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ABSTRACT

In engineering applications, the development of attenuation relationships in a seismic hazard analysis is a useful way 
to plan for earthquake hazard mitigation. However, finding an optimal solution is difficult using traditional mathematical 
methods because of the nonlinearity of many relationships. Furthermore, using unweighted regression analysis in which each 
recording carries an equal weight is often problematic because of the non-uniform distribution of the data with respect to dis-
tance. In this study, the least squares method (LSM) and a genetic algorithm (GA) were employed as optimization methods 
for an attenuation model to compare the robustness and prediction accuracy of the two methods. Different (equal and unequal) 
weights of each recording were used to compare the adaptability of the weighting for practical application. The unequal 
weights of each recording were defined as functions of the hypocentral distance or the shortest distance from a station to the 
fault on the earth’s surface. Finally, regression analysis of horizontal peak ground acceleration (PGA) attenuation model in 
southwest Taiwan was shown.
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1. INTRODUCTION

The development of an attenuation relationship is very 
important in seismic hazard analysis for earthquake hazard 
mitigation. There are several well-defined empirical attenu-
ation models that relate given ground-motion parameters 
(e.g., peak ground acceleration, PGA) to several seismolog-
ical parameters of an earthquake, such as earthquake magni-
tude, source-to-site distance, style of faulting, and local site 
conditions (Campbell 1981; Campbell 1991; Abrahamson 
and Silva 1997; Sadigh et al. 1997).

Empirical equations for predicting strong ground mo-
tion are typically fit into a strong-motion data set by least 
square methods (LSM)(Campbell 1981; Campbell 1991). 
Campbell (1981) used weighted least squares in an attempt 
to compensate for the non-uniform distribution of data with 
respect to distance. Campbell (1991) also analyzed peak 
horizontal accelerations recorded during the 18 October 
1989 Loma Prieta, California earthquake to determine their 

dependence on distance, azimuth, and generalized site con-
ditions. The coefficients in peak ground motion attenuation 
law were estimated from a nonlinear least squares regres-
sion algorithm. The LSM is fast in execution if the initial 
guess of the solution is adequate. However, a LSM has some 
drawbacks, including that the initial guess of the solution is 
difficult to determine; the solution may be an optimal local 
solution and a gradient of objective function should be exist 
(Draper and Smith 1966).

A GA (Genetic Algorithm) is a robust search technique 
based on the principles of evolution (Goldberg 1989). Ex-
tensive research has been performed exploiting the proper-
ties of genetic algorithms and demonstrating their capabili-
ties across a broad range of problems. These evolutionary 
methods have gained recognition as general problem solv-
ing techniques in many applications, including image pro-
cessing, neural networks, etc. Unlike traditional regression 
analysis methods, a GA searches for a global optimal solu-
tion and does not need to calculate the gradient of the objec-
tive function and thereby makes GA a highly promising tool 
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for regression analysis. Although a GA has many positive 
features, it is slow in execution and is best applied to dif-
ficult problems. 

The feasibility of applying a GA to estimate coeffi-
cients in peak ground motion attenuation law also has re-
ceived attention. Tavakoli and Pezeshk (2005) predicted the 
ground-motion relationship for eastern North America from 
the ground-motion relationship for western North America 
based on a hybrid-empirical model. In their study, a com-
posite functional attenuation form was defined, and, in turn, 
an optimization was performed by using a genetic algorithm 
for a wide range of magnitudes and distances. Scherbaum et  
al. (2006) developed a systematic way of estimating min-
imum-misfit stochastic models from empirical ground-
motion prediction equations. In that study, a genetic algo-
rithm search was used to determine the model parameters. 
Although both LSM and GA have been applied to estimate 
coefficients in peak ground motion attenuation law, there 
are no studies comparing the two methods in this field.

