
10.3319/TAO.2014.08.19.05(GRT)

* Corresponding author 
E-mail: sunzhib1@gmail.com

Terr. Atmos. Ocean. Sci., Vol. 26, No. 1, 53-61, February 2015

An Ensemble Algorithm Based Component for Geomagnetic Data  
Assimilation

Zhibin Sun1, * and Weijia Kuang 2

1 USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University,  
Fort Collins, CO, USA 

2 Planetary Geodynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Received 21 May 2013, revised 12 February 2014, accepted 19 August 2014

ABSTRACT

Geomagnetic data assimilation is one of the most recent developments in geomagnetic studies. It combines geodynamo 
model outputs and surface geomagnetic observations to provide more accurate estimates of the core dynamic state and provide 
accurate geomagnetic secular variation forecasting. To facilitate geomagnetic data assimilation studies, we develop a stand-
alone data assimilation component for the geomagnetic community. This component is used to calculate the forecast error 
covariance matrices and the gain matrix from a given geodynamo solution, which can then be used for sequential geomagnetic 
data assimilation. This component is very flexible and can be executed independently. It can also be easily integrated with 
arbitrary dynamo models.
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1. INTRODUCTION

The Earth possesses a magnetic field of internal ori-
gin (geomagnetic field). It is now widely accepted that this 
magnetic field is generated and maintained by convective 
flow in the Earth fluid outer core (geodynamo). Surface 
geomagnetic observations over the past several centuries, 
as well as paleomagnetic and acheomagnetic records, have 
demonstrated that the geomagnetic field varies in broad spa-
tial and temporal scales (Jackson et al. 2000; Sabaka et al. 
2004; Korte and Constable 2008; Olsen et al. 2010). Such 
variations are the manifestation of dynamic processes in the 
Earth’s liquid outer core, and are therefore critical for un-
derstanding the interior, the evolution and the interactions 
among the different Earth components.

In addition to surface geomagnetic observations, vari-
ous field and dynamic models have been utilized to under-
stand and interpret geomagnetic variability. Among them 
are various dynamo models in which the convection in 
the outer core is described by the Navier-Stokes equation, 
while the equations describing magnetic induction and en-

ergy conservation (when combined these are called the dy-
namo equations). In the dynamo models the outer core fluid 
properties are also defined using several non-dimensional 
parameters. These equations are then solved using specified 
boundary conditions. For more detail we refer the reader to 
Kono and Roberts (2002).

Numerical dynamo models have been used success-
fully for qualitative understanding of geomagnetic secular 
variation. However, due to limited knowledge of the Earth’s 
outer core, and computational constraints, these models are 
still far from the “truth”. This is the main reason for substan-
tial discrepancies between the observed geomagnetic field 
and those from dynamo simulations (Kuang et al. 2009). 
Therefore, a fundamental question arises: how could one 
obtain the most accurate estimate of the core dynamic state 
with currently available information?

One answer to this question is geomagnetic data as-
similation: using geomagnetic observations to constrain and 
improve numerical dynamo models. Generally speaking, 
data assimilation is a methodology in which observational 
data are assimilated into numerical model outputs for better 
estimation of the true physical states. Data assimilation has 
been widely used in atmospheric (e.g., Talagrand 1997) and  
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oceanic modeling (e.g., Ghil and Malanotte-Rizzoli 1991, 
Sun et al. 2013). There are two types of assimilation meth-
ods: sequential and variational data assimilation. Detailed 
descriptions of the algorithms and history of data assimila-
tion can be found in, e.g., Kalnay (2003). Both methods have 
been used in geomagnetic data assimilation studies (Fournier 
et al. 2007; Liu et al. 2007; Sun et al. 2007; Kuang et al. 2008, 
2010; Fournier et al. 2010), with very promising results. 
However, extensive studies are needed to understand both 
the responses of numerical dynamo models to observational 
constraints and the consistencies of the parameters and ap-
proximations used in dynamo simulation with geomagnetic 
observations. Geomagnetic data assimilation is also compu-
tationally very expensive. The required computing resources 
could be orders of magnitude more than those for numerical 
dynamo simulations. There are a variety of dynamo models 
currently used by different research groups, thus calling for 
algorithm portability among these dynamo models.

