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AbSTrAcT

In probabilistic seismic hazard analysis (PSHA), the standard practice is to se-
lect a set of appropriate ground motion prediction equations (GMPEs) and assign 
weights on the logic tree, especially for regions where strong motion data are sparse 
and where no indigenous GMPE exists. Subjectively assigning weights to a set of 
models usually has the disadvantage of not obtaining mutually exclusive and collec-
tively exhaustive models because of sparse or unavailable data. Therefore, the devel-
opment of logic tree weightings in PSHA remains a major challenge. In this study, a 
distance metric measure for GMPEs is first analyzed to show how a set of GMPE’s 
prediction models can be partially reconciled by using high-dimensional information 
visualization techniques. Visualization of a large suite of GMPEs onto a 2-D graphi-
cal map provides a powerful theoretical framework that can guide the selection of a 
set of representative models. These models are considered mutually exclusive and 
collectively exhaustive, and have the ability to represent the center, body, and range 
of ground-motion distribution in a logic tree analysis. Second, determination a set of 
weights for PSHA are estimated based on the residuals, likelihood and EDR-index 
which are known as data – driven weight. The other weight type is non-data driven 
which is calculated based on the probability of a random model generated on a Sam-
mon’s map. The methods presented here, that improve consistency in the weight 
assignment, can help to reduce overall epistemic uncertainties and offer a way of 
assigning weight on the logic tree. Finally, an example for assigning the weights on 
the logic tree for PHSA are discussed.
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1. InTroducTIon

The island of Taiwan is located on the complex bound-
ary between the Eurasian Plate and the Philippine Sea Plate 
(Wu et al. 2013). Figure 1a shows the tectonic setting of 
Taiwan. The Philippine Sea Plate is moving towards the 
northwest and subducting beneath the Eurasian Plate along 
the Ryukyu trench. South of Taiwan the Eurasian Plate is 
being subducted beneath the Philippine Sea Plate along 
the Manilla trench. The movement was studied at a rate of 
80 mm yr-1 of the Philippine plate (Seno et al. 1993; Yu 
et al. 1997), and thus has been caused high seismicity on 
the island (Tsai 1986). According to the Central Weather 
Bureau (CWB), more than 18000 seismic events annually 

strike the island with approximately 1000 felt earthquakes. 
On average, 50 earthquakes occur per day; most of which 
are shallow crustal earthquakes with depth range from 0 to 
30 km. More than 425 destructive earthquakes on the island 
have recorded in the seismic areas of Taiwan since 1983 
as recorded in the database. These include shallow crustal 
earthquakes and subduction zone earthquakes. Considering 
the seismic activity in this area, probabilistic seismic hazard 
analysis becomes a very important issue in most of the engi-
neering constructions.

Probabilistic seismic hazard analysis (PSHA) (Cor-
nell 1968; McGuire 2008) is widely used for evaluating the 
seismic risk at a specific site of an engineering project, and 
for estimating seismic loads. This is typically done using 
ground motion prediction equations (GMPEs), which can 
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generally be expressed as mathematical functions relating 
the peak ground motion (PGA), or the response spectral ac-
celeration, to earthquake related parameters such as magni-
tude (M), distance (R), etc. For a given site, one can select 
GMPEs published in the literature that satisfy the minimum 
criteria proposed by Cotton et al. (2006) and later revised 
by Bommer et al. (2010) for use in PSHA. In general, the 
predictions of GMPEs will differ from each other and these 
differences can be interpreted as epistemic uncertainty in 
median prediction, which is a major contributor to the over-
all epistemic uncertainty of the seismic hazard at a low ex-
ceedance rate (Toro 2006).

In this study, for the analysis of epistemic uncertainty 
associated with GMPEs in Taiwan area, we consider only 
shallow earthquakes relevant to the development of GMPE 
by selecting the events with magnitude range from 3.5 to 
7.65 and with the depth range from 0 to 50 km. The poorly 
sampled data was not selected; as a result, a total number 
of 13423 recordings obtained from 158 earthquakes can be 
considered depending on the model developers. 78 of which 
are reverse faulting, 23 of which are normal faulting, and 
57 of which are strike-slip faulting. Figure 1b shows the 
magnitude-distance distribution of data that was used for 
the adjustment/development process for general case. The 
adjustment/development process was performed for each of 
the original GMPE using the same database, but the number 
of records used to adjust each model is substantially differ-
ent from each other.