Most studies (e.g., Jean et al. 2006) that developed peak 
ground motion attenuation law in Taiwan used the ground 
motion data for the entire area of Taiwan. Peak ground mo-
tion attenuation is very complicated because it is affected by 
many factors, such as the characteristics of seismic source, 
attenuation of seismic waves from the seismic source to a 
recording site, and soil characteristics at the recording site. 
Therefore, we believe that a feasible way to enhance the 
accuracy of predicted peak ground motion attenuation in 
Taiwan is to separate the Taiwan into several smaller areas, 
and then develop peak ground motion attenuation law for 
each area.

In this study, the robustness and predicted accuracy of 
the LSM and the GA were compared. In addition, different 
(equal and unequal) weights of each recording were used 
to compare the adaptability of the weights for practical ap-
plication. The regression methods used in this study include 
the least squares method (LSM) and a genetic algorithm 
(GA).

2. DATA AND OPTIMIZATION OF THE ATTENUA-
TION MODEL 

2.1 Data

The Taiwan strong-motion seismic network consists 
of about 700 free-field strong-motion stations. Each station 
includes triaxial accelerometers, a digital recorder, a power 
supply, and a GPS timing system. Most of the digital ac-
celerometers used in these stations are ±2 g full scale, 200 
or higher samples per second, and 16-bit or better resolution 
with up to 20-second pre-event recording (Liu et al. 1999). 
The strong-motion stations are spaced approximately 5 km 
apart in nine metropolitan regions. The Taiwan strong-mo-
tion seismic network has collected a large amount of high 
quality strong-motion data and provided much useful infor-

mation for seismology and earthquake engineering. These 
ground motion data offer a good opportunity to study at-
tenuation models. Earthquake data collected from Taiwan 
strong-motion seismic network were used in this study to 
develop the empirical horizontal PGA attenuation model. 
This study focused on analyzing strong-motion recordings 
collected at sites with soil conditions of classes C and D in 
the southwest region (Lee et al. 2001). Because of the near-
source data recorded within a distance of 10 km can be cru-
cial in regression of PGA attenuation, some extra stations 
in central and eastern Taiwan (shown as green triangles in  
Fig. 1) were used to provide additional observations. How-
ever, the stations underlain by unconsolidated soft soil 
(class E) were excluded to avoid unpredictable changes in 
amplitude due to significant site effects. 

The database consisted of 5323 recordings collected 
from 208 earthquake events of local magnitude 4.5 ≤ ML ≤ 
7.3 and hypocentral distance or shortest distance from a sta-
tion to the fault on earth surface Rh ≤ 300 km from 1993 to 
2006. Figure 1 shows the free-field strong-motion stations 
and the epicenter of earthquakes used in this study. Figure 2  
shows the distribution of recordings with respect to magni-
tude and distance.

2.2 Optimization of the Attenuation Model 
2.2.1 Attenuation Model

Since Campbell’s attenuation form (Campbell 1981) 
can reasonably predict the characteristic of ground motion 
attenuation from the Taiwan strong seismic network (Jean 
et al. 2006), the same approach was applied in this study. 
Campbell’s form is expressed as follows

Y g b e R b eb M
h

b M b
1 4

L L2 5 3= + -^ ^h h        (1)

The parameter Y is the geometric average of two horizontal 
PGA, which is abbreviated as horizontal PGA below, ML is 
local magnitude (Richter’s magnitude). Since both the PGA 
and ML are controlled by short period seismic waves, ML is 
better than MW (Moment magnitude), which is controlled by 
the amount of fault displacement, for estimating attenuation 
of PGA. Rh is defined by the distance from the energy source 
to the recording site. In this study, hypocentral distance was 
used as Rh for earthquakes were source dimension, relative 
to source-site distance, was small and the shortest distance 
from a station to the long fault on earth surface was adopted 
to approximate Rh (for the Chi-Chi earthquake)(Jean et al. 
2006).

