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ABSTRACT

Coastal wetlands store terrestrial carbon and conserve biodiversity, thus playing 
an essential ecological role. Reliable regional-scale assessments of wetland dynam-
ics, such as analysis of land use and land cover (LULC), and coastal monitoring, pro-
vide important hydrographical and socio-geographical information. Remote sensing 
images, such as Earth Observation satellite data, are useful for examining temporal 
LULC changes and providing environmental monitoring data. This study presents a 
method of mapping and monitoring changes in coastal LULC using classified mul-
tispectral images acquired by the Korea Multi-Purpose Satellite-2 (KOMPSAT-2). 
Wetland changes are monitored in three different protected tidal flats areas on the 
coastal boundary of the Korean Peninsula with the Yellow Sea, for the period of 
2008 - 2015. High overall accuracy and Kappa coefficient values for the accuracy as-
sessment indicate the suitability of LULC classification using high spatial resolution 
KOMPSAT imagery, even when an unsupervised classification approach is adopted. 
The LULC maps were analyzed and evaluated using post-classification change de-
tection methods. Results showed spatial decreases of 6 and 20% for mixed forest and 
wetlands in the Gyeonggi area, respectively, but no significant changes over time for 
Jeonbuk and Jeonnam. There was a 12% increase in developed areas for Gyeonggi 
but only 1.9 and 6% for Jeonbuk and Jeonnam, respectively. LULC change is thus 
easily identified through a pixel-based analysis of multispectral KOMPSAT-2 im-
ages over time. Such data are useful for environmental and policy managers when 
developing advanced coastal management strategies.
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1. INTRODUCTION

Coastal wetlands play an essential role in promoting 
ecosystem biodiversity by providing natural habitats for a 
wide variety of species (Gibbs 2000; Klemas 2013). From 
an environmental perspective, coastal wetlands are impor-
tant contributors to global carbon sequestration, flood and 
coastal erosion mitigation, and water quality improvement. 
Wetlands comprise a biodiversity-rich and dynamic eco-
system and are a repository of natural resources that are 
always hydrated by the natural environment. The shape of 
wetlands changes over time, and they are sensitive to land 
use changes and vulnerable to the effects of climate change, 
sea levels rise, and changes in tidal patterns (Gorham 1991; 
Michishita et al. 2012; Allen et al. 2013). Improving our un-

derstanding of different wetland features can contribute to 
determining sustainable strategies for preserving and moni-
toring wetlands under various environmental effects (Kle-
mas 2013; Dronova 2015). However, wetlands have experi-
enced severe and rapid degradation in recent decades, with 
more than 50% of global wetlands have disappeared, which 
indicates the need for continuous and effective monitoring 
of the remaining ecosystems (Michishita et al. 2012).

Identifying wetland regions and their ecological fea-
tures via a land use and land cover (LULC) mapping meth-
ods is potentially a valuable monitoring technique, as tradi-
tional field-based surveying is costly and time-consuming. 
Furthermore, field surveys for coastal monitoring are gener-
ally conducted only in limited areas, as a large amount of 
data are required to analyze erosion and accretion chang-
es over time, and it is difficult to specify the time of the  

Terr. Atmos. Ocean. Sci., Vol. 29, No. 5, 509-521, October 2018



Sunwoo et al.510

survey (Hussain et al. 2013; Klemas 2013). In addition to the 
advances made in remote sensing technology, multispectral 
satellite imagery has recently emerged as an effective al-
ternative to conventional field surveying. Remote sensing 
can provide timely and accurate geospatial information at a 
regional and global scale; it has thus rapidly become a fo-
cus of research and is used in practical applications (Adam 
et al. 2014; Moser et al. 2016). This digital detection tech-
nique identifies real-world changes based on the differences 
between pixels in images taken on two (or more) separate 
occasions. As such, remotely sensed data are being used in 
a wide variety of environmental studies (Tian et al. 2014). 
Landsat images are commonly used to detect changes due 
to the existence of long-term data sets and near-nadir obser-
vations (Zhu and Woodcock 2014). Braud and Feng (1998) 
identified the Louisiana coastline via threshold level slicing 
and image classification techniques using Landsat Thematic 
Mapper (TM) imagery, and Li and Damen (2010) combined 
the use of Landsat and Satellite Pour l’Observation de la 
Terre (SPOT) to examine variations in coastline morphol-
ogy over time caused by extensive harbor construction and 
advancing land reclamation in the estuary. Despite their 
advantages, Landsat images have a relatively coarse spa-
tial resolution of 30 m, and sometimes have problems in 
accurately characterizing changes that occur within wetland 
regions. This spatial resolution becomes more significant 
when extremely accurate image analysis is required (Huang 
and Friedl 2014).