The adequate quantification of epistemic uncertainties 
is an important task in PSHA concerning how to obtain the 
center, body, and range of the technically defensible inter-

pretations (the CBR of the TDI) of both the seismic source 
model and the GMPEs. This can usually be done by em-
ploying a logic-tree framework in which different weights 
will be given to each branch of the logic tree where the can-
didate GMPEs exist. There has been considerable progress 
recently regarding various aspects of logic tree analysis and 
GMPEs for PSHA. For example, the likelihood (LH)-based 
method, the average sample log-likelihood (LLH) proposed 
by Scherbaum et al. (2004, 2009), and recently the Euclide-
an distance-based ranking (EDR) method suggested by Kale 
and Akkar (2013) have become useful tools to help experts 
to judge the applicability of different GMPEs to a specific 
region when the observed ground motion data are known. 
Atkinson et al. (2014) introduced the so-called “scale-back-
bone approach” in which a single GMPE is selected and 
scaled up/down by changing its magnitude and distance to 
cover the range of epistemic uncertainty. This approach pro-
vides a method to develop a set of GMPEs that are mutually 
exclusive and collectively exhaustive in terms of the ground 
motion amplitude of a given magnitude and distance, but 
that do not capture the range of different scaling with mag-
nitude and distance (GeoPentech 2015).

Whether hazard analysts choose to use different GMPEs 
or a scaled back-bone approach, they are still tasked with as-
sessing the center, body, and range of epistemic uncertainty. 
Scherbaum et al. (2010) proposed using high-dimensional 
visualization techniques to provide a graphical representa-
tion of different GMPEs. They used Sammon’s map (Sam-
mon 1969) as a tool to project median GMPE prediction 
onto a two-dimensional map, where each GMPE can be vi-
sualized as a single point. A set of GMPEs on the map can 

(a) (b)

Fig. 1. (a) Tectonic setting of Taiwan (Wu et al. 2013), (b) general data used for this study.
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be thought of as a two-dimensional projection of the GMPE 
model space. The Sammon’s map approach can also help to 
develop a large suite of new models from existing GMPEs, 
and thus lead to a continuous distribution of the median 
GMPEs that comprise the space where the assessment of 
center, body, and range should be based.

In this paper, after reviewing the use of mapping 
GMPEs using the work of Scherbaum et al. (2010), GeoPen-
tech (2015), Kuehn et al. (2015) for PSHA, the ground mo-
tion space of the CBR of the TDI of the GMPEs is assessed 
through a set of candidate GMPEs and applied to Taiwan. 
A metric to measure the distances between GMPEs is de-
scribed and how these distances can be interpreted in a man-
ageable way will be presented. Finally, logic tree weights 
for median GMPEs based on either the available data or the 
common form models are developed. The weights are care-
fully examined and judged so that they are adequately ex-
plainable with regards to the center, body, and range of the 
technically defensible interpretation of the GMPE predic-
tion. The weighting scheme provides guidance and offers a 
method of assigning weights to the logic tree, and the aver-
age weight is suggested for use in PSHA.

2. orIGInAl GMPES And cAndIdATE GMPE 
ModElS

The most important works in PSHA are the selection 
of a number of GMPEs, their adjustment to a specific tar-
get region and/or site, and potentially testing them against 
existing observations. In this study, a set of GMPE models 
is selected under the framework of Taiwan SSHAC level 3 
projects. Then, these GMPE models were adjusted by modi-
fying their key modeling parameters and calibrating them to 
match the empirical data in Taiwan. These adjusted/devel-
oped GMPEs are listed as follows:
(1)  Adjusted GMPE of Abrahamson et al. (2014), referred 

to as ASK14adj.
(2)  Adjusted GMPE of Boore et al. (2014), referred to as 

BSSA14adj.
(3)  Adjusted GMPE of Chiou and Youngs (2014), referred 

to as CY14adj.

(4)  Adjusted GMPE of Idriss (2014), referred to as Id-
14adj.

(5)  Adjusted GMPE of Akkar et al. (2014), referred to as 
ASB14adj.

(6)  Adjusted GMPE of Bindi et al. (2014), referred to as 
Bi14adj.

(7)  Adjusted GMPE of Campbell and Bozorgnia (2014), re-
ferred to as CB14adj.

(8)  Newly developed GMPE of Chao et al. (2017), referred 
to as Chao17.

(9)  Newly developed GMPE of Phung et al. (2017), referred 
to as Phung17.

The base-case function forms of these GMPEs can be 
found in Appendix A. Among these seven adjusted GMPEs, 
four of the NGA-West2 models (ASK14, BSSA14, CB14, 
and CY14), originally known as the global models were de-
veloped for multiple regions, which are more complicated 
than the other three models (Id14, ASB14, and Bi14). The ad-
justed GMPEs were performed using the events with Mw less 
than 6.5. The minimum number of model’s parameters were 
sought to analyze against Taiwan data, while other model’s 
parameters associated with the terms controlling, e.g., large 
magnitude scaling and non-linear site effect were held fixed 
to the values determined from the original GMPEs.

Table 1 summarizes the important features of the ad-
justed coefficients used in the adjusted GMPEs. Chao17 and 
Phung17 models are the newly developed using the same 
database with the adjusted models. However, their regres-
sion approaches were different from each other. Chao17 
and Phung17 were regressed for many more model’s pa-
rameters as compared to the adjusted models. Moreover, 
Phung17 was developed by using a data set mainly from 
Taiwan earthquake events and partially from foreign events 
(for M > 6.5), while Chao 17 used only Taiwan ground mo-
tion data. The major differences in data subset used for the 
development of candidate GMPEs can be briefly summa-
rized below.