2.2.2 LSM

The general form of nonlinear regression models can 
be written as
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,y f x ei= +^ h          (2)

where the vector of dependent variables y = [y1  y2  ...  yn]T;  
the vector of independent variables x = [x1  x2  ...  xn]T; the 
vector of parameters to be estimated i  = [θ1  θ2  ...  θp]T; the 
vector of errors e = [e1  e2  ...  en]T; f = [f1  f2  ...  fn]T where 
fi (i = 1, 2, ..., n) is a nonlinear function. In a least squares 

method, by minimizing S in Eq. (2) the parameters of a non-
linear regression model can be estimated:

T, ,y f x y f xS 2
1 i i= - -^ ^h h6 6@ @       (3)

In contrast with linear models, analytical solution methods 
are not sufficient in solving for parameters in nonlinear 

Fig. 1. The free-field strong-motion stations and the epicenter of earthquakes used in this study.

Fig. 2. The distribution of strong-motion recordings with respect to magnitude and distance.
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models, and therefore, iterative numerical search methods, 
such as the linearization method, steepest descent method, 
and the Levenberg-Marguardt method, are often used to 
solve this problem by taking derivative of S in Eq. (3) with 
respect to θi (Draper and Smith 1966).

2.2.3 GA

Recently, computational intelligence methods have 
been applied to a broad range of problems. Computational  
intelligence methods, such as neural networks and GA, 
are highly adaptive methods originating from the laws of 
nature and biology. Unlike mathematical methods, one of 
the important characteristics of computational intelligence 
methods is their effectiveness and robustness in coping with 
uncertainty, insufficient information, and noise.

The method of string representation in the GA used 
this study, is shown in Fig. 3. In this method of string rep-
resentation, the value of each parameter is represented by a 
sub-string of k-bit binary integers. In a simple GA, a string 
is composed of sequentially connecting all the sub-strings. 
Figure 4 shows the typical string representations in a simple 
GA using binary bits (each parameter is encoded in an 8-bit 
binary string in Fig. 4). The binary bits for the parameters 
are sequentially concatenated in a simple GA.

To generate the fitter string, a GA reproduces the pop-
ulation according to their relative fitness; the strings with 
higher fitness have a better chance of passing their genes 
to the next generation. The proportional method is used to 
select the members of the next generation. A pair of parents 
is selected by the roulette wheel method. The slots on the 
perimeter of the roulette wheel are assigned to the individu-
als in proportion to their relative fitness functions. After 
reproduction a one-point crossover, with the probability of 
pc, is performed to evolve new offspring. In addition, to in-
hibit premature convergence during reproduction and cross-
over, mutation, with the probability of pm, is implemented to 
maintain the genetic variability of the string.

Figure 5 shows the essential elements of a simple GA, 
which starts with a randomly generated population of in-

dividual possible solutions scattered over a pre-determined 
search space (the region in which the best answer is thought 
to lie). The relative fitness of these individuals is determined 
and a stochastic selection process biased towards the fitter 
individuals is used to select parents for mating. In mating, 
attributes of the parents are mixed to form offspring which 
may or may not be fitter than one or both of the parents. In 
forming offspring, occasional random mutations can occur 
and also have the possibility of leading to a fitter individual. 
The process of selection, mating and mutation is repeated 
over a number of generations to allow the solution to evolve 
towards an optimum.

3. RESULTS AND DISCUSSION

Six objective functions were used in this paper and 
were defined as follows: 

2Y Y P, ,m p e p
p

P

1
-

=
^ h/          (4)

Fig. 3. String representation in simple GA.

Fig. 4. Example of string representation scheme in simple GA. Fig. 5. Elements of simple GA.
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where Ym, p and Ye, p are the measured and estimated PGA 
of the pth instance, respectively. P is the total number of 
occurrences, and Rh, p is the hypocentral distance of the pth 
instance. The first three objective functions [as shown in 
Eqs. (4) to (6)] are defined in terms of the output error, 
which is a function of the difference between the measured 
and estimated PGA. The last three objective functions [as 
shown in Eqs. (7) to (9)] are defined in terms of the output 
error, which is a function of the difference between the mea-
sured and estimated natural logarithm of PGA. The weight 
of each recording in Eqs. (4) and (7) is 1. It is obvious that 
the strong motion data at short distances are more important 
than those collected at longer distances in earthquake haz-
ard assessment. Moreover, the farther seismic waves trav-
els, greater wave scattering would be expected. The PGA 
measurements of long distance would be more dispersed 