Recently developed, high spatial resolution (≤ 5 m) 
multispectral satellites provide significantly better LULC 
monitoring at higher order thematic levels (Stroppiana et al. 
2002). The three high-resolution sensors that are commonly 
utilized for such work are IKONOS-2 (Space Imaging Inc., 
launched in 1999), Quickbird-2 (DigitalGlobe Inc., launched 
in 2001), and Orbview-3 (ORBIMAGE Inc., launched in 
2003). These multispectral sensors produce imagery with a 
spatial resolution of nearly 4 m, which is far superior to that 
of medium resolution sensors (i.e., 20 - 250 m). Data pro-
duced by these high-resolution satellites are not only useful 
for accurately assessing coastal wetlands (Yagoub and Kolan 
2006; Adam et al. 2014; Monteys et al. 2015), but also assist 
in gaining an understanding of the impacts of interactions 
between natural and anthropogenic processes (Lee and Shan 
2003). Korea Multi-Purpose Satellite-2 (KOMPSAT-2), 
launched in 2006, is also a high spatial resolution satellite 
with 4-m resolution multispectral bands. It contributes to the 
diversity of high spatial resolution satellite sensors and is ex-
pected to be incorporated in long-term management of water 
resources as well as coastal wetlands. However, only a few 
studies have used KOMPSAT-2 images for mapping wet-
land regions (Rapinel et al. 2015; Nguyen et al. 2017), it is 
therefore necessary to assess the potential application of this 
novel satellite in coastal wetlands. The results of this study 
would subsequently motivate other researchers to compare 

KOMPSAT-2 with other remote sensing satellite sensors as 
well as integrate its use for improving coastal wetland man-
agement (Guo et al. 2017). Moreover, along with the high 
global interest in wetland monitoring with regard to environ-
mental and social impacts (Rundquist et al. 2001), the utility 
of KOMPSAT-2 data can provide intensive information on 
wetland changes due to various environmental disasters and 
anthropogenic activities.

To the authors’ knowledge, this is the first study that 
utilizes a change detection technique with KOMPSAT-2 
data to enable regional-scale, quantitative monitoring of 
coastal wetlands. Three regions with daily minimum to 
maximum tidal ranges were selected for the study, all of 
which are located along the west coast of the Korean Penin-
sula where it meets the Yellow Sea. KOMPSAT-2 images 
were initially classified using an unsupervised classifica-
tion method, and thematic maps were then used to detect 
changes in the three wetland areas according to use of a 
post-classification comparison approach. The three main 
purposes of this study are to: (1) review classification-based 
change detection approaches for use in monitoring coastal 
wetlands on the Korean Peninsula; (2) assess the potential 
application of high spatial resolution KOMPSAT-2 imag-
ery using unsupervised classification and post-classification 
comparison change detection approaches; and (3) analyze 
and evaluate changes in various coastal wetland conditions 
in the Korean Peninsula that are associated with impacts of 
regional human activities and urbanization. It is considered 
that the results of this study, which show detailed temporal 
changes in coastal wetlands, will be useful for regional land 
use managers when formulating improved environmental 
management controls.

2. METHODS

Multispectral KOMPSAT-2 images are available for 
use in monitoring the coastal wetlands on the Korean Penin-
sula. Historical data for use in assisting coastal management 
are often limited or nonexistent in many coastal areas; there-
fore, image sources at a high spatial resolution provided by 
remote sensing offer a valuable opportunity to determine 
the current extent of coastal wetlands and to detect changes 
therein. The procedure of this study is shown in Fig. 1.

2.1 Study Areas

The Korean Peninsula is surrounded by the Yellow Sea 
and the East China Sea. In this study, three separate regions 
(Gyeonggi, Jeonbuk, and Jeonnam; Fig. 2) on the western 
coastline adjacent to the Yellow Sea were studied using 
data from 2008 to 2015. These areas were chosen because 
they experience daily minimum and maximum tidal ranges. 
Each regions contains an area of wetland that was desig-
nated as protected in the 2000s by the integrated Coastal  
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Fig. 1. Procedure of this study.

(a)

(b)(c)

Fig. 2. Locations of the three study areas for KOMPSAT-2 image analysis in the coastal zone of the Yellow Sea, Korean Peninsula.
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Management Plan of the Ministry of Environment, South 
Korea. The Daebudo wetland is located in the Gyeonggi 
region, and it spans approximately 10.6 km along the coast-
line. It hosts a wide variety of ecosystems, and is a habitat 
for migratory birds, rare species of crab, mollusks, and fish. 
The Julpoman and Gochang coastal wetlands are both locat-
ed in Jeonbuk, and span areas of 4.9 and 10.4 km2, respec-
tively. These wetlands are of high conservation value and 
both exhibit extensive biodiversity. The Jeongdo coastal 
wetland is located in Jeonnam and covers a total area of 
31.3 km2. Tidal flats located along Korea’s western coast 
are well developed owing to the macro tidal range (> 4 m) 
and the very gentle bottom slope angle.

