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AbstRACt

P-S converted seismic wave exploration plays an important role in detecting complex geologic structures. In this research, 
we derive two new asymptotic conversion point equations for the P-S converted wave reflected from a dipping reflector. The 
first is a quadratic asymptotic conversion point equation of the P-S converted wave reflection from a dipping reflector (DACP 
equation), and the second is a linear asymptotic equation (ADACP equation). DACP and ADACP equations depend on the 
velocity ratio (VP/VS) of the stratum, the offset (X), the depth (Z) of the conversion point, and the dip angle of the stratum. The 
last parameter is the most sensitive of the DACP and ADACP equations in determining the conversion point position. 

The two new equations can predict the conversion point positions on a deep dipping reflector accurately and directly. The 
accuracy of the conversion point position at shallow depth determined by the DACP equation is better than using the ADACP 
equation. For a shallow conversion point, for example Z/X = 0.5, the errors of the conversion point prediction in the horizontal 
distance (CP error) are less than 2% for the DACP equation, but the CP errors are very large for the ADACP equation. If Z/X 
is greater than 3, the CP errors of the ADACP equation are less than 3% and this equation is more computationally efficient 
than the DACP equation.
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1. IntRoDuCtIon

P wave reflection seismology has been successfully 
applied in oil exploration in resent years. Recent applica-
tions, however, have been directed to exploring complex 
structures in small scale reservoirs. Although a P wave can 
be easily and efficiently generated, its resolution may not be 
sufficient to meet present needs. For the same frequency, an 
S wave has a shorter wavelength and provides better ver-
tical resolutions than those of P wave (Geis et al. 1990). 
However, it is difficult to generate an S wave in seismic 
exploration, and an S wave can not propagate deeply due 
to the absorption of the strata. But P-S converted wave ex-
ploration is expected to play an important role in improv-
ing the resolution of the image of a geologic structure by 
the recent progress in seismic recording system and seismic 
data processing. Therefore in some circumstances, a P-S 

converted wave has a higher image resolution than a P wave 
(Tatham and Goolsbee 1984; Frasier and Winterstein 1990). 
The large velocity contrast between salt and sediment can 
generate a strong P-S converted wave that can be used to 
delineate the salt base more accurately than an ordinary P 
wave survey (Lu et al. 2003). For shallow structures, a P-S 
converted wave image has a higher resolution than a P wave 
image (Garotta et al. 2003). 

The conversion point (CP) of a P-S converted wave 
on a horizontal interface is not at the midpoint of the offset 
between the source and the receiver, see Fig. 1. This causes 
some difficulties for the common depth point (CDP) binning. 
Tessmer and Behle (1988) derived two equations to delin-
eate the trajectories of the CP with depth from an isotropic 
horizontal layer: the conversion point equation (CP equa-
tion) and the asymptotic conversion point equation (ACP 
equation). The former equation can predict the CP position 
exactly, and the latter can only approximate the deep CP  
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position. The trajectory of the CP position with depth is hy-
perbolic and flattens out to a straight line when the horizon-
tal layer becomes deep (Thomsen 1999). By using the CP 
and ACP equations, the common conversion point (CCP) 
binning can be easily implemented in the P-S converted 
wave seismic data processing. Chang and Tang (2005) ex-
tended the CP equation and derived a new quartic equation 
(DCP equation) for the P-S converted wave reflected from 
a dipping reflector. This equation can accurately predict the 
conversion point of the P-S converted wave reflected from 
a dipping reflector. An analytic solution of the CP equation 
on a dipping reflector was proposed by Yuan et al. (2006). 
The CP equation for the refracted P-S converted wave from 
a dipping reflector was derived by Tang et al. (2007).

A converted wave’s DMO (dip move-out) equation 
can calculate the travel time of a P-S converted wave re-
flected from an isotropic stratum with a dipping reflector 
(Ikelle and Amundsen 2005). However, it can not determine 
the CP position on a dipping reflector. Using a converted 
wave’s DMO correction in the CCP binning will result in 
an incorrect CP position on the dipping reflector. Therefore, 
using the DCP equation in the CCP binning can avoid this 
problem because the DCP equation can determine the cor-
rect CP position on the dipping reflector.