For adjusted GMPEs, Taiwan data was used with fol-
lowing criteria:
(1)  Consider main shock events only with at least 15 num-

ber of recordings per event.

GMPE constant Style of faulting Magnitude-Scaling distance-Scaling Ztor-Scaling VS30-Scaling Z10-Scaling

ASK14 a1 a11, a12 a4, a6 a2, a17 a15 a10 a43, a44, a45, a46

BSSA14 e0 e1, e2, e3, e4 Mh c3 none C f6, f7

CB14 c0 c8, c9 c1, c2, c3 none none c11 none

CY14 c1 c1a, c1c, c1b, c1d c3 cγ1, cγ2 c7, c7b φ1 φ5

Id14 a1 φ a2, a3 b1, b2, γ none β none

ASB14 a1 a8, a9 a2 none none b1 none

Bi14 e1 SofN, SofR, SofS b1, b2 h, b3 none γ none

Table 1. Adjusted coefficients used in the candidate GMPEs.
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(2)  Remove Chi-Chi main shock event.
(3)  Consider all data in the distance range 0 - Rmax in which 

Rmax is maximum usable distance available in the data-
base.

For Phung17 model, a combined NGA-West2 and Tai-
wan data set was used with following criteria:
(1)  Consider all crustal events including main shock and af-

tershock event from Taiwan.
(2)  Select magnitude events with M range from 6.5 to 7.9 

and Rrup range from 0 to 150 km from NGA-West2 da-
tabase.

(3)  Select the events with at least 5 recordings.
(4)  Consider all data in the distance range 0 - Rmax in which 

Rmax is maximum usable distance available in the datab-
se.

For Chao 17 model, Taiwan data was used with fol-
lowing criteria:
(1)  Consider all crustal events including main shock and af-

tershock event from Taiwan.
(2)  Consider all data in the distance range 0 - Rmax in which 

Rmax is maximum usable distance developed by the de-
veloper.

The adjusted/developed GMPEs from now onwards 
are called as the candidate GMPEs and are used for the case 
of study. Comparisons between the original GMPEs and the 
adjusted/developed models are shown in Fig. 2. In Fig. 2, 
the plots with a 5% damped response spectrum for the mag-
nitude scaling (Rrup = 30 km), the distance scaling (M = 7), 
the period of T = 0.01 sec (or PGA), and for vertical strike-
slip earthquakes and engineer rock site conditions (VS30 = 
760 m s-1) are shown.

3. SAMMon’S MAPPInG for PSHA

Sammon’s mapping (Sammon 1969) is a non-linear di-
mensional reduction algorithm to detect data structure and 
is a tool to project a vector of median ground motion predic-
tion from a high-dimensional ground motion space onto a 
two-dimensional ground motion space. The median GMPE 
prediction for each model on a high-dimensional ground 
motion space is represented by a vector whose component 
is the ground motion intensity (e.g., PGA) estimated with 
many different predictor variables such as magnitude and 
distance. The median GMPE prediction for two models on 
two-dimensional ground motion space is represented by two 
points, where the relative distance between them is nearly 
the same as those distances in the high-dimension ground 
motion space. The Sammon’s mapping configuration can 
be obtained by minimizing the misfit function (E) that mea-
sures the error between the Euclidian distance of the GMPE 
on the high-dimensional space and the Euclidian distance of 
the GMPE on the two-dimensional space. The iterative pro-
cess is continued until the objective function reached 10e-5 
or less so as to provide a sufficiently accurate projection 

that maintains GMPE structure from the high-dimension to 
the 2-D map. The misfit function is described as follows in 
Eq. (1):
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where ij
map
D  corresponds to the GMPE-distance between 

GMPEs i and j on the Sammon’s mapping configuration with 
two dimension, and ij

GMPED  is the GMPE-distance between 
GMPE model-i and model-j in high-dimension ground mo-
tion space which corresponds to the Euclidian distance (the 
L2 norm) and can be expressed below in Eq. (2)
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where wk denotes the weight given to the kth scenario. If 
the GMPE-distances treat each magnitude/distance scenar-
io equally with uniform weight (wk = 1), the unweighted 
GMPEs map is generated even though some of them may 
not contribute to the hazard. For PSHA, we are interested in 
hazard space, and thus a map resulted by weighting GMPE-
distances is considered for the contribution of magnitude/
distance scenarios to the hazard. For this, wk is obtained 
from the de-aggregation matrix for the hazard site, and the 
GMPE-distances are now weighted by their contribution to 
the hazard. The weight, wk according to GeoPentech (2015) 
is defined in Eq. (3). 

. ,w DEAGG M R NS0 5 1
k k k= +^ h8 B (3)

where NS is the total number of scenarios, Mk and Rk 
are the magnitude and distance of the kth scenario, and 

,DEAGG M Rk k^ h is the hazard de-aggregation matrix for 
the bin containing the Mk and Rk. Figure 3 shows an average 
hazard de-aggregation for T = 0.01 sec and 10000 return 
period, and this is resulted from average of seven adjusted 
models and two newly developed models with SSC model 
utilizing in Taiwan for the hazard sites.