2.2 KOMPSAT-2

Korea initiated a space program in 1990 and success-
fully launched its first microsatellite into the Earth’s orbit in 
1992, followed by scientific sounding rockets in 1993 (Kim 
1999). The first Korean Multipurpose Satellite (KOMP-
SAT-1) was launched on 21 December 1999 and completed 
its official mission in 2008. It was succeeded by KOMP-
SAT-2, which was launched in 2005 with multispectral 
high spatial resolution images provision (on a 1-m grid with 
its panchromatic band, and on a 4-m grid for multi-spec-
tral scenes on a 15-km wide swath). Basic information of 
KOMPSAT-2 satellite sensor is shown in Table 1. KOMP-
SAT-2 level 1R provides ephemeris data, including the sat-
ellite’s position, velocity, and attitude angle; this allows for 
direct geo-registration, and provides rational polynomial 
coefficients (RPC) for replacement sensor models (Oh et al. 
2013). The image quality of KOMPSAT-2 data depends on 
the combined use of the on-board satellite system and the 
data-processing system at a ground station. Radiometric and 
geometric corrections were conducted for the image prepro-
cessing of KOMPSAT-2 images (Nguyen et al. 2017).

High temporal resolution satellite images are preferen-
tially used as the primary source in geo-positioning as they 
offer a wide coverage, a short revisit time, and an appropri-
ate spatial resolution. Jeong et al. (2015) examined position-
ing accuracy in detail using ground points generated from 
IKONOS imagery. In this study, two images collected from 
the KOMPSAT-2 satellite for each of the three study areas 

(Gyeonggi, Jeonbuk, and Jeonnam) were used as input data. 
High quality, cloud-free KOMPSAT-2 images with the cor-
responding tide conditions were selected (Table 2). The 
detailed information on the acquisition time and metadata 
of each image was provided by the Arirang Satellite Im-
age Search & Order System (http://arirang.kari.re.kr). The 
tide prediction time was sourced from the website (http://
badatime.com) maintained by the National Oceanographic 
Research Institute.

2.3 Land Cover and Land Use Classification

The LULC maps used for wetland change detec-
tion studies can be obtained by applying the classification 
methods for the remotely sensed images, which categorizes 
the pixels into different classes. Generally, two main ap-
proaches can be used to generate thematic maps: based on 
supervised and unsupervised classification. The fundamen-
tal difference between these two classification techniques is 
that while the training samples with known classified cat-
egories are necessary and regarded as essential input data 
for the supervised classification, they are not required for 
the unsupervised one, which automatically groups pixels 
with similar spectral values into one category based on the 

Features KOMPSAT-2

Spectral Bands

Panchromatic 0.50 - 0.90 μm (Black and White)

MS1 0.45 - 0.52 μm (Blue)

MS2 0.52 - 0.60 μm (Green)

MS3 0.63 - 0.69 μm (Red)

MS4 0.76 - 0.90 μm (Near-infrared)

Spatial Resolution
Panchromatic 1 m

Multispectral 4 m

Temporal Resolution 14 days

Swath Width 15 km

Orbit Sun-synchronous

Altitude 685 km (nadir)

Table 1. Description of KOMPSAT-2 satellite sensor specifications.

Study area Protected tidal flats
Image date

Cloud condition Tide condition
t1 t2

Gyeonggi Daebudo 3 October 2009 4 April 2015 Low tide

Jeonbuk Julpoman and Gochang 5 April 2009 4 October 2014 Cloud - free
0% Low tide

Jeonnam Jeongdo 6 August 2008 15 January 2014 Low tide

Table 2. Description of KOMPSAT-2 multispectral image data acquisition parameters.

http://arirang.kari.re.kr
http://badatime.com
http://badatime.com
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computer’s clustering algorithm (Ozesmi and Bauer 2002). 
The benefits of unsupervised classification are that it can 
be performed easily without training data, thus saving the 
computation time from the training phase; additionally, the 
products of the classification maps can be automatically 
generated even with a large number of used clusters. More-
over, in terms of wetland-related studies, unsupervised clas-
sification has shown an outstanding performance due to the 
concordance of natural regions (Ozesmi and Bauer 2002). 
Consequently, the unsupervised classification method is 
an effective tool to produce high-quality classified images 
when training data are unavailable or difficult to obtain. In 
this study, we employed two commonly used unsupervised 
classification methods, the K-means, proposed by Mac-
Queen (1967), and the Interactive Self-Organizing DATa 
Analysis (ISODATA), introduced by Ball and Hall (1965), 
to generate thematic maps, which were then used as input 
data for the wetland change detection technique.