At present, the DCP equation, a quartic equation, is 
time-consuming for computation. The analytic solution of 
the CP equation on a dipping reflector proposed by Yuan et 
al. (2006) is complicated and computationally extensive for 
CCP binning. In this research, we will derive new asymp-
totic equations of the DCP equation for the deep reflected 
P-S converted wave. These equations will be more compu-
tationally efficient and direct in resolving the CP position 
for the P-S converted wave reflected from a deep dipping 
reflector.

2. AsymPtotIC ConvERsIon PoInt EquA-
tIons

In a uniform horizontal isotropic stratum, if the P wave 
is generated at the source (S) and propagates downward to 
the bottom of the stratum, shown as Fig. 1, it reflects at the 
interface and converts to an upward S wave and will propa-
gate to the receiver (G). The reflection point is the CP. The 
ACP equation is (Tessmer and Behle 1988)

X 11 c
c= + Xc m          (1)

where c  is the velocity ratio of P and S waves (VP/VS) of the 
stratum, X is the offset between the source and the receiver, 
and X1 is the surface distance between the source and the 
CP.

The ray path of the P-S converted wave reflected from 
a dipping reflector with a dip angle of θ is shown in Fig. 2. 

The incident angle of P wave is θP, and the reflected angle 
of S wave is θS. The dashed line (GM ) is parallel to the 
dipping interface and passes through the receiver point. It 
intersects the P wave’s ray path at M. The location of the 
point O on GM  is determined by drawing a line that is per-
pendicular to GM  and passes through CP. The lengths of 
OM , OG , and OCP  are X11, X22, and Z1, respectively. Z 
is the depth of CP. X2 is the surface distance between the 
receiver and CP, and X = X1 + X2.

If a source is located at M, Eq. (1) can be re-written as

X X X111 11 22c
c= + +c ^m h        (2)

Grouping X11 to the left and dividing the entire equation by 
Z1 yields

Z
X

Z
X

1

11

1

22c=          (3)

Fig. 2. Ray path of a P-S converted wave reflected from a dipping 
layer. θ is the dip angle of the dipping reflector.

Fig. 1. Ray path of a P-S converted wave reflected from a horizon-
tal layer. S is the source, G is the receiver, and Z is the thickness of 
the layer. CP is the conversion point, and X is the offset between the 
source and receiver. X1 and X2 are the surface distances from CP to the 
source and the receiver, respectively. 
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In terms of trigonometry, Eq. (3) can be re-written as

tan tanP Si c i=          (4)

According to the sum and difference formulas of the trigo-
nometric functions, 
 

sin cos sin cossin
Z X

X
P P P 2

1
2

1i i i i i i+ + =
+

=^ h

and 

cos cos sin sincos
Z X

Z
P P P 2

1
2i i i i i i+ = - =

+
^ h      (5)

Let sinK1 i=  and cosK2 i= , and sin cosK K1
2

2
2 2 2i i+ = +

1= , then Eq. (5) can be re-written as

sin cossin K K
Z X

X
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1
2
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^ h  

and 

cos cos sinK K
Z X
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+
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Solving Eq. (6) yields
 

sin
Z X

K X K Z
P 2

1
2

2 1 1i =
+
-  and cos

Z X
K X K Z

P 2
1
2

1 1 2i =
+
+      (7)

Therefore,

tan K X K Z
K X K Z

P
1 1 2

2 1 1i = +
-         (8)

Likewise, we can obtain

tan K Z K X
K X K Z

S
2 1 2

2 2 1i = -
+         (9)

Substitute Eqs. (8) and (9) into Eq. (4), then 

K X K Z
K X K Z

K Z K X
K X K Z

1 1 2

2 1 1

2 1 2

2 2 1c+
- = -

+      (10)

Equation (10) is the asymptotic conversion point 
equation of the P-S converted wave on a dipping reflector 
(DACP equation), which is a quadratic equation of X1. Re-

placing X2 by X - X1, the analytic solution (X1) of Eq. (10) is 
(see Appendix A)