For the purpose of comparing the differences among 
GMPEs, each GMPE is evaluated at the hazard scenarios 
(magnitude-distance pairs) that is shown in Fig. 3 for T = 
0.01 sec. The GMPEs are evaluated at moment magnitude 
M = 5.1, 5.3, …, 8.3; rupture distance Rrup =1, 3, 5, 7, 9, …, 
294 km; and depths to the top of the rupture Ztor = 1, 3, 5, 7, 
9, …, 32.5 km. The depth to the top of the rupture Ztor is set 
to the limit of 32.5 km because the shallow crustal events 
that have occurred in Taiwan are mostly within a depth of 
35 km. Hence, each GMPE is evaluated at 16 magnitudes, 
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19 distances, and 11 depths, leading to a total of 3344 sce-
narios. Consequently, one can represent each GMPE as a 
point in a 3344-dimensional ground motion space, where 
each coordinate corresponds to the prediction for one par-
ticular magnitude-distance pair. For the Rjb – based GMPEs, 
the predictor variable Rjb can be easily calculated from Rrup 
and Ztor since the dip angle is known, while sites with nega-
tive Rjb are not included in the calculation. The reverse, nor-
mal and vertical strike – slip faulting styles are randomly 
assigned for 3344 sites, and this is approximately equivalent 
to one third of the computed sites for each style of faulting. 
All sites are located on the footwall side with an assumed 
dip angle of 45° for the reverse and normal fault types. The 

site condition is set to VS30 = 760 m s-1. All other predictor 
variables, such as the fault rupture width (W) and the depth 
to a shear wave velocity horizon of 1000 m s-1 (Z1.0), are set 
to the default values for the GMPEs as required.

In Fig. 4, the resulting Sammon’s map is shown for 
comparison between the original GMPEs (seven models) 
and the candidate GMPEs (nine models) using unweighted 
GMPE-distances and weighted GMPE-distances with the 
same scenarios. It can be seen that when using the weighted 
GMPE-distances, the relative distances between the GMPEs 
become smaller as compared to that used unweighted GM-
PE-distance. This is due to significant contribution of large 
magnitude and short distance de-aggregation scenarios to 

(a) (b)

Fig. 2. Plots showing for (a) magnitude scaling and (b) distance scaling at the Rrup of 30 km and M of 7.0 for the periods of T = 0.01 sec (or PGA) 
under vertical strike slip earthquake and engineer rock site conditions (VS30 = 760 m s-1). The model abbreviations given in the legend are used 
henceforth.

(a) (b)

Fig. 3. (a) The magnitude/Ztor - depth scenarios and (b) the magnitude/distance scenarios used to estimate the unweighted and weighted GMPE-
distances. The weights, wk (T = 0.01 s and 10000 years RP) from average de-aggregation matrix resulted from average of seven adjusted models and 
two newly developed models with SSC model utilizing in Taiwan for the hazard sites. Color code indicates the contribution of magnitude-distance 
scenarios to hazard site.
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the hazard, which can already be seen in Fig. 2. In other 
words, GMPEs are now compared using more focused range 
– the range that higher de-aggregation weights are given to 
large magnitude-short distance scenarios but not given to 
small magnitude – long distance scenarios. In overall, the 
changes of the candidate models are relatively minor with 
relative configuration of the models similar for both maps. 
However, the changes of the original models are seen to 
be more significant because one possible reason is that the 
de-aggregation weights were computed from the candidate 
models but not from the original models. Another observa-
tion is that the directions in which the scaling of the GMPEs 
changes are not the same between two maps any more. In 
particular, the average model over the whole magnitude and 
distance range is not necessarily the average model over the 
weighted range. Nevertheless, the map calculated based on 
the weighted GMPE-distances provides valuable informa-
tion about the relative differences between the GMPEs over 
hazard relevant magnitude/distance ranges.

It is believed that the map calculated based on the 
weighted GMPE-distances provides valuable informa-
tion about the relative differences between the GMPEs 
over relevant hazard magnitude/distance ranges. From the 
description of Sammon’s mapping, the relative positions 
(or distance) between two GMPEs on the map does have 
a meaning which corresponds to the relative positions in 
high-dimensions. Therefore, they can be rotated and mir-
rored without changing the ij

map
D .

4. AnAlySIS of EPISTEMIc uncErTAInTy 
THrouGH THE InTErPrETATIon of GMPES 
on SAMMon’S MAP

In this section, Sammon’s map is generated for the 
original candidate GMPEs (seven models) and the candidate 
GMPEs (nine models) using the weighted GMPE-distance. 
The weighted map, which considers magnitude/distance 
scenarios that contribute to the hazard from hazard disag-
gregation, is used to quantify the epistemic uncertainty. To 
facilitate the interpretation of the map, reference models are 
also added together with the set of thirteen GMPEs. These 
reference models are defined as (Kuehn et al. 2015):
(1)  The average of all models with uniform weights, 

Aver N w GMPE1
i ii

N
1= =/ , called Aver.