2.4 Change Detection Technique

One of the most common approaches used for change 
detection is to conduct a post-classification comparisons 
(Foody 2002; Al-doski et al. 2013). In particular, this tech-
nique allows classification that multi-temporal images can 
be independently categorized to generate thematic maps, 
which can subsequently be used to compare classification 
types and identify changes that have occurred on a pixel-by-
pixel basis. In particular, the use of multi-temporal separate-
ly classified images for post-classification comparison can 
reduce the variation in normalizing atmospheric and sensor 
effects for the data collected at different dates (Singh 1989). 
Nonetheless, post-classification comparison techniques 
have certain key limitations. For example, the accuracy of 
results derived from the method depends on the quality of 
each individually classified image (Lu et al. 2004); there-
fore, incorrect results can be produced when using multi-
temporal or multi-sensor images (Foody 2002; Al-doski et 
al. 2013) that require calibration from training datasets to 
provide accuracy and completeness (Hussain et al. 2013). In 
this study, images with high spatial and temporal resolution 
(containing 0% cloud cover) were acquired from KOMP-
SAT-2 to analyze the coastal wetland change detection.

2.5 Accuracy Assessment

An accuracy assessment of the LULC classification, 
which compares the classified images with ground-truth 
data, were investigated herein, to evaluate the accuracy and 
suitability of different classification methods in generating 
thematic maps. In general, the reliability of an accuracy as-
sessment primarily depends on the quality of the reference 
data, implying that choosing appropriate ground-truth data 
with a similar location and collection time as the classified 

images is an important step prior to conducting the clas-
sification process. Reference images can be extracted from 
high-resolution aerial photograph interpretations, other sat-
ellite images, or in-situ measurements using geographic in-
formation system (GIS) data. In this study, ground-truth im-
ages were generated manually from original images using 
the ground-truth regions of interest (ROI), first-hand field 
observations, and land cover reference maps of each of the 
three study areas (Baraldi et al. 2005).

In this study, we conducted an accuracy assessment 
based on the error matrix method also known as the confu-
sion matrix (Moser et al. 2016). The fundamental indicators 
of accuracy included within the error matrix are the overall 
accuracy (OA), which is calculated from the ratio of cor-
rectly classified pixels to the total number of pixels, and the 
Kappa efficiency (Khat), which reflects the difference be-
tween the actual agreement and the agreement expected by 
chance (Cohen 1960).

In addition, both the producer’s accuracy (PA), which 
represents the errors of omission, and the user’s accuracy 
(UA), which represents the errors of commission, were cal-
culated to determine the accuracy for each category of the 
LULC classifcation. Anderson et al. (1976) proposed that a 
good classification must meet the classification criteria with 
OA is over 85%. In this study, more reliable classified maps, 
which employed the K-means and ISODATA unsupervised 
classification methods, were selected for change detection 
in the coastal wetland study regions.

3. RESULTS

The unsupervised classification procedure implement-
ed in this study involved the designing clusters based on 
inherent similarities within the dataset, and then conduct-
ing a subsequent assessment of classification results using 
a change detection technique. Images taken at low tide con-
dition were preferentially chosen in each study area to fa-
cilitate the examination of wetland dynamics. These images 
were obtained during 2009 and 2015 in Gyeonggi, 2009 and 
2014 in Jeonbuk, and 2008 and 2014 in Jeonnam.

3.1 Land Use and Land Cover Classification Maps

The results of the LULC analysis for each study area 
are shown as classification maps in Fig. 3, with the data 
summarized in Table 3. The classification was performed 
using ENVI 5.2TM software by Harris Geospatial Solutions 
for a maximum of thirty iterations, which allowed a conver-
gence threshold of 99.99%. Several factors that may have 
affected the performance and sensitivity of each selected al-
gorithm were examined using trial and error. The classifica-
tion results confirmed that both the ISODATA and K-means 
algorithms showed reliable performances for KOMPSAT-2 
data. No remarkable differences were found in the results of 
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(a)

(b)

(c)