than those of short distance. Hence, the unequal weights of 
each recording can be defined as functions of hypocentral 
distance or the shortest distance from a station to the fault 
on the earth’s surface. Thus, the weight of each recording in 
Eqs. (5) and (8) is defined as R1 ,h p  and Eqs. (6) and (9) 
is R1 ,h p . Therefore, the regression method with functions 
defined in Eqs. (5), (6), (8), and (9) seem to be more suitable 
for practical application.

3.1 Comparison of the Robustness and Accuracy of the 
LSM and the GA

First, to compare the robustness and accuracy of the 
LSM and the GA, the LSM and the GA with the first three 
objective functions were used for optimization. The LSM 
with an objective function defined in Eqs. (4), (5), and (6) 
were denoted as LSM1, LSM2, and LSM3, respectively. 
The methods of the GA with objective function defined as 
Eqs. (4), (5), and (6) were denoted as GA1, GA2, and GA3, 
respectively. The optimization of the GA maximizes the fit-
ness function. However, the optimization of GA1, GA2, and 
GA3 minimize the objective functions defined as Eqs. (4), 
(5), and (6), respectively. Therefore, the fitness functions 
of GA1, GA2, and GA3 can be defined as a constant (25 
was used in this study) minus objective functions defined 
as Eqs. (4), (5), and (6), respectively. The number of itera-
tion was set to be 5000 and the crossover probability (pc) 
and mutation probability (pm) were set to be 0.8 and 0.05, 
respectively for all of GA1, GA2, and GA3. 

The predicted coefficients in Campbell’s form are 
listed in Table 1. It is worthwhile to note that these coef-
ficients predicted by the LSM are largely influenced by 
the initial guess. The coefficients predicted by LSM1 were 

Method
Regression coefficients

ln errv ^ h
Value of  

objective functionb1 b2 b3 b4 b5

LSM1 0.0397 3.3146 4.0560 0.7320 0.7867 0.8285 3.2932

LSM2 / / / / / / /

LSM3 / / / / / / /

GA1 0.1000 3.4770 0.9871 0.7577 4.3725 0.8370 3.2954

GA2 0.0929 2.4235 1.0945 0.6698 3.2544 0.7509 1.0657

GA3 0.0687 1.0359 1.0958 0.4513 1.6485 0.7076 0.6149

GA4 0.0095 1.2143 1.5632 0.6575 0.5282 0.7459 /

GA5 0.0127 1.1678 1.4948 0.7705 0.4697 0.6370 /

GA6 0.0188 1.2019 1.6211 0.9482 0.4745 0.6441 /

Table 1. The predicted coefficients, the standard deviation of the natural logarithm of the horizontal PGA, ln errv ^ h , and the value of objective function 
for Campbell’s form.

Note: “ / ”: no data available.
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easily found after a few trials for initial guesses. However, 
these coefficients were not found by LSM2 and LSM3 after 
245 trials of initial guesses, which explains the difficulty 
of initial guess determination of the LSM. Among the 245 
initial guesses for LSM2, one is the initial guess in LSM1 
optimization, another is one of the initial guesses in GA2 
optimization, and the rest includes b1 is increased from 0.09 
to 0.1 every 0.005, b2 from 2.4 to 2.5 every 0.05, b3 from 
1.0 to 1.1 every 0.05, b4 from 0.6 to 0.7 every 0.05, and b5 
from 3.2 to 3.3 every 0.05. Among the 245 initial guesses 
for LSM3, one is the initial guess in LSM1 optimization, 
another is one of the initial guesses in GA3 optimization, 
and the rest includes b1 is increased from 0.06 to 0.07 every 
0.005, b2 from 1.0 to 1.1 every 0.05, b3 from 1.0 to 1.1 every 
0.05, b4 from 0.4 to 0.5 every 0.05, and b5 from 1.6 to 1.7 ev-
ery 0.05. Compared with the LSM, these coefficients were 
much more easily found by the GA. These coefficients were 
found by GA1, GA2, and GA3 using any initial guess which 
reveals that the GA was a much more robust optimization 
method compared with the LSM. 