One approach to solve these conflicts between research 
demands and computational constraints is to develop an in-
dependent assimilation component. It could then be used in 
the geomagnetic community. With this component commu-
nity efforts can be cohesively utilized to address the funda-
mental questions in geomagnetic data assimilation.

In this paper we present our geomagnetic component 
based on an ensemble sequential assimilation algorithm. 
This paper is organized as follows: in section 2, the assimi-
lation algorithm is summarized. In section 3, the basic struc-
ture and workflow of the component are described. Numeri-
cal examples are given in section 4, followed by concluding 
remarks in section 5.

2. ALGORITHM

There are currently many dynamo models that differ 
in many aspects, including boundary conditions, algorithms 
and geophysical approximations. Regardless, these models 
can be symbolically written as the following initial-value 
problem,
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where x is the state vector (an array describing the dynamo 
state in the outer core), F is the generalized force governing 
the time evolution of x, and x0 is the initial sate at t0.

The numerical modeling objective is that the model 
output xf (called “forecast” in data assimilation) can be a 
good approximation of truth xt. However, it often falls short 
in achieving this objective for many reasons, such as large 
model errors, inaccurate initial guesses, turbulent dynamic 
processes, etc. To reduce the difference between the two, 
one approach is the sequential data assimilation in which 

the model output xf and (often partial) observations yo are 
combined to obtain a better approximation xa (called analy-
sis) of truth xt:

(1 )x W x Wya f o= - +  (2)

The key is to find an appropriate weight W in Eq. (2) such 
that xa is the optimal estimation of xt. The analysis xa is then 
used as the new initial state of Eq. (1) to obtain a more ac-
curate forecast in the future. If the domain of yo is differ-
ent from that of xf, a mapping is then needed in Eq. (2). In 
general, the analysis Eq. (2) can be derived whenever both 
observations and forecasts are available.

The mathematical reasoning can be summarized as fol-
lows. There are two different sources of information about 
the truth: one is the model output xf (often called a priori 
information) and the other is the observation yo:
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y

f

o= = G (3)

Both are different from the truth,

,x x e y Hx ef t f o t o= + = +  (4)

where H is the observational operator (a mapping between 
the observation domain and the truth). The errors ef and eo 
are often assumed to have Gaussian random distributions 
with zero mean and variances Pf and R, respectively. It is 
often appropriate to assume that both are independent (i.e., 
uncorrelated). Thus,
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where the error ez is also a Gaussian distribution with zero 
mean and the variance,

0
0P
R

f

R = ; E (6)

To obtain the optimal estimation of truth xt from z, a lin-
ear unbiased estimator xa = Az is proposed with the transform 
A chosen to minimize the trace of the error covariance,

min Tr E x x x xa t a t T- -^ ^^ h h h6 @" ,  (7)

where E $^ h denotes the expectation of an ensemble. This 
leads to

,A I
H

1T T 11C R C R CC= =- --^ h ; E (8)
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where I is the identity matrix. Thus,

x za T T1 11C R C C R= - --^ h  (9)

Using Eqs. (3), (6), (8), and (9),

x x K y Hxa f o f= + -^ h (10a)

K P H RH R Hf TT 11 1 1= + -- - -^ h6 @  (10b)

In data assimilation K is called the gain matrix, and 
y Hxo f-  is called the innovation. Equation (10b) can be 
also interpreted as follows: consider the sum of the distanc-
es (weighted by the error variance) from xa to the forecast xf, 
and from xa to the observation yo
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If K is chosen to be Eq. (10b), then the distance J is the 
minimum. It can also be shown that Eq. (10b) is equivalent 
to (Kalnay 2003),

( )P RK P H H Hf T Tf 1= + -  (12)

Equations (10a) and (12) are used in our system. There are 
two extreme scenarios in Eq. (12): IK .  if RP f & ,  
i.e., observation replaces the forecast in the analysis; or 

0K .  if RP f % , i.e., the observation is negligible in 
the analysis.