Fig. 3. Results of the land use and land cover classification using five major land cover classes derived from KOMPSAT-2: (a) Gyeonggi from 2009 
to 2015; (b) Jeonbuk from 2009 to 2014; and (c) Jeonnam from 2008 to 2014. The spatial distributions of land use and land cover can explain the 
regional change pattern and differences with time.
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both methods when using 15 km2 images with high tempo-
ral resolution. Therefore, the thematic maps generated using 
the ISODATA algorithm, which is generally known as fine 
tuning through the segmentation and merging of clusters 
(Bahadur 2009; Kassawmar et al. 2016), were selected for 
further analysis. The LULC classification procedure ini-
tially produced numerous different land-cover classes, but 
finally only the five most important ones (water, wetland, 
mixed forest, agriculture, and residential/developed land) 
were utilized in further investigation. Parts of Gyeonggi and 
Jeonnam images overlapped due to the different positions 
used to takes each photograph. Table 3 shows the results of 
a classification comparison between older (2008 or 2009) 
and more recent (2014 or 2015) KOMPSAT-2 images. Pixel 
LULC classification of the 2009 Gyeonggi image was as 
follows: 32.80% of all image pixels are classified as wet-
land, 22.97% as water, 19.68% as mixed forest, 13.52% as 
agriculture, and 11.03% as residential/developed. In 2015, 
the LULC distribution was 39.00% water, 13.97% wetland, 
13.40% mixed forest, 10.26% agriculture, and 23.37% resi-

dential/developed. A small number of misclassified pixel 
values did not perfectly match the classification criteria.

Pixel LULC classification of the 2009 Jeonbuk im-
age was as follows: 23.68% water, 9.53% wetland, 47.93% 
mixed forest, 15.11% agriculture, and 3.79% residential/
developed. LULC classification of the 2014 image showed 
an overall difference of ~0.5 - 3.0%, indicating that no sig-
nificant changes in land use occurred during these years. 
Figure 3b shows similar results for five classes with 5-year 
intervals between each acquisition. In Jeonnam, agricul-
ture decreased by ~6%, while residential/developed areas 
increased by 6%. No other classes showed any significant 
change between 2008 and 2014.

3.2 Validation of Land Classification

An accuracy assessment was conducted for the un-
supervised classification using KOMPSAT data captured 
at Gyeonggi, Jeonbuk, and Jeonnam during 2008 - 2015  
(Table 3). All six classified images showed reasonable  

(a) Gyeonggi 2009 2015

Class name Pixel count Area (km2) Percentage (%) Pixel count Area (km2) Percentage (%)

Water 2266900 36.27 22.97 3841647 61.47 39.00

Wetland 3236686 51.79 32.80 1375830 22.01 13.97

Mixed Forest 1941871 31.07 19.68 1320133 21.12 13.40

Agriculture 1334482 21.35 13.52 1010400 16.17 10.26

Residential/Developed 1088697 17.42 11.03 2301529 36.82 23.37

Total 9868636 157.90 100.00 9849539 157.59 100.00

(b) Jeonbuk 2009 2014

Class name Pixel count Area (km2) Percentage (%) Pixel count Area (km2) Percentage (%)

Water 3414509 54.63 23.64 2944983 47.12 20.39

Wetland 1377149 22.03 9.53 1570723 25.13 10.88

Mixed Forest 6922179 110.75 47.93 6981594 111.71 48.34

Agriculture 2182671 34.92 15.11 2117075 33.87 14.66

Residential/Developed 546737 8.75 3.79 828870 13.26 5.74

Total 14443245 231.09 100.00 14443245 231.09 100.00

(c) Jeonnam 2008 2014

Class name Pixel count Area (km2) Percentage (%) Pixel count Area (km2) Percentage (%)

Water 3615940 57.86 30.56 3469625 55.51 29.32

Wetland 3075401 49.21 25.99 3378047 54.05 28.55

Mixed Forest 1619121 25.91 13.68 1487232 23.80 12.57

Agriculture 2645481 42.33 22.36 1937872 31.01 16.38

Residential/Developed 876361 14.02 7.41 1559528 24.95 13.18

Total 11832304 189.32 100.00 11832304 189.32 100.00

Table 3. Summary of unsupervised land use and land cover classification results from KOMPSAT-2.
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results, with the OA ranging from 87.6 to 95.4%, and Khat 
ranging from 0.82 to 0.88, demonstrating a strong agree-
ment between the obtained thematic maps and the accuracy 
criterion for LULC classification (with OA ≥ 85%) (Ander-
son et al. 1976). The best OA was recorded at Gyeonggi 
(95.4 and 94.04% for the 2009 and 2015 images, respective-
ly), followed by Jeonnam (88.7 and 91.3% for the 2008 and 
2014 images, respectively), and Jeonbuk (90.04 and 87.6% 
for the 2009 and 2014 images, respectively). However, as 
neither OA nor Khat values show the reliability of each in-
dividual class, both PA and UA values were also reported. 
Almost all classes exhibited high PA and UA values in each 
of the three study areas (Table 4). In particular, the wetland 
class had a consistently high accuracy during 2008 - 2015, 
with values ranging from 78.5 to 100% (PA) and 79.8 to 
99.3% (UA). However, the residential/developed class gen-
erally had a medium-to-low accuracy, especially for Jeon-
nam in 2008 (PA: 7.35%) and 2014 (UA: 5.99%).