Table 1 lists the standard deviation of the natural loga-
rithm of the peak ground acceleration, representing the dis-
persion about their respective median value, and objective 
function values of these methods. The standard deviation of 
the natural logarithm of the peak ground acceleration, ln errv ^ h ,  
is defined as follows 

2ln lnY Y P n, ,ln err m p e p c
p

P

1
v = - -

=
^ ^^ h hh /     (10)

where nc is the number of coefficients to be estimated in 
attenuation model, that is nc = 5. Our results show that the 
standard deviation of the natural logarithm of PGA and 
the objective function value of LSM1 and GA1 are about 
the same. A smaller value of objective function implies a 
more accurate prediction. Although predicted accuracies of  
LSM1 were better than those of GA1, the predicted accuracy 
of a GA method may increase with the increasing number of 
iterations. The standard deviations of the natural logarithm 
of PGA, from the smallest value to the largest value, are 
those of GA3, GA2, LSM1, and GA1, respectively. This 
shows that the GA has a better chance to arrive at a more 
accurate prediction compared with the LSM. Furthermore, 
weighting the objective function with the factors defined 
as the reciprocals of square root of source-site distance  
( R1 ,h p ) or source-site distance ( R1 ,h p ) makes the GA 
regression procedure easier to reach an optimum solution.

3.2 Estimation of the Optimum Solution Using the GA

Second, to find the optimum solution that minimizes 
the standard deviation of the natural logarithm of PGA, 
three different objective functions, defined in Eqs. (7), (8), 

and (9), were used for optimization. Remarkably, the objec-
tive function of a LSM can not be defined using Eqs. (7) to 
(9). Methods of the GA with objective functions defined in 
Eqs. (7), (8), and (9) were denoted as GA4, GA5, and GA6, 
respectively. The predicted coefficients using Campbell’s 
form and the standard deviation of the natural logarithm of 
PGA are listed in Table 1. The standard deviation of the 
natural logarithm of the PGA of GA4 is smaller than that 
of GA1, GA5 is smaller than GA2, and GA6 is smaller than 
GA3 as well. Our results show that the GA with objective 
functions defined in Eqs. (7) to (9) are much more adequate 
than those with objective functions defined in Eqs. (4) to 
(6) for optimization that minimizes standard deviation of 
the natural logarithm of PGA. The standard deviation of 
the natural logarithm of PGA of GA5 was about the same 
as that of GA6 but smaller than that of GA4. Therefore, 
GA5 and GA6 would be better than GA4 to estimate the 
optimum solution of the coefficients in Campbell’s form for 
current earthquake data (nonuniform distribution of the data 
with respect to distance). Generally speaking, near-source 
(Rh ≤ 50 km) damage is more serious than far-source (Rh >  
50 km) damage during large earthquakes; therefore, the 
optimum solution that minimizes the standard deviation of 
near-source data should be ideal for practical application. 
Table 2 lists the standard deviation of the natural logarithm 
of near-source and far-source PGA data of GA4, GA5, and 
GA6. The results show that the standard deviation of the 
natural logarithm of near-source PGA data of GA5 and GA6 
were almost the same and both of them are smaller than that 
of GA4. 

The results of far-source data present the same situ-
ation. However, the results (Tables 1 and 2) indicate that 
GA5 is better than GA6. That is, GA5 is more suitable for 
practical application than GA4 and GA6. The weighting 
factor as the reciprocal of square root of source-to-site dis-
tance allows more freedom for long distance data fitting. 
Figure 6 shows the comparison of the earthquake data with 
the attenuation model predicted by GA4, GA5, and GA6. 