X X K K
K K Z2
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1

1 2

1
2

2
2

= + -c m;
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2

c
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Since VP > VS, then 0 1
1 1< <

c
c

+
-d n . If Z >> X, the terms  

in the square root of Eq. (11), K K
Z

K K
Z X2
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Then, Eq. (11) can be reduced to (see Appendix B)

X 11 c
c= + X Z+ tanic m       (13)

Equation (13) is the asymptotic equation of the DACP 
equation (ADACP equation), which is a linear equation of 
X. When the dipping reflector becomes horizontal (θ = 0°), 
the ADACP equation is equal to the ACP equation.

If a stratum’s velocity ratio (c) and dip angle (θ) are 
2.0 and 20°, respectively, the offset (X) between the source 
and the receiver is 0.1 km. The true positions of the CP posi-
tion of the P-S converted wave along the dipping reflector 
is shown as the solid curve in Fig. 3 which is calculated 
by the quartic DCP equation (Chang and Tang 2005). The 
trajectory of the CP position becomes an oblique straight 
line at the deep depth. The hyperbolic dashed line calculated 
by the quadratic DACP equation is the asymptotic line of 
the CP. The straight long-short dashed line is the linear ap-
proximation of the CP, which is obtained from the ADACP 
equation. At the deep depth, the dash and long-short dash 
lines are close to the solid line, implying that the DCP equa-
tion can be approximated by the DACP and ADACP equa-
tions. However at a shallow depth, the ADACP equation has 
larger error than the DACP equation. 

The DACP and ADACP equations are derived from the 
ACP equation, so they have the same assumption. When the 
depth of the horizontal (or dipping) reflector is greater than 
the offset (Depth >> Offset), the ACP, DACP, and ADACP 
equations can predict the conversion point accurately.
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3. DIsCussIon

The ACP equation is a function of the velocity ratio 
(VP/VS) of the stratum and the offset (source-receiver). The 
DACP and ADACP equations are derived from the ACP 
equation. Therefore, these two new equations depend not 
only on VP/VS and offset, but also on the dip angle and depth 
of the stratum. For a dipping stratum with dip angle of 30°, 
the errors of the conversion points in the horizontal distance 
(CP errors = CP CP CPexact solution DACP or ADACP exact solution-- - - - ) of the 
DACP and ADACP equations with different c  (VP/VS) are 
shown in Fig. 4. The CP errors of the DACP and ADACP 
equations go to zero when the depth-offset ratio (Z/X) is 
large, but they become large if Z/X is small. The CP error 
of the DACP equation seems to be insensitive to c . But for 
the ADACP equation, greater c  has smaller CP error. The 
CP errors of the ADACP equation for any c  are always 
greater than those of the DACP equation. Thus, the DACP 
and ADACP equations can predict the CP position very well 
at the deep depth. The CP errors of the DACP equation are 
smaller than those of the ADACP equation, especially at a 
shallow depth.

We are also interested in knowing how the dip angle of 
the reflector affects the CP error of the DACP and ADACP 
equations. For a dipping stratum with c  = 2.0, the CP errors 
of the DACP and ADACP equations with different θ are 
shown in Fig. 5. This result is similar to that in Fig. 4. The 
CP errors of the DACP and ADACP equations approach to 
zero when Z/X is large, but they become large as Z/X is small. 
Except that, when θ is very large (for example θ = 80°), the 
DACP equation can calculate the CP position very precisely 
for any Z/X values. The greater θ has smaller CP error for 
the two equations. The CP errors of the ADACP equation 
for any θ are always greater than those of the DACP equa-
tion. In addition, both the DACP and ADACP equations are 
more sensitive to θ than to c  in terms of the CP errors.