The observational error covariance R is determined 
with the measurements and the relevant analysis (e.g., geo-
magnetic field modeling). It is therefore an “input” to the as-
similation component. For the details we refer the reader to, 
e.g., Olsen (2002) and Korte and Constable (2008). Evalu-
ation of the forecast error covariance Pf is the centerpiece 
of the algorithm. There are various means used to calculate 
Pf, e.g., a statistical study of the innovations (Hollingsworth 
and Lönnberg 1986) or the lagged-forecast difference meth-
od (Parrish and Derber 1992). In our system an ensemble-
covariance estimation of Pf is employed that could also 
serve as a component for the more complex ensemble Kal-
man filter algorithm (Evensen 1994). This ensemble method 
can be carried out for any numerical dynamo model without 
knowing its details and can also be parallelized.

In this estimation an ensemble of Nens initial states 
, , ...,i N1 2xi

ens0 =" , is first generated by adding arbitrary 
perturbations to the given model state vector x0,

x xi i
0 0 f= +  (13)

where the perturbations if  are generated randomly via the 

Monte Carlo technique and their magnitudes are only a small 
fraction to that of x0. These perturbed initial states are then 
integrated in time via Eq. (1) for a specified time interval. 
The final states xi" , are used to evaluate Pf as follows:
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In geodynamo modeling the state vector is comprised 
of spherical harmonic coefficients of the velocity, magnetic 
field and temperature perturbation. These harmonic coeffi-
cients also vary in the radius r and time t. Therefore Pf is a 
function of the degree l and order m of the expansions. It 
also varies in radius r. From our previous experiences, the 
covariance between different degrees and orders are much 
weaker than those of the same degree and order and are 
therefore ignored in the evaluation.

Since the ensemble size Nens is finite and substantially 
smaller than that of the model output, spurious behaviors ex-
ist in the covariance of two distant points (e.g., in radius r). 
They could normally be eliminated by applying filters, such 
as the following proposed by Gaspari and Cohn (1999):
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where r is the given model grid location in radius, r0 is the 
observational location, and c is the correlation length pa-
rameter (e.g., 10% of the outer core thickness). In Eq. (15), 
the radius is scaled by that of the the core-mantle boundary 
(CMB) (i.e., r = 1).

Different dynamo models have different definitions of 
the state vector x. To make this component applicable to 
arbitrary dynamo models it is necessary to introduce a pro-
cedure in which the state vectors xK  of an arbitrary dynamo 
model can be transformed back and forth with that x defined 
in this component:

,
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where T is the transform for the dynamo model state vectors 
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and Ty is the transform for the observational subspace. Using 
the definitions Eqs. (14) and (16), we have

P TP Tf f T=L  (17)

and

,K HTKT T HTy y
1 1= =- -N N  (18)

Thus, the analysis

( )K y Hx x xa f o f= + -K K N K NK  (19)

will be used for assimilation with the given dynamo model.
The above formulations are for the state vectors x in 

the real space. If x is complex, e.g., complex spherical har-
monic coefficients, one can simply replace the transpose 
matrices in Eqs. (10b), (12), and (14) using their complex 
conjugate transpose.

3. COMPONENT STRUCTURE AND WORKFLOW

In this component the state vector includes the velocity 
field, the magnetic field and the density perturbation:

, , , ,P T P Tx v v B B
TH= 6 @  (20)

where Pv and Tv are the poloidal and toroidal velocity sca-
lars; PB and TB are the poloidal and toroidal magnetic field 
scalars; and H  is the density perturbation. Each scalar in  
Eq. (20) is described by a spherical harmonic expansion. 
For example,
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where C.C. stands for the complex conjugate (and L is the 
truncation order of the expansion). Surface geomagnetic ob-
servations (with maximal degree Lobs) are downward contin-
ued to the radial position r0. Thus
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For a given degree l and order m, the corresponding obser-
vation operator is of a simple form

, , ..., , , , , , ..., ,0 0 0 0 1 0 0 0 0Hl
m T= 6 @  (23)

where the only non-zero element corresponding to the ob-

servational location r0. Therefore,
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For example, using Eq. (14), we have
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for the self-covariance between ( )b rl
m  and ( )b rl

m
0 , and the 

cross-covariance between ( )rjl
m  and ( )b rl

m
0 , respectively. 

