 1.41 1
LISH 60 20 1 15 50 20 60 1 1 1.41 1
SHCH 100 20 1 15 80 40 0 0.98 0.98 1.38 1
HERM 30 10 2 3 5 5 0 1 0 1 5
PULI 55 20 2 11 30 5 30 1 1 1.41 1
FENL 80 20 4 1 20 20 0 1 0.99 1.4 1
SIHU 30 10 4 7 10 5 0 1 0 1 5
DABA 100 20 1 4 5 40 0 1 0.97 1.39 1
YULI 100 30 1 7 20 60 30 1 1 1.41 1
CHCH 30 10 3 2 5 5 0 1 0 1 5
LIOQ 90 30 2 9 30 60 70 1 1 1.41 1
RUEY 55 30 2 7 40 60 0 1 1 1.41 1
KAOH 30 10 1 3 5 5 0 1 0 1 5
WANL 90 30 3 4 10 60 10 1 1 1.41 1
FENG 90 30 1 3 5 60 30 1 1 1.41 1

Table S2. Best parameters of the modified GEMSTIP models with different training windows (Tw). 
(a) The training set is from 2015/7/5 to 2015/12/31 (Tw = 180 days), (b) the training set from 2015/4/6 
to 2015/12/31 (Tw = 270 days), (c) the training set from 2014/10/8 to 2015/12/31 (Tw = 450 days), (d) 
the training set from 2014/7/10 to 2015/12/31 (Tw = 540 days), (e) the training set from 2014/4/11 to 
2015/12/31 (Tw = 630 days), (f) the training set from 2014/1/11 to 2015/12/31 (Tw = 720 days), (g) 
the training set from 2013/10/13 to 2015/12/31 (Tw = 810 days), (h) the training set from 2013/7/15 to 
2015/12/31 (Tw = 900 days), (i) the training set from 2013/4/16 to 2015/12/31 (Tw = 990 days), and (j) 
the training set from 2013/1/16 to 2015/12/31 (Tw = 1080 days).
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Table S2. (Continued)
(c)

stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 60 20 4 7 90 40 0 1 0.98 1.39 1
KUOL 70 100 1 19 30 50 30 1 0.97 1.39 1
TOCH 70 20 1 15 80 60 10 0.92 0.81 1.22 1
HUAL 90 20 1 13 90 60 10 1 1 1.41 1
ENAN 80 30 3 11 70 50 80 1 1 1.41 1
DAHU 100 20 2 7 50 15 10 1 1 1.41 1
LISH 60 20 2 19 70 30 60 1 1 1.41 1
SHCH 30 20 2 5 30 15 0 1 0.98 1.4 1
HERM 30 10 1 4 5 5 0 1 0 1 5
PULI 55 20 4 3 40 30 0 1 0.98 1.4 1
FENL 80 20 3 3 30 15 0 1 0.98 1.4 1
SIHU 30 10 4 13 20 5 0 1 0 1 5
DABA 100 20 3 7 20 15 10 1 1 1.41 1
YULI 100 30 2 3 40 60 60 0.99 0.99 1.4 1
CHCH 30 10 3 2 5 5 0 1 0 1 5
LIOQ 90 30 3 7 30 15 70 0.98 0.64 1.17 1
RUEY 55 20 1 19 40 15 10 1 1 1.41 1
KAOH 30 10 2 4 5 5 0 1 0 1 5
WANL 100 30 2 5 30 50 50 0.99 0.98 1.39 1
FENG 90 30 1 9 70 60 20 0.98 0.97 1.38 1

(d)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 80 300 1 2 5 60 70 0.98 0.98 1.38 1
KUOL 70 100 1 49 100 50 50 1 0.98 1.4 1
TOCH 70 20 1 5 50 60 40 0.86 0.78 1.16 1
HUAL 60 40 2 39 60 60 90 1 1 1.41 1
ENAN 50 20 4 13 90 60 90 1 0.99 1.41 1
DAHU 100 20 1 13 100 15 10 0.98 0.75 1.23 1
LISH 60 20 2 19 70 30 60 1 1 1.41 1
SHCH 80 30 2 5 40 50 0 1 0.98 1.4 1
HERM 30 10 1 4 5 5 0 1 0 1 5
PULI 55 20 2 13 30 5 30 1 1 1.41 1
FENL 80 20 2 5 15 50 0 1 0.99 1.4 1
SIHU 30 10 4 53 80 5 0 1 0 1 5
DABA 100 20 1 29 90 10 0 1 0.95 1.38 1
YULI 40 50 3 13 40 30 80 1 0.95 1.38 1
CHCH 30 10 3 3 5 5 0 1 0 1 5
LIOQ 70 20 3 3 5 30 0 1 0.97 1.39 1
RUEY 100 200 3 7 100 50 50 0.93 0.95 1.33 1
KAOH 30 10 3 4 5 5 0 1 0 1 5
WANL 90 30 2 13 100 50 50 0.94 0.85 1.27 1
FENG 90 30 1 11 90 60 0 0.91 0.88 1.27 1
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Table S2. (Continued)
(e)

stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 60 20 2 5 20 50 30 0.98 0.91 1.34 1
KUOL 100 40 1 41 100 60 90 0.96 0.92 1.32 1
TOCH 70 300 1 7 100 60 70 0.9 0.92 1.29 1
HUAL 90 100 1 7 100 60 10 0.86 0.87 1.22 1
ENAN 30 20 1 25 100 60 60 1 0.99 1.41 1
DAHU 100 20 4 6 10 30 10 0.96 0.57 1.12 1
LISH 60 20 2 19 70 30 60 1 1 1.41 1
SHCH 30 20 2 11 90 30 0 0.99 0.93 1.36 1
HERM 30 10 1 4 5 5 0 1 0 1 5
PULI 55 20 2 35 80 50 10 1 0.98 1.4 1
FENL 80 20 3 5 100 15 0 1 0.97 1.39 1
SIHU 30 10 4 61 100 5 0 1 0 1 5
DABA 100 20 4 7 80 30 0 0.97 0.64 1.16 1
YULI 40 50 4 13 50 20 80 0.99 0.84 1.3 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 100 200 1 19 90 50 90 0.92 0.81 1.23 1
RUEY 70 200 3 7 60 30 30 0.9 0.79 1.2 1
KAOH 30 10 3 4 5 5 0 1 0 1 5
WANL 80 20 1 39 70 50 70 1 0.99 1.41 1
FENG 90 100 1 5 30 50 0 0.82 0.79 1.14 1

(f)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 80 300 2 9 90 60 60 0.94 0.89 1.3 1
KUOL 90 20 2 37 100 60 90 0.98 0.84 1.29 1
TOCH 45 100 1 13 100 60 80 0.94 0.88 1.29 1
HUAL 50 100 1 19 80 60 90 0.97 0.79 1.25 1
ENAN 50 20 4 13 90 60 90 1 0.99 1.41 1
DAHU 100 20 4 6 10 50 0 0.95 0.61 1.13 1
LISH 60 20 1 19 40 40 60 1 1 1.41 1
SHCH 30 20 3 3 30 60 20 0.99 0.91 1.34 1
HERM 30 10 3 3 5 5 0 1 0 1 5
PULI 100 20 1 45 70 15 40 0.98 0.73 1.22 1
FENL 80 20 3 3 20 15 0 0.98 0.73 1.23 1
SIHU 30 10 4 67 100 5 0 1 0 1 5
DABA 100 20 4 2 5 60 30 0.81 0.62 1.02 1
YULI 40 50 4 15 50 20 80 0.98 0.63 1.16 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 100 200 2 17 100 40 90 0.9 0.69 1.13 1
RUEY 70 30 2 5 15 30 80 0.92 0.71 1.16 1
KAOH 30 10 3 4 5 5 0 1 0 1 5
WANL 100 100 1 23 100 50 10 0.88 0.87 1.24 1
FENG 90 30 2 5 70 50 30 0.84 0.68 1.08 1
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Table S2. (Continued)
(g)

stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 80 300 1 5 15 60 70 0.88 0.84 1.22 1
KUOL 90 20 2 37 100 60 90 0.98 0.84 1.29 1
TOCH 30 20 1 13 90 60 80 0.94 0.77 1.21 1
HUAL 60 40 1 15 80 60 80 1 0.98 1.4 1
ENAN 50 20 2 15 60 60 90 1 0.99 1.41 1
DAHU 100 20 4 5 10 50 0 0.95 0.61 1.13 1
LISH 60 20 1 19 40 40 60 1 1 1.41 1
SHCH 30 20 3 3 30 60 20 0.99 0.91 1.34 1
HERM 30 10 2 4 5 5 0 1 0 1 5
PULI 100 20 2 47 90 20 30 0.98 0.72 1.21 1
FENL 80 20 3 3 20 15 0 0.98 0.68 1.2 1
SIHU 30 10 4 67 100 5 0 0.98 0 0.98 5
DABA 100 20 2 21 90 10 0 0.97 0.36 1.04 3
YULI 40 50 4 17 50 30 70 0.98 0.64 1.17 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 100 200 2 17 100 30 90 0.91 0.64 1.11 1
RUEY 70 30 1 59 100 20 20 0.93 0.6 1.11 1
KAOH 30 10 3 4 5 5 0 1 0 1 5
WANL 90 30 1 29 100 60 10 0.88 0.83 1.21 1
FENG 90 10 1 4 5 20 40 0.99 0.67 1.19 1

