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ABSTRACT 

An efficient procedure using the Hilbert-Huang transform (HHT) 

method for the determination of the dispersion curves of seismic surface 

waves is investigated in this study. The HHT method is compared with a 

Fourier-based time-frequency analysis in the extraction of dispersion data 

from a synthetic seismic waveform generated by a point source in a layered 

medium. The HHT method provides high-resolution measurement of the 

spectral content as a function of arrival time, and the dispersion curve of 

group velocity is determined more accurately than that derived using con

ventional Fourier-based frequency-time analysis. Using a simple polyno

mial fitting technique, the dispersion curve of the phase velocity can also be 

derived by integrating the dispersion curve of the group velocity. Numeri

cal tests show that the HHT method is capable of mapping the energy dis
tribution in the frequency-time domain accurately, and the procedure re

quires much less computer time than other methods for surface-wave dis

persion analysis. 
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1. INTRODUCTION 

Surface-wave dispersion measurement is essential to studies of the crust and upper mantle 

structures, earthquake source mechanisms, and inelastic properties of the earth. Several methods, 

essentially all Fourier-based, have been in common use to estimate the dispersion curves since 

the first analysis on this dispersion phenomenon was studied by a simple peak-and-trough 

method (Ewing and Press 1952). It measures the arrival time of peaks, zeros, and troughs for 

each oscillation corresponding to a narrow-band wave packet with an average period given by 

the period of the particular cycle. Nonetheless, for most observations, the dispersive wave-
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form is composed of closely packed energy arrivals of adjacent periods, making it virtually 

impossible to measure the group velocity at a certain period. Sato (1955) was among the first 
to measure this dispersion property applying the Fourier transformation to the signal. His 

method was limited to highly-dispersed and high signal-to-noise ratio data. The moving win

dow analysis (MWA, i.e., Landisman et al. 1969) and the multiple filter technique (MFT, i.e., 
Dziewonski et al. 1969) are two different but both Fourier-based methods that are often used 

to measure surface-wave dispersion. The filtering techniques applied to these methods are 
equivalent: MWA in the time domain, and MFT in the frequency domain, both methods ex

tend the resolution of dispersion measurement to a broader period range. They are particularly 

useful in treating dispersive signals over continental paths where the dispersion curves are 

nearly flat over a broad period band, in which wave energies arrive at nearly the same time. 

However, there is a difficult resolution problem inherent in all Fourier-based analysis: the 
product of frequency uncertainty and arrival time uncertainty is a constant (Feng and Teng 
1983). Several filtering techniques to optimize the resolution of dispersion measurement have 

been proposed (e.g., Inston et al. 1971; Cara 1973; Nyman and Landisman 1977). Unfortunately, 

the goal of improving the resolution of dispersion measurement by these optimization tech
niques is still limited by the above-mentioned uncertainty principle of the Fourier analysis. 

There is, .in addition, some basic difficulty in the signal stationarity and linearity assumptions 

on which the Fourier theory is based. For example, the span of any seismic data is time
limited: clearly, seismic data are non-stationary. Moreover, the seismic waves coming through 

the attenuating earth and recording instruments, both of which may not be distortion-free. The 
linearity assumption inay be compromised. These problems are usually ignored for most Fou

rier-based analysis. One has to assume the data to be piecewise stationary and nearly linear, 
which is not quite appropriate to the seismic data when the MWA or the MFT is applied. 

Furthermore, the conflicting requirements occur unavoidably, when the frequency resolution 

requires longer time series but the time resolution requires a narrow window width. 
In order to overcome the limitations presented by the traditional Fourier-based analysis, 

the wavelet analysis (WA), which itself is also Fourier-based and essentially an adjustable 

window spectral analysis, was introduced. Among others, and in seismology, Chakraborty 
1996 used the wavelet transformation and related methods to perform the frequency-time analy

sis of seismic reflection data. Pyrak-Nolte and Nolte (1995) applied the wavelet transforma

tion to measure the group velocity of the long-period Rayleigh waves. Although these studies 

showed that the wavelet transformation gives better resolution in the analysis of non-station

ary data, the problems of non-adaptive nature, which fits the data only when we have pre
knowledge of the wavelet physically, and physically meaningless to the linear phenomena, are 

still not solved completely. Huang et al. (1996) introduced a new approach called the Hilbert

Huang transform (HHT) technique to perform general analysis of highly transient time series 
from nonlinear, dispersive, and non-stationary systems. For extremely transient and some

what nonlinear seismic data, this method provides a proper tool to investigate the characteris

tics of ground motion signals in frequency and time domain simultaneously. In this paper, we 

demonstrate an efficient determination of the group velocity dispersion curves with the HHT 

technique. To show the improvement in the resolution and accuracy of the dispersion 
measurement, the results are compared with those obtained by the conventional MFT method. 
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2. MEASUREMENT OF SURFACE-WA VE DISPERSION 