3.3 Change Detection Analysis

Change detection analysis was conducted using pixel-
based remotely sensed images to precisely identify where 
land use changes had occurred over a specific period of time. 
Classified areas were transferred to two-dimensional arrays 
for calculating the number of pixels. LULC changes in the 
three study areas were compared (Fig. 4). The spatial distri-
bution of Gyeonggi showed that wetland and developed ar-
eas were the dominant LULC classes: wetland areas showed 
a general decrease of 30 km2, equal to ~19% of the total area 
(158 km2), while residential area increased by 20 km2. Water 
was classified as covering ~23 and ~39% of the total area in 
2009 and 2015, respectively. In Jeonbuk, the residential area 
increased by 4.5 km2 and the spatial extent of open water 
decreased by 7.5 km2 from 2008 to 2014. There was an aver-
age change in land use of ~1.48% during this period. These 
results imply that no significant impact from the external  

Gyeonggi Jeonbuk Jeonnam

3 October 2009 4 April 2015 5 April 2009 4 October 2014 6 August 2008 15 January 2014

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Water 100.0 99.9 100.0 100.0 100.0 91.5 100.0 97.3 100.0 97.9 100.0 98.7

Wetland 100.0 94.8 100.0 98.9 78.5 83.5 100.0 79.8 99.1 99.3 99.2 96.6

Mixed Forest 99.2 91.9 100.0 88.5 86.4 93.3 90.8 97.1 53.6 69.7 98.9 99.8

Agriculture 86.1 92.2 86.0 83.1 81.5 93.6 72.7 81.3 83.3 71.6 39.5 90.9

Residential/Developed 42.5 96.7 48.4 64.5 52.2 63.1 35.6 35.2 7.35 39.0 52.5 5.99

OA (%) 95.4 94.04 90.04 87.6 88.7 91.3

Kappa Coefficient 0.93 0.92 0.85 0.82 0.85 0.88

Table 4. Accuracy assessment of the land use and land cover classification for each of the three study areas.

Fig. 4. Comparison of the land use and land cover changes using the spatial distribution pattern over the past five years in each of the three selected 
regions. The Gyeonggi region represents more noticeable changes in land use and land cover relative to the others. Increases in areas of the residen-
tial/developed class in all regions show that population and urban growth has affected the coastal zone significantly.
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environmental effects occurred during this 5-year period, 
such as economic trends and population growth, which affect 
land use change. Agriculture and developed areas were dom-
inant in Jeonnam and showed an average combined change 
of 5.8%. Agricultural land occupied ~22.4 and ~16.4% of the 
total area in 2008 and 2014, respectively, whereas the corre-
sponding values for developed land were ~7.4 and ~13.2%.

We examined the relationships between population 
growth and land cover changes, using published reports on 
population and growth rate data from 1980 to 2010 (Korean 
Statistical Information Service 2010, http://kosis.kr/). The 
Gyeonggi regions shows a rapid increase in population. The 
population of Jeonbuk and Jeonnam shows a decrease (Fig. 
5). The total population in Gyeonggi in 2010 was six times 
more than that of Jeonbuk and Jeonnam, and a significantly 
higher population growth rate was evident (Table 5). It is 
considered that the expansion patterns of developed areas re-
flected industrial development, as changes to the proportion 
of residential land cover over the studied time period were 
21.11% in Gyeonggi, 1.95% in Jeonbuk, and 5.77% in Jeon-

nam. The Korean National Statistics Office determined an 
average population growth rate from 1980 to 2010 was 1.03 
in Gyeonggi, 0.99 in Jeonbuk, and 0.97 in Jeonnam (Table 
5). Population growth and urban development thus appear 
to be the primary factors driving the artificial conversion of 
wetlands. Additionally, in 1987, the Shihwa Reclamation 
Project was commenced to create agricultural land, urban 
areas, and industrial complexes in wetland regions. Recla-
mation projects for urban development transform rural areas 
(agriculture, forest, and bare soil) into urban areas (Hasse 
and Lathrop 2003; Potere et al. 2009). Reclamation proj-
ect continue to be undertaken in Gyeonggi towards build-
ing the city. Coastal wetland continue to evolve not only in 
tidal areas, but also in the regions undergoing developments 
such as large-scale reclamation and urbanization. However, 
results showed that Jeonbuk and Jeonnam have undergone 
a considerable population decrease and a slow rate of land 
cover change. Both regions have experienced a low rate of 
population growth, which is likely because they have differ-
ent geographical characteristics to metropolitan regions. In 

Fig. 5. Population change from 1980 to 2010 five-year growth rates for each study areas. The Gyeonggi regions shows a rapid increase in population. 
The population of Jeonbuk and Jeonnam shows a decrease.