(2)  Up-down scaled version of the average model, Aver + 
lna, with a = 0.67, 0.8, 1.25, and 1.5, called S--, S-, S+, 
and S++ (or S direction), respectively.

(3)  The average model with the change in magnitude term, 
Aver + b(M - 6.5), with b  = -0.4, -0.2, 0.2, and 0.4, 
called M--, M-, M+, and M++ (or M direction), respec-
tively.

(4)  The average model with the change in distance scaling, 
Aver + c(R - 30), with c  = -0.005, -0.0025, 0.0025, and 
0.005 hereafter called R--, R-, R+, and R++ (or R direc-
tion), respectively.

The scaling factor can be reasonably selected such that 
the reference models are approximately allocated symmetri-
cally around the Aver- model. The scaling of these reference 

(a) (b)

Fig. 4. Sammon’s map showing for comparison of GMPEs: (a) based on un-weighted GMPE-distance, (b) based on weighted GMPE-distance. The 
original GMPEs are denoted by colored diamonds, and the candidate GMPEs are denoted by colored dots.
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models is shown in Fig. 5; the S scaled models differ by a 
constant, the M scaled models are shown with the change in 
magnitude scaling rate, and the R scaled models are shown 
with the change in distance attenuation rate. These reference 
models can be used to orientate the map in an explainable 
way. First, the average model is set at the center of the map, 
i.e., point {0, 0}, and then the map is rotated or mirrored 
so that the up/down scaling is aligned horizontally along 
the x-axis with the model S++ on the right (along positive 
direction). Second, the positions of the positive M scaled 
is oriented along the positive y-axis. Finally, the R scaled 
models on the map are automatically arranged depending on 
the positions of the M and S scaled models.

Figure 6a shows the Sammon’s map for a set of GMPEs 
including the candidate models and the original models to-
gether with reference models. The map reveals that models 
CB14adj, BSSA14adj, Id14adj, and Id14 are separated from 
the other models. Comparison with the reference models 
shows that CB14adj and BSSA14adj are close to the S-- and 
the S- model, which is the average model down-scaled by 
0.67 and 0.8, respectively. This can already be seen in Fig. 1  
where the CB14adj is consistently lower than the other 
models. In general, the reference models help with the inter-
pretation of directions in which GMPEs changed in a sys-
tematic way. This allows us to quickly assess the difference 
between GMPEs over the wide magnitude/distance range 
used to generate the map.

For the purposes of assessing the changes between the 
original models and the adjusted models from the map, one 
can observe in Fig. 6a that pair models CB14adj - CB14, 
BSSA14adj - BSSA14, and ASK14adj - ASK14 have 
roughly appeared along the S direction, which indicates 
that they differ by a constant. The pair model of CY14adj 
- CY14 has appeared generally in the R direction, which is 
demonstrated that the model of CY14 is adjusted to scale 
in distance attenuation. The CY14adj model appeared to be 
close to the R-- model implying that it has stronger attenu-
ation with distance than its original model. The Id14adj has 
similar attenuation with its original model, but has stronger 
magnitude scaling as it moves closer the location of M+. 
On the other hand, the model pairs ASB14adj - ASB14 and 
Bi14adj - Bi14 have appeared in all scaling references, but 
their relative distance is small compared to the other pairs.

Another aspect is that one can also identify three 
GMPEs, i.e., BSSA14, CB14adj, and CY14adj, which are 
very different in scaling and are oriented in different ref-
erence directions on the Sammon’s map. Their magnitude 
scaling and distance scaling is portrayed in Figs. 6b and c. 
The BSSA14 and CB14adj models are more or less paral-
lel in both magnitude and distance scaling because they are 
approximately up/down scaled versions of each other. That 
is why they align roughly in the same directions as the S++, 
S-- models. On the other hand, the BSSA14 and CY14 have 
less similar overall ground motion, but their magnitude scal-

ing is very different. Hence, in Figs. 6b and c, they differ 
in their y-coordinate, which corresponds to differences in 
magnitude scaling, as evidenced by the reference models.

The Sammon’s map shown in Fig. 6a can help us to 
discover regional differences in associated median GMPE 
predictions. Under the scenarios considered in Fig. 2, one 
can construct three ellipses by using: (1) the candidate mod-
els, (2) the original models, and (3) combined the candidate 
models and the original models. The ellipses are subjective-
ly constructed using the fit to the polygons (closed-dashed 
lines) from individual group of GMPEs. The range shown in 
Fig. 6d can cover all the models from each individual group. 
For example, considering an ellipse that encloses all the 
candidate models, the ellipse covering all candidate GMPEs 
is used to quantify the range of epistemic uncertainty as-
sociated to median prediction for Taiwan PSHA. It defines 
the mean to be at the point {-0.14, 0.1}, and the range to 
be an ellipse with a half axis of length 0.47 in the major 
direction and 0.22 in the minor direction. On the other hand, 
Fig. 6d also reveals that the epistemic uncertainty range is 
not captured adequately by the candidate GMPEs because 
of the existing gaps between the GMPEs. Hence, to fully 
obtain the range of epistemic uncertainty, new models need 
to be selected or the candidate models need to be combined, 
adjusted, or even newly generated. The Sammon’s map is 
a good tool that can be used to identify missing models or 
areas that are not captured by existing GMPEs.