2.1 Hilbert-Huang Transform 

Unlike the traditional Fourier analysis, in which the frequency is defined for the sine or 

cosine function spanning the whole data length with constant amplitude, a new method called 

the Hilbert-Huang transform (Huang et al. 1996) was developed for analyzing nonlinear and 

non-stationary time-series. The key to the method is a process Huang et al. called Empirical 

Mode Decomposition (EMD) by which any complicated time series can be decomposed into a 

finite and often small number of Intrinsic Mode Functions (IMF) that admit well-behaved 

Hilbert transforms. By applying the Hilbert-Huang transformation to get the IMFs ( Xj (t) ), an 

arbitrary time series X(t) can be 

expressed as 

where 

n 

X(t) = L,.a1(t)exp(if m1(t)dt), ;=1 

d8j(t) 
(I)). (t) = -

dt . 
is the instantaneous frequency, 

�(t) = lpf= XJ
(
r

) 
dr, 

re -=t-r 

P is the Cauchy principal value of the integral, 

Y(t) 
tJ.(t) = tan-1 -1-' X.(t)' J 

a/t) = ��2(t) + X](t). 

Since both the amplitude and frequency are functions of time, the Hilbert spectrum, H(m, t), 
which is the amplitude contoured on the frequency-time plane in a three-dimensional plot, is 

more appropriate to accommodate non-stationary data than the Fourier spectrum, because the 

Fourier expansion is made in a global sense and HHT expansion is made in a local sense. 

Since the Hilbert transform gives the best-fit to a local sine or cosine waveform to the data, the 

frequency resolution for any point is uniformly defined by the stationary phase method or 

local derivative of the phase function. This advantage is especially effective in extracting the 

time-varying information of an arbitrary signal (Huang et al. 1996). 

2.2 Procedure 

To determine the dispersion curve of the group velocity of seismic surface waves, we 

directly apply the EMO decomposition to the seismogram to get the intrinsic mode function 
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(IMF), from which the Hilbert spectrum is calculated. The Hilbert spectrum usually shows 
sharp-banded amplitude contours illustrating energy distribution of IMFs in the frequency
time space; this represents the dispersion of group velocity for the waveform concerned. For 
each frequency, the time of the maximum amplitude corresponds to the group arrival at which 
the group velocity can be obtained; moreover, the velocity error can be estimated from the 
width of the amplitude contour band in the spectrum. According to Papoulis (1962), 

and 

T (m) = 
dcD{m) 

gr 
dm ' 

where �r is the travel time of a wave group, and cp is the phase function. Then, the phase 

velocity can be obtained as 

C(m) = 
X. m 

cp-cpSR - N' 

where X is epicentral distance, ell SR is the initial phase of the source. In order to accomplish 

the integral, we extrapolated the dispersion curve of the group velocity to lower frequency 
(even zero Hz) using a polynomial fitting, and obtained the dispersion curve of the phase 
velocity through integration. Owing to the underestimation of phase velocity in the low
frequency range where few data can be obtained from the spectrum, the phase derived from 
the integral of group delay time is over-estimated. Similar to the correction used in the single 
station method (Brune et al. 1960), we corrected the derived phase by subtracting a integer 
(N ) to constrain the phase velocity of low frequency to a reasonable value. In general, N is 
small ( <5) and approaches zero as the sharp velocity variation of dispersion curve occurs at 
lower frequency (e.g., fundamental mode shown in the test below). 

3. TESTS OF THE HHT TECHNIQUE BY KNOWN NUMERICAL FUNCTIONS 

We shall use three known time series from Huang et al. (1996) to illustrate the high
resolution property of the HHT method. 

First, let us consider the time series: 

(2nt) (2nt) (2nt) x(t) = cos -- +cos -- +cos --
1000 50 10 ' 

which is the summation of three distinct cosine waves with frequencies of 0.1, 0.02, and 0. 
OOlHz, respectively (Fig. 1). The EMD method successfully decomposed the signal into three 
IMFs, which are identical with three assumed cosine waves, except for mimute differences on 
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The Empirical Mode Decomposition Method 
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Fig. 1. The EMD result showing three IMFs and a residue for an analytical sig
nal with summation of three cosine waves with frequencies of 0.1, 0.02, 
and 0.001 Hz. 
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boundaries because of the endpoint effect. The residue is much smaller than IMFs and repre
sents a monotonic trend decided by cutoff of the data window. The resulting Hilbert spectrum 
(Fig. 2), which shows three constant-frequency energy bands at 0.1, 0.02, and 0.001 Hz, is 
given at the lower middle panel. The vertical bars on the right of this panel give the relative 
amplitude scale, while the panel on its left gives the marginal spectrum. This example shows 
that the HHT method can analyze the stationary signal simply from the data without any as
sumption of harmonic components (e.g,, sine or cosine waves in the Fourier transform). 