(h)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 55 100 2 57 100 15 30 0.99 0.65 1.19 1
KUOL 90 20 2 37 100 60 90 0.98 0.84 1.29 1
TOCH 30 20 1 13 90 60 90 0.94 0.76 1.21 1
HUAL 60 40 1 17 90 50 80 1 0.97 1.39 1
ENAN 50 20 2 15 60 60 90 1 0.99 1.41 1
DAHU 100 20 4 7 20 30 0 0.97 0.54 1.11 1
LISH 60 20 1 19 40 40 60 1 1 1.41 1
SHCH 30 20 3 5 70 40 0 1 0.96 1.38 1
HERM 30 10 2 4 5 5 0 1 0 1 5
PULI 100 20 2 57 90 15 30 0.98 0.63 1.16 1
FENL 30 10 4 1 5 30 80 0.98 0.63 1.17 1
SIHU 30 10 4 67 100 5 0 0.98 0 0.98 5
DABA 80 10 3 5 40 60 90 0.92 0.53 1.06 1
YULI 100 30 4 3 60 30 90 0.88 0.68 1.11 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 50 10 1 21 70 60 40 0.93 0.54 1.07 1
RUEY 55 30 2 3 10 60 70 0.85 0.75 1.14 1
KAOH 30 10 3 4 5 5 0 1 0 1 5
WANL 60 10 2 17 60 60 90 1 0.98 1.4 1
FENG 90 10 1 4 5 20 40 0.99 0.67 1.19 1
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Table S2. (Continued)
(i)

stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 55 100 2 55 100 15 30 0.99 0.65 1.19 1
KUOL 90 20 2 37 100 60 90 0.97 0.73 1.22 1
TOCH 30 20 1 13 90 60 90 0.94 0.76 1.21 1
HUAL 60 40 1 17 90 50 80 0.98 0.77 1.25 1
ENAN 30 20 1 27 100 60 60 1 0.99 1.41 1
DAHU 100 40 2 7 15 5 0 0.98 0.32 1.03 3
LISH 45 20 2 29 100 20 50 1 0.86 1.31 1
SHCH 30 20 3 5 50 40 0 0.95 0.59 1.12 1
HERM 30 10 2 4 5 5 0 1 0 1 5
PULI 100 20 3 33 100 15 20 0.97 0.55 1.12 1
FENL 30 10 4 1 5 30 80 0.98 0.63 1.17 1
SIHU 30 10 3 67 100 5 0 0.98 0 0.98 5
DABA 55 20 4 6 10 20 10 1 1 1.41 1
YULI 40 50 1 15 60 60 90 0.9 0.6 1.09 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 50 10 4 5 100 60 90 0.99 0.89 1.33 1
RUEY 55 30 2 3 10 60 70 0.87 0.75 1.15 1
KAOH 90 10 1 9 70 60 90 0.92 0.48 1.04 3
WANL 60 10 1 63 100 60 90 0.97 0.71 1.2 1
FENG 80 20 1 27 90 5 90 1 0.59 1.16 1

(j)
stan Rad Dep Nthr tthr tobs tpred tlag c1 F1 r PsA
SHRL 60 20 4 7 90 20 10 0.99 0.63 1.17 1
KUOL 55 100 1 13 20 40 70 0.98 0.64 1.16 1
TOCH 30 20 1 13 90 60 90 0.94 0.76 1.21 1
HUAL 80 100 1 5 100 60 90 0.84 0.7 1.09 1
ENAN 30 20 1 29 100 60 60 1 0.99 1.41 1
DAHU 100 40 2 7 15 5 0 0.97 0.28 1.01 3
LISH 80 10 3 13 80 15 30 0.99 0.65 1.19 1
SHCH 30 20 3 5 60 20 30 0.98 0.65 1.18 1
HERM 30 10 2 4 5 5 0 1 0 1 5
PULI 55 20 3 35 90 5 30 0.99 0.4 1.07 3
FENL 30 10 4 1 5 15 90 0.98 0.45 1.08 3
SIHU 30 10 4 67 100 5 0 0.98 0 0.98 5
DABA 55 20 4 6 10 20 10 1 1 1.41 1
YULI 40 50 1 21 90 60 90 0.92 0.64 1.12 1
CHCH 30 10 4 4 5 5 0 1 0 1 5
LIOQ 50 10 3 11 100 60 90 0.98 0.77 1.25 1
RUEY 55 30 2 3 10 60 70 0.89 0.75 1.16 1
KAOH 90 10 2 9 70 60 90 0.94 0.52 1.07 1
WANL 60 10 2 25 100 60 90 0.95 0.6 1.13 1
FENG 80 20 1 31 100 15 80 0.99 0.62 1.17 1