Area
Total population (population growth rate)

1980 1985 1990 1995 2000 2005 2010

Gyeonggi
4930335 4792617 6154359 7637942 8937752 10341006 11196053

(0.99) (1.05) (1.04) (1.03) (1.03) (1.02)

Jeonbuk
2286720 2201265 2069378 1900558 1887239 1778879 1766044

(0.99) (0.99) (0.98) (1.00) (0.99) (1.00)

Jeonnam
3778777 3747506 2506944 2066109 1994287 1815174 1728749

(1.00) (0.92) (0.96) (0.99) (0.98) (0.99)

Table 5. Population change and comparison of five-year growth rates for each of the three 
study areas.

http://kosis.kr/
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addition, the tidal flats (Julpoman, Gochang, and Jeongdo) 
located in the two regions have been recognized as wetland 
areas that are of ecological importance. In 2006, the Ministry 
of Environment implemented a policy relating to societal and 
environmental problems arising from development projects 
in Jeonbuk and Jeonnam. Therefore, although modernization 
affected the development of agricultural and mixed forest 
areas, the coastal wetlands did not experience much change.

4. DISCUSSION

The greatest changes occurred in wetland and residen-
tial/developed categories from 2009 to 2015 in the Gyeo-
nggi area. The wetland class decreased by 20%, while the 
residential/developed class increased, implying that agricul-
ture and mixed forest land-use types were converted into 
residential/developed areas (Fig. 3a). Field mapping reveals 
that development and urbanization led to a decrease in the 
areal extent of wetland and mixed forest. It is worth not-
ing that unsupervised classification was useful for verify-
ing land-use change using high-resolution satellite images 
such as KOMPSAT. It can be inferred that the growth of 
developed areas, which has caused land use change, relates 
to urban expansion in a positive economic environment (Po-
tere et al. 2009; Zhao et al. 2010). To enable appropriate 
urban planning, it is necessary to firstly collect data relat-
ing to population growth, urban use, and wetland change 
(Ahmad and Lakhan 2012). This is particularly important 
for determining how LULC changes affect environmental 
management and urban development. The condition of the 
environment, including regions of natural wetland, is close-
ly related to human activities. These data prove that popula-
tion growth and urbanization have the strongest effect on 
LULC changes. The areas of mixed forest in Jeonbuk and 
Jeonnam were similar, although the images were acquired 
in autumn (October) and summer (August) in Jeonbuk, and 
spring (April) and winter (January) in Jeonam (Figs. 3a, b). 
This indicates that the effects of seasonal differences are 
insignificant compared to external driving factors such as 
urbanization and land reclamation.

High OA and Khat values for the Gyeonggi, Jeonbuk, 
and Jeonnam images indicate the potential of applying high 
spatial resolution KOMPSAT imagery to LULC classifica-
tion, even when using an unsupervised approach (Table 4). 
Although generally reliable, the classification procedure 
provided poor classification accuracy for residential regions, 
which may be the result of highly heterogeneous urban areas 
distribution and sub-pixel mixing of land cover types be-
cause the spectra of objects can have similar properties due 
to atmospheric and topographic effects (Foody 2000). In ad-
dition, spectral inseparability is a major factor contributing 
to misclassification in residential areas when using KOMP-
SAT images with a four-band composition. Nevertheless, 
the accuracy of wetland classification was likely due to its 

homogeneous distribution in the analyzed images, which in-
dicates the effectiveness of using this technique in wetland 
change detection along the shoreline of the Yellow Sea.

Matrices showing overall LULC changes in Gyeonggi 
from 2009 to 2015, in Jeonbuk from 2009 to 2014, and in 
Jeonnam from 2008 to 2014 are shown in Table 6. Clas-
sified LULC changes were defined based on differences 
in the numbers of pixels between each acquisition date.  
Table 6a shows that 2 km2 of water was converted to wet-
land and mixed forest between 2009 and 2015. In Jeonbuk, 
a total area of 6.15 km2 of water was converted to wetland, 
mixed forest, agriculture, and developed areas between 
2009 and 2014. Reflectance values (including those for wa-
ter components) are generally classified as water, although 
when sea waves surge into wetland along a coastal line, the 
associated pixels may be erroneously classified as mixed 
forest or wetland. This is supported by the fact that observa-
tions of changes from water to wetland and/or mixed for-
est almost always occurr near wetland boundaries. In addi-
tion to this tidal effect, identification errors may also cause 
other unusual classification changes. For example, between 
2008 and 2015, developed areas in Jeonnam covering 2.8 
and 3.9 km2 seemingly changed to areas of mixed forest and 
agriculture, respectively. It is considered that such changes 
are most likely to be associated with omission errors in the 
KOMPSAT-2 change map classification, or processing er-
rors and edge effects.