Moreover, the range shown in Fig. 6d using the candi-
date models, a possible partition within the selected uncer-
tainty range can be generated. Three concentric ellipses can 
be constructed and a total of 17 sub-regions can be devel-
oped. Such a partition could be used to define the number of 
models needed to adequately capture the range of epistemic 
uncertainty. Since the generated sub-regions cover the range 
deemed appropriate, one objective was to generate or se-
lect a set of GMPEs for those sub-regions such that each 
sub-region is represented by one model. This could ensure 
that a good coverage of the epistemic uncertainty is associ-
ated with GMPEs, since the map is a representation of the 
continuous GMPEs space. In the context of Fig. 6d, con-
ceptually, the inner ellipse corresponds to the technically 
defensible GMPEs; if one wants to assign the center of the 
ellipse with higher weight, one could define a function f that 
produces larger values in the center and falls off towards the 
outer range. Then, the weight for sub-region i becomes the 
expectation of the function over its area Ai. 

( )w f x dAi Ai
= #  (4)

In other words, the function f could define the relative im-
portance of the center, body, and range, which will be dis-
cussed in the following section. However, a scheme based 
on Sammon’s map and Eq. (4) provides a way to weight 
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GMPEs, with a clear understanding that each of these mod-
els represents a certain part of the range of epistemic uncer-
tainty in GMPE predictions.

5. IdEnTIfy THE rEPrESEnTATIVE SuITE of 
GMPES

Since the CBR of TDI range provides a basis for as-
signing weights on the logic tree, therefore, method to eval-
uate the CBR of TDI range on Sammon’s map needs to be 
discussed. It has already been discussed from the previous 
section that there is a need for generating new models to 
identify a suite of models. In this study, the development 
of the representative suite of GMPEs is based on a continu-
ous distribution of the median GMPE models in which these 
new models can be sampled from the mean and covariance 
of a set of coefficients. This set of coefficients are the result 
from the fit to the candidate GMPEs using a common form 
model. The common form used in this study is described 
below.
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Where, SAref refers to prediction at a reference rock site con-
dition with VS30 = 760 m s-1, M is the moment magnitude, 
Rrup is the rupture distance, and Ztor is the depth to the top 
of the rupture. Cases for the strike-slip, reverse, and normal 
events are also considered. The styles of faulting factors are 
simply identified as the magnitude-independent parameters 
10i  and 11i  even though some of the GMPEs provide mag-

nitude-dependent styles of faulting factor. The constraint 
condition was imposed on the fit to remove non-physical 
models. The regression details are described briefly in the 
following context.

The first step in the derivation of the common for mod-
el was to generate a set of ground motion prediction values 
from candidate GMPEs. These prediction values are esti-
mated based on the magnitude – distance scenarios that are 
important to Hazard. Therefore, for each of the candidate 
GMPEs, median predictions are calculated for M5 to M8 
with 0.2 magnitude increment, and also for M = 5.5, 6.5, 
and 6.5 due to capturing a break in magnitude scaling of 
some candidate GMPEs. The distance bins relevant to haz-
ard is short distance ranged from 0 to 70 km. For this reason, 
we sampled short distance (below 70 km) with 27 distance 
scenarios while 4 distance scenarios were set for distance 
greater than 70 km. The maximum distance in the fit was 
200 for capturing the curvature of candidate GMPEs.

Due to the fact that there much more reverse and strike 
slip events than normal events occurred in Taiwan. This 
condition guides us to consider a proper set of prediction 
values necessary for estimating style of faulting effect in the 
common form model. We set 80 percent number of scenari-
os resulted from reverse and strike slip fault with magnitude 
from M5 to M8, while 20 percent of which was used for nor-
mal faulting event. Also, due to Taiwan’s geology, crustal 
earthquakes occurred in Taiwan with Ztor-depth up to 50 km 
or more, and this might cause different ground motion char-
acteristic of Taiwan region as compared with other regions 

(a) (b) (c)

Fig. 5. Difference in scaling of reference models that help the interpretation of the Sammon’s map: (a) reference models for up-down scaling, (b) 
reference models for magnitude scaling rate, and (c) reference models for distance attenuation scaling.
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(a)

(b) (c)

(d)

Fig 6. (a) Sammon’s map of GMPEs based on weighted GMPE-distances, together with thirteen reference models. The original GMPEs are de-
noted by colored diamonds, and the candidate GMPEs are denoted by colored circles. (b) and (c) Magnitude scaling and distance scaling of three 
GMPEs for a detailed interpretation of the relative differences. (d) The possible partition of selected range of epistemic uncertainty shows by the 
gray lines.
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while worldwide events were recorded with Ztor-depth less 
than 20 km. The consideration of deeper Ztor-depth for Tai-
wan was carried by using scaled factor from Ztor-Magnitude 
relationship of Chiou and Youngs (2014). The scaled fac-
tors were 0.5, 1, 2, 3, and 5. The Ztor-M relationship for the 
reverse faulting and for the combined strike-slip and normal 
faulting are described as equations followings:
(1) For the reverse faulting model:

. . ( . , ),max maxZ M2 704 1 226 5 849 0 0tor
2= - -6 @  (6)

(2)  And for the combine strike-slip and normal faulting 
model:

. . ( . , ),max maxZ M2 673 1 136 4 970 0 0tor
2= - -6 @  (7)

All other predictor variables, such as the depth to a shear 
wave velocity horizon of 1000 m s-1, are set to the default 
values for the GMPE that requires. For each value of Rjb and 
Ztor, the Rrup can be computed from the fault geometry creat-
ed for each of the scenarios described above. The scenarios 
are defined from the footwall site for the general case: Rjb = 
Rx and R R Zrup jb tor

2 2= + . Hence, each GMPE is evaluated 
at 19 magnitudes, 31 distances, 5 Ztor leading to 2945 sce-
narios for the fit.

All the coefficients ( ii ) are determined by fitting com-
mon form function to each of candidate GMPEs using least 
square regression method. The regression results were heav-
ily influenced by initial values of all coefficients and the sce-
narios used to carry the fits. Therefore, the fits were carried 
out with a number of steps by resetting the initial values, and 
the scenarios are generated with heavier samples for short 
distances than long distance. The coefficients 6i  and 7i  are 
first determined using scenarios with distance less than 50 km,  
and rest of the coefficients are determined by the whole sce-
narios after constraining coefficients 6i  and 7i . It is not nec-
essary to determine coefficients 8i  for ASB14adj model, so 
we only use scenarios with distance less than 70 km.

Figure 7 shows the results of fitting to the common 
form model for ASK14adj model and Phung17, respective-
ly. The results were shown to be good fit implying that the 
main feature of candidate GMPEs was captured by the com-
mon-form model. Through the fit, the candidate GMPEs 
used different functional forms are thus represented by a 
set of common form models creating a distribution of coef-
ficients population. Sampling a set of new coefficients is 
carried out using the multivariate normal density function 
with the calculated mean (ni ) and covariance matrix (Ri ) 
multiplied by a factor of 2 which can be used to broaden the 
range of the common form models rather than only filled the 
gap among the candidate GMPEs.

Figure 8 shows the prediction of the candidate GMPEs 

(for the PSA at T = 0.01 sec) in comparison with the range 
of the 2000 sampled common form models for magnitude 
scaling (VS30 = 760 m s-1 and Rrup = 30 km) and for the dis-
tance scaling (VS30 = 760 m s-1 and M = 7). It is observed that 
the generated common form models can also cover all the 
candidate GMPEs. Figure 9 shows the corresponding map 
for 2000 common form models mapping together with the 
candidate GMPEs. The range of the common-form models 
is seen to be capture the range of candidate GMPEs on the 
Sammon’s map space. It is thus created a continuous distri-
bution of the median prediction as it can be visualized on the 
Sammon’s map. The issue is then raised of how to adequate-
ly quantify the epistemic uncertainty that represents the cen-
ter, body, and range of technically defensible interpretations 
(the CBR of the TDI) of the GMPEs. It is believed that, as 
described in the preceding section, the ellipse was an ad-
equate representation of the general shape of the continuous 
model distribution and can be used to partition the Sam-
mon’s map space into a small number of sub-regions.

The concept of developing the ellipse is based on: (1) 
the ranges that are created by the candidate GMPEs and the 
candidate GMPEs with their epistemic uncertainties (Atik 
and Youngs 2014) on Sammon’s map. (2) Each of the ref-
erence directions on which the scaling of GMPE models 
should be based is assumed to be followed by a line. (3) The 
ellipse can be constructed based on the position of the can-
didate GMPE and their uncertainty on each reference direc-
tion (details are shown in Appendix B). Figure 9 shows the 
candidate GMPEs (that call GMPEs with big color dots) and 
the candidate GMPEs plus/minus two sigma epistemic un-
certainties (that call GMPEs ± 2σAY14 with small color dots). 
The use of ±2σAY14 corresponds to 95% confident interval for 
the uncertainty in the median ground motion. One can select 
different sigma level depending on their own judgments. As 
shown in Fig. 9, two convex-hulls are represented by the 
dash lines. Each of which was constructed by connecting 
the outermost points (blue asterisks) which are the projec-
tion of the outermost models on each reference directions 
(M-dir, R-dir, and S-dir). The inner and outer convex-hull 
is for the GMPEs and the GMPEs ± 2σAY14, respectively. 
The inner convex-hull leaves the range mostly covering the 
GMPEs, but the outer convex-hull can cover all the GMPEs 
and some degree of uncertainty. The shape of convex-hulls 
can guide to find the CBR of TDI range, and an ellipse was 
created as it goes through the pairs (blue asterisks) corre-
sponding to the GMPEs and the GMPEs ± 2σAY14 project-
ed on the reference directions. The ellipse was shown in  
Fig. 9a. The minor axis is oriented by the R-dir. This is 
deemed valid because the R-dir indicates the change of 
model scaling in attenuation rate at far distances, while the 
contribution of far distance scenario to hazard is not sig-
nificant. On the other hand, the major axis is dominated by 
the M-dir and the S-dir since the change GMPE models in 
magnitude and up/down scaling are most contributed to the 
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hazard. The CBR range developed such the way leads to a 
suite of common form models that captures the range of all 
the candidate GMPEs with additional epistemic uncertainty 
in terms of their position in the Sammon’s map space.