The superscript H in Eqs. (24) and (25) stands for the com-
plex conjugate transpose.

The component structure is described in Fig. 1: it is 
comprised of three independent sections, each with its own 
functions: the gain matrix calculation (the right column in 
Fig. 1), the transformation between the state vectors (the 
center column in Fig. 1), and the dynamo simulation (the 
left column in Fig. 1).

The dynamo section is normally imported from a cho-
sen dynamo model. This part does not need any reengineer-
ing effort. The transformation section needs input from us-
ers to define the transformation matrices (T and T-1) for the 
chosen dynamo model. The gain matrix section includes all 
“intrinsic” procedures and functions. Users do not need to 
know the details for their applications. By introducing such 
a structure this component is simple to implement and easy 
to learn.

The workflow of this component can be summarized 
as follows: first, select an initial state vector (a solution of 
a given dynamo model). Then, transform the state vector 
into the standard representation for the component. Next, 
add randomly generated perturbations to the transformed 
state vector. The modified state vector will then be inversely 
transformed and sent back to the dynamo model for time in-
tegration. The final output from the dynamo simulation will 
be sent back to the component for calculating the forecast 
error covariance Pf. This process will be repeated until Nens 
final states are successfully obtained. The covariance Pf and 
the gain matrix K are calculated and exported for geomag-
netic data assimilation.

4. APPLICATION EXAMPLE

This component can be easily integrated with arbi-
trary dynamo models. To demonstrate this we consider the 
MoSST core dynamics model series developed by Kuang and 
Bloxham (1999), Kuang and Chao (2003), Jiang and Kuang 
(2008). The state vector xK  defined in MoSST is slightly dif-
ferent from that used in this component: the radial variation 
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of the velocity scalars Pv and Tv are expressed by Chebyshev 
polynomial expansions in MoSST, while they are defined 
on the radial grid points in the component. Therefore, the  
transform matrix T is simply the Chebyshev transform.

In this application the entire MoSST dynamo model 
(including its source codes and executable) is in one direc-
tory (hereafter called the “dynamo directory”), while the 
component is in a separate directory (call the “component 
directory”). The component directory includes the three 
subdirectories for the dynamo, interface and gain matrix 
sections, respectively. The first step is to copy the necessary 
source codes for defining the dynamo state vector and pa-
rameters from the dynamo directory into the component di-
rectory. Users then modify the interface section accordingly, 
including the dynamo directory information. They also need 
to define the parameters for the component, e.g., the ensem-
ble size Nens, the correlation length c defined in Eq. (15), 
and the perturbation amplitude. The component execution 
script includes the MoSST execution for dynamo simula-
tion. The simulation process ends when an ensemble of Nens 
successful final states is obtained. It should be pointed out 
that dynamo simulation results from a given initial state are 
stored in a designated subdirectory (thus Nens subdirectories 
will be created in the process). These outputs are used for 
calculating the gain matrix K (part of the component output) 
and will be used for future analysis if needed.

The magnitude of the random perturbations is small: it 
is set as 1% relative to the spectral coefficients of the origi-
nal dynamo solutions. In Fig. 2 is the coefficient ( )b r21  of the 
initial state defined in Eq. (21). Figure 3 shows an example 
of random perturbation. The original random perturbation is 
applied to the 2nd order radial derivative of ( )b r21  (Fig. 3b): 
perturbations are added at every four grid point; those in be-
tween are set via linear interpolation. The final perturbation 
f  [see Eq. (13)] is shown in Fig. 3a.

In our application, the forecast error covariance Pf is 
simply of the form defined in Eqs. (24) and (25). The filter 
Eq. (15) used in our example here is defined with c = 0.1D (D 
is the thickness of the outer core). As an example, we show 
in Fig. 4a the filtered self-covariance ( , )P r rl

bb
1 0 , in Fig. 4b 

the non-filtered ( , )P r rl
bb
1 0 , and in Fig. 5 the cross-covariance 

( , )P r rl
jb
1 0 . The corresponding gain matrix elements with  

R = 0 are shown in Figs. 6 and 7, respectively.