In the second example, we consider an amplitude modulated wave given by 

(2 nt) x(t) = exp(-0.01 t)cos W , 
for t from 0 to 500 sec. The time series is a non-stationary signal and given in the middle of 
Fig. 3. This amplitude-exponentially-decayed signal has a zero mean and is symmetric, so 



176 TAO, Vol. 13, No. 2, June 2002 

Data I Signal 

0.12.------.---� �----------------� 
0.1 . . . .. . . .  ......,.�=::"1 ;1!!1. .. ----------------· ·'' 

0.08 .......... ..... . , . 

0.02 """''--=d 

ol_-=========il�����=====�������==i 4 2 0 200 400 600 800 1000 magnitud� 101 Time (sec) 

3000 

1000 

0 

Fig. 2. Illustration of the signal (top) and the Hilbert spectrum (bottom). The 

vertical bars on the right of this panel give the relative amplitude scale, 

while the panel on its left gives the marginal spectrum. 

there is no need for invoking EMD since the data is already an IMF. The time�frequency

energy distributions are given for the Fourier-based analysis (top panel) and for the HHT 
method (bottom panel). The vertical bars on the right of these two panels give the relative 

amplitude scale, while the two panels on their left give the Fourier spectrum of the Fourier

based frequency-time analysis and the marginal spectrum for the HHT. The Fourier-based 

analysis gives a smeared average frequency range over which the main wave energy resides 

due to the harmonic wave presumption. The time variation of the amplitude modulation is also 

insignificant in the Fourier-based result. On the·other hand, the HHT method gives a much 

sharper identification of energy distribution in the frequency-time domain. Moreover, the time 
variation of amplitude decay is clearly shown as fading of energy distribution in the Hilbert 

spectrum. The amplitude modulation has introduced a small instantaneous frequency modula

tion around the mean of the carrier frequency, which can be detected using the HHT method. 
The range of variation, however, is insignificant compared with the frequency smearing phe

nomena of the Fourier-based analysis. 

The third example further demonstrates the resolution power of the Hilbert spectrum. Let 

us consider the case of a simple cosine wave with one frequency (l/16Hz) suddenly switching 

to another frequency (l/32Hz) at t = 500s; i.e., the time series 
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Fig. 3. The F-T distribution and its corresponding spectrum using the MW method 
(top) and HHT (bottom) of an amplitude-modulated cosine wave. Note 

that the HHT method gives a much sharper identification of energy dis
tribution in the Frequency-Time domain. 
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x(t);::: 
lcos(2 n t ), 0 � t � 500, 

16 
cos( 2 n t ), 500 � t � 1000, 32 

as shown in the middle of Fig. 4. The energy distributions in the frequency-time domain are 
given for the Fourier-based analysis (top panel) and for the HHT (bottom panel). The vertical 
bars on the right of these two panels give the relative amplitude scale, while the two panels on 

their left give the Fourier spectrum and the marginal spectrum. Again, the Fourier spectrum 

gives smeared average frequency range over which the main wave energy resides. Adding and 
canceling of the harmonic components using the in Fourier analysis produce artificial energy 
outside the main frequencies in which we expect all the energy to exist. Also, the Fourier
based analysis has to compromise between time and frequency resolution, as a result, the 
frequency transition at t = 500s is not precise. In contrast, we can see the sharp frequency 
definitions and the time location of the frequency switch using the Hilbert spectrum. Small 
frequency fluctuations are observed on the endpoints and point of transition due to the Gibbs 

phenomena and the finite data length. Fortunately, the range of variation is insignificant. Com

parison of the marginal Hilbert spectrum and the Fourier spectrum is shown in the left panels. 
Because of the Fourier transform assumption of global frequency distribution (due to stationarity 
assumption), its spectrum introduces numerous spurious frequency contents that make up many 
side lobes of the spectrum. The marginal spectrum, on the other hand, gives sharp identifica
tion at two main frequencies, as expected. 

These three examples clearly illustrate the different resolution powers of Fourier-based 
analysis and HHT. We shall apply this new method to the extraction of seismic surface-wave 
dispersion data. 