To apply the constrained PGA attenuation model by 
Campbell (1981), two constraints were made. The first con-
straint was that the far-source attenuation rate b3 of Eq. (1) 

Table 2. Near-source and far-source standard deviation of the natural 
logarithm of the horizontal PGA, ln errv ^ h , of GA4, GA5, and GA6 for 
Campbell’s form.

Method
ln errv ^ h

Rh ≤ 50 km Rh > 50 km

GA4 0.7717 0.7272

GA5 0.7140 0.5752

GA6 0.7141 0.5886

874



A Comparative Study of Peak Ground Acceleration Attenuation 875

was constrained to a value of 1.75 in order for the model 
results to be consistent with far-source data and give a more 
realistic value at larger distances. The second constraint was 
a near-source constraint involving distances nearer than 3 
to 5 km from fault, where strong-motion data are extremely 
limited. Many seismologists and geophysicists currently be-
lieve that at or very near the rupture surface peak accelera-
tion become essentially independent of earthquake magni-
tude (Brune 1970; Trifunac 1973; Ambraseys 1978; Hanks 
1979; Hadley and Helmberger 1980; McGarr et al. 1981). 
Based on this argument, the coefficient b5 of Eq. (1) was 
constrained to be b2 /1.75. Campbell’s constrained form can 
be expressed as follows:

Y g b e R b e . .b M
h

b M
1 4

1 75 1 75L L2 2= + -^ ^h h      (11)

Fig. 6. Comparison of the horizontal PGA with the attenuation form predicted by (a) GA4, (b) GA5, and (c) GA6.

The predicted coefficients and the standard deviation of the 
natural logarithm of PGA of GA4, GA5, and GA6 using 
Campbell’s constrained form are listed in Table 3. The re-
sults show that the three standard deviations of the natu-
ral logarithm are about equal. Compared with the results in 
Table 1, the standard deviation of the natural logarithm of 
the PGA of GA4 for the constrained form was smaller than 
that for an unconstrained form. The standard deviations of 
the natural logarithm of the PGA of GA5 and GA6 for the 
constrained form were slightly larger than those for uncon-
strained model. Table 4 lists near-source and far-source 
standard deviation of the natural logarithm of the horizontal 
PGA of GA4, GA5, and GA6 for the constrained form. These 
results also show that the standard deviations of the natural 
logarithm of near-source PGA data of GA5 and GA6 were 
almost the same and both were smaller than those of GA4 

(a) (b)

(c)
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using the constrained form. Compared to the results listed 
in Table 2 (Campbell’s unconstrained form) reveal that all 
near-source standard deviations of the natural logarithm of 
the PGA of GA4, GA5, and GA6 for the constrained form 
were smaller than those for unconstrained form. 

In fact, the differences in near-source standard devia-
tions of the natural logarithm of the PGA of GA5 and GA6 
for unconstrained and constrained forms are small. The far-
source standard deviations of the natural logarithm of the 
PGA of GA5 and GA6 using the unconstrained form were 
smaller than those of constrained form. Figure 7 shows the 
comparison of the unconstrained and constrained forms pre-
dicted by GA4, GA5, and GA6 for earthquakes with mag-
nitudes of 5, 6, and 7. At near distances, the peak accelera-
tion is independent of earthquake magnitude for constrained 
form compared with the unconstrained form. Interestingly, 
Fig. 7 shows that the predicted near-source PGA values, by 
the constrained GA4 and GA5, both converged toward the 
values predicted for magnitude 6 while those predicted by 
constrained GA6 converged toward higher values for mag-
nitude 7. It should be acknowledged that hazard estima-
tions, at least in probabilistic analysis, are influenced not 
only by the level of ground motion predicted but also by 
the variability of the predicted ground motion expressed by 
the standard deviation of the attenuation relation. Compar-
ing the observed data (Fig. 6) with the constrained predic-
tion models, the constrained GA6 may be more adequate for 
predicting the PGA of large earthquake than the constrained 
GA4 and GA5.