5. DISCUSSION

This paper described our geomagnetic data assimila-
tion component with an ensemble-based algorithm Eq. (14). 
This component is stand-alone. It can be implemented in-
dependent of dynamo models and the final result can be 
transformed easily for the designated dynamo model via  
Eqs. (17), (18), and (19). Given an initial dynamo state and 
a dynamo model (either serial or parallel), this data assimila-
tion component can generate the gain matrix K automati-
cally without any interactions from users. Its implementation 
is very simple: only the transform section is customer-de-
signed. The gain matrix calculation component is very user-
friendly: its details are not needed for applications. The dy-
namo section is imported directly from the selected dynamo 
model. However, since the definitions of the dynamo state 
vectors x and xK  are often very simple, transform matrix T 
construction is not very complicated. The component is easy 
to maintain. Only the transform section needs to be updated 
if any change is made to the dynamo model.

This component is efficient for parallelization: its scal-
ability can be achieved either through the original dynamo 
model (since the dynamo executable will be called directly 
by the component), or, if the original dynamo model is not 
scalable, by evenly distributing individual dynamo runs.

Simple modification to the component can be achieved 

Fig. 1. Sketch of the component structure: in the left column are the dynamo modules and the initial state imported by users; in the right column are 
the main modules of the component for computing K; in the center column are the interface modules to compute the transform T.
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(a) (b)

Fig. 3. Similar to Fig. 2, but for the random perturbations added to ( )b r21 . In (a) is the final perturbation to ( )b r21 ; in (b) is the perturbation to its 2nd 
order radial derivative.

(a) (b)

Fig. 4. (a) The radial distribution of the error covariance ( , )P r rl
bb
1 0  for 1 ≤ l ≤ 12 (r0 is at the top of D”-layer): the lower panel is the maximum mag-

nitude ( , )maxP P r rl
mx

r l
bb

1 1 0/ " ,; the upper panel is the real part scaled by Pl
mx
1 , ( , )Re P r r Pl

bb
l
mx

1 0 16 @ ; and the central panel is the imaginary part scaled 
by Pl

mx
1 , ( , )Im P r r P1 0l

bb
l
mx
16 @ . (b) Similar to Fig. 4a, but for the non-filtered error covariance ( , )P r rl

bb
1 0 .

Fig. 2. The radial distribution of the spectral coefficient ( )b r21  of the initial state: the solid curve is the real part and the dashed curve is the imaginary 
part. The horizontal axis is the radius r.
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by selecting different values for the ensemble size Nens and 
the filtering length scale c. However, more complicated 
modifications to the algorithm will need substantial repro-
gramming effort. For example, if the observation data yo 
are different, e.g., the core flow inverted from the observed 
geomagnetic secular variation is included as part of the ob-
servations, the observation operator H in Eq. (12) will be 
different. Thus, the gain matrix of Eq. (12) will be more 
complicated. Another example is that this component is not 
very effective when the time variation of the gain matrix 
K becomes important. In this case it will be optimal to in-
tegrate it directly to the dynamo model. This is beyond the 
scope of this paper. This component can be improved fur-

ther as more users implement it for their geomagnetic data 
assimilation studies.
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APPENDIX: WORKING MANUAL OF THE  
COMPONENT

1. Component Usage

All codes for this component are stored in five differ-
ent subdirectories based on their functionalities. The names 
of these subdirectories are self-explanatory. For example, 
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the stand-alone Fortran modules are stored in the subdirec-
tory named “modules_EnK”.

The component application can be summarized as 
follows: (1) copy all files to a separate subdirectory (we 
strongly recommend users for this procedure for better 

maintenance); (2) compile the code; (3) modify the param-
eter files according to the dynamo package of the users; (4) 
execute the component and check the output. The last step 
may be repeated if the desired ensemble members cannot be 
reached in a single execution.

Fig. A1. Program structure.