The CP errors of the DACP and ADACP equations will 
reduce to zero when Z/X is large despite the values of θ and 
c . In addition, when Z/X = 0.5 and θ > 30°, the CP errors 
of the DACP equation are less than 2%, but the CP errors of 
the ADACP equation are approximately 18%. Nevertheless, 
the CP errors of the ADACP equation will be less than 3% if 
the Z/X is greater than 3. Therefore, for doing the CCP bin-
ning of the “deep” reflected converted wave, it is more time-
saving if the linear ADACP equation is used. The DACP 
equation can be used for the “shallow” seismic data because 
the CP errors of the DACP equation are less than 2% if the 
Z/X is greater than 0.5 and the θ is greater than 10°.

Yuan et al. (2006) proposed the analytic solution of the 
converted wave reflected from a dipping reflector which is 
an exact solution of the DCP equation. But too many vari-
ables are needed in their equation. Although the DACP and 
ADACP equations are asymptotic equations and there are 
some errors in the conversion point position estimation at a 

shallow depth, when comparing the other errors which result 
from the trace binning for the P-S converted wave seismic 
data processing, those particular errors are quite small.

4. ConClusIon

We have derived the DACP and ADACP equations 

Fig. 3. The trajectories of the CP with depth for the DCP, DACP, and 
ADACP equations.

Fig. 4. The relationships of the errors of the conversion point in the 
horizontal distance (CP error) vs. the depth-offset ratio (Z/X) for 
DACP and ADACP equations with three velocity ratios (c  = 1.5, 3.0, 
and 4.5). The dip angle (θ) of the dipping reflector is 30°.
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from the ACP equation for the P-S converted wave reflected 
from a dipping reflector. The DACP equation is a quadratic 
equation and the ADACP is a linear equation. Therefore, in 
estimating the CP position of P-S converted wave using the 
DACP and ADACP equations is faster than using the DCP 
equation which is useful for the CCP binning and move-out 
correction of the P-S converted wave reflected from a dip-
ping reflector. These new equations depend on the velocity 
ratio of the stratum, the offset between the source and re-
ceiver, the dip angle and depth of the dipping reflector. The 
dip angle is the dominant factor of the DACP and ADACP 
equations in determining the CP position. Therefore, the 
success of using the DACP and ADACP equations in the 
P-S converted wave data processing relies heavily on the 
accuracy of determining the dip angle of the stratum.
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APPEnDIx A

Equation (10) is
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Replacing X2 by X - X1, Eq. (A-1) can be re-written as
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K Z K X X
K X X K Z
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2 1 1
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^

^
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Expanding Eq. (A-2) gets

Fig. 5. The relationships of the errors of the conversion point in the 
horizontal distance (CP error) vs. the depth-offset ratio (Z/X) for 
DACP and ADACP equations with three dip angles (θ = 10°, 50°, and 
80°). The velocity ratio (c ) of the stratum is 2.
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Arranging Eq. (A-3),
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Dividing Eq. (A-4) by K K1 1 2c+^ h  then yields
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Let
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Then,
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For the P-S converted wave,
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Since sinK1 i=  and cosK2 i= , Eq. (A-9) can be re-written 

as
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Therefore, the solution of the Eq. (A-5) is
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Equation (A-11) is the solution of the DACP equation.

APPEnDIx b

Since VP > VS, then 0 1
1 1< <

c
c

+
-d n . If Z >> X, the terms  

in the square root of Eq. (11), K K
Z

K K
Z X2

1
1

1 2

2

1 2 c
c+ +

-a dk n  

X2+ , can be approximated as K K
Z

K K
Z X2

1
1

1 2

2

1 2 c
c+ +

-a dk n  

X1
1 2

2

c
c+ +

-d n  which is exactly the expansion of K K
Z
1 2

+:
X1

1 2

c
c

+
-d n F . Then,

X X K K
K K Z K K

Z X2
1

1
1

1
1 2

1
2

2
2

1 2

2

c
c= + - + + +

-c dm n< F) 3 (B-1)

X K K
K K Z K K

Z X2
1

1
1

1 2

1
2

2
2

1 2 c
c= + - + + +

-c dm n< F  (B-2)

X K K
K K Z2

1
1

2 1
1 2

1
2

2
2

c
c= + + - +d n   (B-3)

Since sinK1 i=  and cosK2 i= , Eq. (B-3) can be re-written 
as
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