In practice, for seismic hazard assessments in terms 
of PGA, the results are controlled by the occurrence rate 
of earthquakes with various magnitudes and within a short 
distance (less than 50 km). In general, the earthquake occur-
rence rate increases with decreasing magnitude. Hence, for a 
certain region, the hazard estimated using constrained GA6 
should be higher than that estimated by using unconstrained 
GA6 because constrained GA6 predicts higher PGAs for 
small magnitude earthquakes. However, the hypothesis that 
PGAs at near-source distances become essentially indepen-
dent of earthquake magnitude is not confirmed here due to 
lack of near-source observations in southwestern Taiwan. 
Based on the results listed in Tables 1 and 2, the PGA at-

tenuation relation of GA5 is suggested as the most practical 
for application to southwestern Taiwan.

4. CONCLUSIONS

This study compared the robustness and prediction ac-
curacy of the LSM and the GA. A GA is a much more robust 
optimization method than a LSM because a LSM can’t find 
the optimal solution of coefficients if the initial guess is not 
sufficiently near the ideal solution. Our results show that 
a GA has a better chance to obtain a more accurate model 
compared with using a LSM. 

Different objective functions were used in this study 
for optimization. We found that the objective function de-
fined as a function of the difference between the observed 
and estimated PGA of the natural logarithm was better than 
that defined as a function of the difference between the ob-
served and estimated PGA for optimization that minimizes 
the standard deviation of the natural logarithm of PGA. No-
tably, the fitness function of a GA method is easy to define 
as a function of the difference between the observed and 
estimated PGA of the natural logarithm. However, the ob-
jective function of a LSM can only be defined as a function 
of the difference between the observed and estimated PGA.

Furthermore, different (equal and unequal) weights for 
each earthquake record were used to compare the adaptabil-
ity of the weights for practical application. Our results indi-
cate that the optimization procedure reaches the optimum 
solution more easily when the objective function is weight-

Table 3. The predicted coefficients and the standard deviation of the natural logarithm of the horizontal PGA, ln errv ^ h , for Campbell’s constrained 
form.

Table 4. Near-source and far-source standard deviation of the natural 
logarithm of the horizontal PGA, ln errv ^ h , of GA4, GA5, and GA6 for 
Campbell’s constrained form.

Method
Regression coefficients

ln errv ^ h
b1 b2 b3 b4 b5

GA4 0.0126 1.3996 1.75 0.1963 0.7998 0.6525

GA5 0.0048 1.5492 1.75 0.0916 0.8853 0.6481

GA6 0.0031 1.6120 1.75 0.0602 0.9211 0.6565

Method
ln errv ^ h

Rh ≤ 50 km Rh > 50 km

GA4 0.7280 0.5923

GA5 0.6952 0.6122

GA6 0.6867 0.6342
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ed with the factors defined as the reciprocals of square root 
of source-site distance ( R1 ,h p ) or source-site distance  
( R1 ,h p ). 

We used the unconstrained and constrained attenuation 
models of Campbell (1981) to analyze the PGA attenuation 
relationships for southwestern Taiwan. Overall our results 
show that a useful horizontal peak ground acceleration 
(PGA) attenuation model in southwest Taiwan deduced by 
the GA is

. .Y g e R e0 0127 0 7705. . .M
h

M1 1678 0 4697 1 4948L L= + -^ ^h h     (12) 

Acknowledgements  This research was supported by the 
Taiwan Earthquake Research Center (TEC) funded through 
National Science Council (NSC) with grant number NSC 
96-2119-M-041-001 and NSC 97-2116-M-041-003. Appre-
ciation is also extended to the Central Weather Bureau in 
Taiwan for providing earthquake data. The TEC contribu-
tion number for this article is 00068.

REFERENCES

Abrahamson, N. A. and W. J. Silva, 1997: Empirical re-
sponse spectral attenuation relations for shallow crustal 
earthquakes. Seismol. Res. Lett., 68, 94-127.