4. USING HHT TECHNIQUE TO EXTRACT SURFACE-WA VE DISPERSION DATA 

To show the capability of the HHT technique in obtaining time-varying characteristics 

from seismic waves, a synthetic seismogram of the vertical component calculated (Wang and 
Herrmann 1980) with a layer model (modified from IASPI91 radial heterogeneity earth model, 

Fig. 5) was used for this test. The source is placed at a depth of 10 km and recorded at the 
distance of 6000 km. In order to compare the results, the contours in time-frequency domain 

are generated and compared using both HHT and MW applied to the same vertical component 

of the synthetic seismogram. The waveform and the spectrum obtained from HHT and MW 
analysis are shown in Figs. 6 and 7. In Fig. 6, the upper panel shows the synthetic seismic 
signal and the marginal spectrum (Huang et al. 1996), which corresponds to Fourier amplitude 

spectrum Gust as shown in Fig. 7), and is plotted in the lower left panel. The 20 (Frequency
Time) spectrum is shown in the lower middle panel. For noise free signal, the results from the 
HHT (Fig. 6) give excellent resolution while the MW results (Fig. 7) give a broad diffused 
band of energy arrivals. The frequencies at any time instant are pinpointed sharply and accu

rately in the HHT results, with the amplitude well represented by the energy level of the en-
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Fig. 4. The F-T distribution and its corresponding spectrum using the MW method 

(top) and HHT (bottom) of a signal with abruptly-changed frequency. 
The HHT method again gives a much sharper identification of energy 

distribution in the Frequency�Time domain. 
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Fig. 5.Velocity model used to 

generate seismograms 

for the synthetic test. 
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Fig. 6. The F-T distribution and its corresponding spectrum using the HHT method 

of a synthetic seismogram without noise. For non-stationary and non

linear signal, the HHT method also gives better resolution than that of 

the MW method shown in Fig. 7. 
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Fig. 7. The F-T distribution and its corresponding spectrum using the MW method 

of a synthetic seismogram without noise. 
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ergy-frequency domain. The HHT method gives a much sharper identification of energy 

distribution. A simple transformation gives the group velocity dispersion curve (dots in Fig. 

9). Moreover, the time variation of amplitude decay is clearly shown as a fading pattern in 

energy distribution in the HHT spectrum. The resolution power of the HHT spectrum allows 

an accurate estimate of group velocity dispersion for the fundamental mode and even for the 

first-higher mode easily. On the other hand, the result obtained using the MW (Fig. 6) shows 
a smeared average frequency range over which the main wave energy resides. This smearing 

is due to the harmonic wave assumption for a stationary time series, and represents the global 

property, which is non-existence. For an extremely noisy signal (Fig. 8, top trace), 30% ran
dom noise is added. The HHT spectrum analysis can still provide the better resolution (Fig. 8 
middle lower panel). This demonstrates that the HHT analysis is far superior to the Fourier

based moving window (MW) method in the determination of the group velocity dispersion 

curve of noisy non-stationary surface waves, which is actually what observed in nature. 
The dispersion of the group velocity can be easily determined from the HHT energy

frequency-time distribution in Fig. 6. While the resolution in frequency is good in a time (or 

distance) range, we can directly find the arrival time of the maximum of energy at each fre-
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quency (Fig. 9), which corresponds to the group arrival for each frequency. To determine the 
dispersion of the phase velocity, we can fit these points with a simple second order polynomial 
followed by a numerical integration. Applying the procedure described above, the dispersion 
curve of the phase velocity is also determined (Fig. 9). 

5. CONCLUSION 

The HHT technique can yield energy-frequency-time distribution with high-resolution 

for a non-stationary surface-wave signal, from which the group velocity and phase velocity 
dispersion curves can be measured to much higher accuracy than obtainable by conventional 
Fourier-based methods. This improvement has direct bearing on the advanced analysis of 
crustal and upper mantle structure. Without the sharp identification of frequency, the group 
velocity measurements using the Fourier-based methods, such as the moving window approach 
are shown to be much poorer. Although this study shows some encouraging results using the 
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Fig. 8. The F-T distribution and its corresponding spectrum using the HHT of a 
synthetic seismogram (used in Figs. 6 and 7) with 30% random noise. 
The HHT method can also give us a satisfactory result for extreme noise 
data. 
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HHT technique, some improvements such as the polynomial fitting of the group velocity curve 
and estimation of error of the dispersion curves need to be further investigated. Moreover, a 
systematic study with a multi-station complete seismic data set is required to examine the full 
application of the phase velocity dispersion measurement using this HHT method. 
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