Coastal wetlands provide critical ecological services; 
they play an important role in storing terrestrial carbon and 
are a habitat for marine and terrestrial life. Although the 
Ramsar Convention was signed in 1971 to promote the con-
servation and sustainable use of wetlands, they have since 
been drained or transformed for various reasons throughout 
the world. Urbanization is most likely the major cause of 
wetlands destruction. Lee et al. (2006) and Patenaude et al. 
(2015) reported that urbanization exerts significant influ-
ences on wetland ecological functions and quality. A rapid 
reduction of approximately 20% over the 6-year period oc-
curred in coastal wetland regions in Gyeonggi (close to ur-
ban areas); raising a need for systematic monitoring in the 
future to enable a comparison between changes in Jeonnam 
and Jeonbuk. LULC classification using KOMPSAT images 
shows the potential of enabling wetland mapping and moni-
toring, as well as defining wetland regions using the means 
of remote sensing. KOMPSAT images with high classifica-
tion accuracies could be applied to other wetlands that have 
not been previously monitored using high-resolution remote 
sensing images.

5. CONCLUSIONS

High OA and Khat values were retrieved from KOMP-
SAT-2 images of three regions (Gyeonggi, Jeonbuk, and 
Jeonnam) taken between 2008 and 2015. These results  
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(a) Gyeonggi

2009
2015

Water Wetland Mixed Forest Agriculture Residential/Developed Total area

Water 0.00 1.54 1.11 0.92 2.58 6.15

Wetland 27.65 0.00 3.04 2.38 7.44 40.51

Mixed Forest 1.70 4.42 0.00 4.45 10.90 21.46

Agriculture 1.49 2.76 3.06 0.00 8.99 16.30

Residential/Developed 0.52 2.04 4.46 3.47 0.00 10.50

Total area 31.36 10.76 11.67 11.22 29.91

(b) Jeonbuk

2009
2014

Water Wetland Mixed Forest Agriculture Residential/Developed Total area

Water 0.00 0.92 1.07 1.90 3.13 7.02

Wetland 22.11 0.00 4.43 3.17 9.63 39.33

Mixed Forest 1.94 3.29 0.00 4.08 9.93 19.24

Agriculture 1.58 1.53 2.09 0.00 4.15 9.35

Residential/Developed 0.00 0.00 0.00 0.00 0.00 0.00

Total area 25.63 5.73 7.59 9.15 26.84

(c) Jeonnam

2008
2014

Water Wetland Mixed Forest Agriculture Residential/Developed Total area

Water 0.00 12.50 1.79 1.84 2.44 18.58

Wetland 12.05 0.00 3.14 3.07 2.76 21.02

Mixed Forest 1.15 3.36 0.00 8.84 4.45 17.80

Agriculture 2.10 6.97 7.94 0.00 12.02 29.03

Residential/Developed 0.94 3.03 2.82 3.95 0.00 10.74

Total area 16.24 25.86 15.69 17.71 21.67

Table 6. Matrices of land use and land cover changes (km2) at each of the three study areas.

demonstrate that LULC classifications using high spatial res-
olution KOMPSAT-2 data can be used to produce accurate 
maps of landscape change and effectively perform change 
detection analysis. Changing patterns of LULC classifica-
tion along the coastal boundary of the Korean Peninsula 
with the Yellow Sea were evaluated by: (1) classifying the 
proportion of separate land-use types in each region, includ-
ing coastal wetland, from 2008 to 2015; (2) quantitatively 
assessing change detection maps; and (3) analyzing the wet-
land changes in associated with anthropogenic activities and 
urbanization. The Gyeonggi region showed a decrease in 
agricultural, mixed forest, and wetland areas over the 5-year 
study period in relation to an enormous increase in residen-
tial/developed areas. Reclamation projects and population 
growth induced by rapid urbanization resulted in a sud-
den change in land usage. In contrast, the rates of wetland 
change in Jeonbuk and Jeonnam were relatively small (~2 

- 6%) compared with change in Gyeonggi (~20%). Change 
in land use after 2006 appear to be have been influenced by 
environmental protection policies adopted to protect coastal 
wetlands such as those in Jeonbuk and Jeonnam.

This study quantifies land cover change patterns in the 
coastal zones, with the aim of introducing the use of KOMP-
SAT-2 imagery and evaluating its application with regard to 
wetland monitoring. Further studies will attempt to show 
that high spatial resolution KOMPSAT-2 images have con-
siderable potential to provide accurate and economical map-
ping of ground conditions. Research into the application of 
remote sensing to geographical features has led to the de-
velopment of environmental monitoring data, and reliable 
LULC classification techniques in coastal zones. Results of 
such studies are essential for planning the sustainable usage 
of natural resources and the environment. LULC informa-
tion derived from KOMPSAT-2 image analysis can also be 
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used in efficient coastal management planning, which would 
subsequently lead to better-informed policy decisions.
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