Ambraseys, N. N., 1978: Preliminary analysis of European 
strong-motion data 1965-1978. Bull. Europ. Assoc. 
Earthq. Eng., 4, 17-37.

Brune, J. N., 1970: Tectonic stress and the spectra of seismic 
shear waves from earthquakes. J. Geophys. Res., 75, 
4997-5009, doi: 10.1029/JB075i026p04997. [Link]

Campbell, K. W., 1981: Near-source attenuation of peak 
horizontal acceleration. Bull. Seismol. Soc. Am., 71, 
2039-2070.

Campbell, K. W., 1991: An empirical analysis of peak hori-
zontal acceleration for the Loma Prieta, California, 
earthquake of 18 October 1989. Bull. Seismol. Soc. 
Am., 81, 1838-1858.

Draper, N. R. and H. Smith, 1966: Applied Regression 
Analysis, John Wiley and Sons, 505-566.

Goldberg, D. E., 1989: Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley, 
432 pp.

Hadley, D. M. and D. V. Helmberger, 1980: Simulation of 
strong ground motions. Bull. Seismol. Soc. Am., 70, 
617-630.

Hanks, T. C., 1979: b values and ω-γ seismic source models: 
Implications for tectonic stress variations along active 
crustal fault zones and the estimation of high-frequen-
cy strong ground motion. J. Geophys. Res., 84, 2235-
2242, doi: 10.1029/JB084iB05p02235. [Link]

Fig. 7. Comparison of Campbell’s unconstrained and constrained forms for magnitudes of 5, 6, and 7 of (a) GA4, (b) GA5, and (c) GA6.

(a) (b)

(c)

http://dx.doi.org/10.1029/JB075i026p04997
http://dx.doi.org/10.1029/JB084iB05p02235


Kao et al.

Jean, W. Y., Y. W. Chang, K. L. Wen, and C. H. Loh, 
2006: Early estimation of seismic hazard for strong 
earthquakes in Taiwan. Nat. Hazards, 37, 39-53, doi: 
10.1007/s11069-005-4655-y. [Link]

Lee, C. T., C. T. Cheng, C. W. Liao, and Y. B. Tsai, 2001: 
Site classification of Taiwan free-field strong-motion 
stations. Bull. Seismol. Soc. Am., 91, 1283-1297, doi: 
10.1785/0120000736. [Link]

Liu, K. S., T. C. Shin, and Y. B. Tsai, 1999: A free-field 
strong motion network in Taiwan: TSMIP. Terr. At-
mos. Ocean. Sci., 10, 377-396.

McGarr, A., R. W. E. Green, and S. M. Spottiswoode, 1981: 
Strong ground motion of mine tremors: Some implica-
tions for near-source ground motion parameters. Bull. 
Seismol. Soc. Am., 71, 295-319.

Sadigh, K., C. Y. Chang, J. A. Egan, F. Makdisi, and R. R. 
Youngs, 1997: Attenuation relationships for shallow 
crustal earthquakes based on California strong motion 
data. Seismol. Res. Lett., 68, 180-189.

Scherbaum, F., F. Cotton, and H. Staedtke, 2006: The es-
timation of minimum-misfit stochastic models from 
empirical ground-motion prediction equations. Bull. 
Seismol. Soc. Am., 96, 427-445, doi: 10.1785/012005 
0015. [Link]

Tavakoli, B. and S. Pezeshk, 2005: Empirical-stochastic 
ground-motion prediction for eastern north America. 
Bull. Seismol. Soc. Am., 95, 2283-2296, doi: 10.1785/ 
0120050030. [Link]

Trifunac, M. D., 1973: Analysis of strong earthquake ground 
motion. Int. J. Earthq. Eng. Struct. Dyn., 2, 59-69.

878

http://dx.doi.org/10.1007/s11069-005-4655-y
http://dx.doi.org/10.1785/0120000736
http://dx.doi.org/10.1785/0120050015
http://dx.doi.org/10.1785/0120050030