In the previous section, the ellipse range was divided 
into 17 sub-regions in which a single representative com-
mon-form model is given to each sub-region. Figure 9b 
shows the CBR range portioned by the same approach. In 
Fig. 9b, each ellipse plays a different role: the center el-
lipse corresponds to the center (C), the middle ellipse cor-
responds to the body (B), and the outer ellipse corresponds 

to the range (R) of the technically defensible interpretations 
(TDI) of GMPEs. A single representative model for each 
cell could be (1) the model whose hazard curve is closest to 
the mean hazard curve for a cell, (2) the average model in a 
cell, (3) the model is closest to the centroid of a cell, and (4) 
the model having either the smallest mean between event re-
sidual or the largest log-likelihood is represented in a cell. A 
single representative model, which is closest to the centroid 
of that cell, is selected from the common form models in 
each cell, as shown in Fig. 9b. In this way, the suite of sev-
enteen representative models can represent a set of mutually  

(a)

(b)

Fig. 7. Comparison between the refit to common form model and the candidate model: (a) ASK14adj and (b) Phung17 for T = 0.01 s.

(a) (b)

Fig. 8. (a) Magnitude scaling and (b) distance scaling of 2000 generated models compared with the candidate GMPEs for T = 0.01 s.
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exclusive and collectively exhaustive models, since the 
weights on logic tree branches are usually treated as prob-
abilities. It is believed that the current approach could be 
one possible choice, which differs from that of SWUS 
GMC SSHAC LEVEL 3 (GeoPentech 2015). Figure 10  
shows the comparison of magnitude scaling and distance 
scaling between the 17 representative common form models 
(gray lines) and the candidate GMPEs. The selected repre-
sentative common form models are tightly clustered inside 
the candidate GMPEs. This is the desired outcome, which 
fills the existing gap that the candidate GMPEs model left 
on the Sammon’s map of the ground motion space.

6. dETErMInATIon of WEIGHTS for A SuITE 
of rEPrESEnTATIVE ModElS

The weights for the median models can be estimated 
using the observed ground motion data (data-driven weight) 
and/or the existing models on the GMPE space (nondate-
driven weight). The log-likelihood, the mean between event 
residuals and the EDR index are the different metrics used 
to measure the goodness of fit between a set of models and 
observed ground motion data (Scasserra et al. 2009; Kale 
and Akkar 2013; Arroyo et al. 2014). The likelihood is actu-
ally the probability that indicates the variability of the data 
among the prediction from the GMPEs, while the mean 
between-event residuals represent the mean bias of the data 
with respect to the median prediction. The EDR index con-
siders the combination of aleatory variability and model bias. 
The bias between the median ground motion estimation and 

observed data is taken into account by a scheme similar to 
residual analysis. These concepts make it different with re-
spect to the log-likelihood and residual analyses. Unlike the 
residual weight and likelihood weight, the prior weight are 
non-data driven weight, which is derived from the normal 
variate distribution since the mean and covariance of com-
mon form coefficients are known. The prior value is actu-
ally the probability density of the common form parameters 
distribution. The prior value explains how a common form 
model is likely to be generated on the GMPE space.

These metrics are the informative basis for evaluating 
the weights on the logic tree. As for data-driven weights, the 
residuals, the likelihood and the EDR are used. On the other 
hand, the distribution of common-form model parameters is 
used to calculate non-data driven weight.

6.1 computation of residual, log-likelihood and 
Edr-Index

Computation of the log-likelihood, mean between-
event residuals and EDR-index requires observed data that 
is collected from the sites relevant to the hazard. Figure 11a 
shows the magnitude-distance distribution of data which 
is made up of the global (the NGA-West2 database) and 
Taiwan data. The selected data is then corrected to the ref-
erence site VS30 of 760 m s-1; this is necessary because all 
the common form models were generated from the refit-
ted candidate GMPEs with a specific VS30 of 760 m s-1. We 
performed the correction of earthquake records for site re-
sponse to the reference VS30 = 760 m s-1 using two candidate 

(a) (b)

Fig 9. (a) The ellipse range used to define the CBI of TDI. (b) Selected seventeen representative common form models (black dots) for each cell.
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GMPEs that are ASK14adj and CY14adj. These two mod-
els were selected because their Hanging-wall model can be 
used to correct the sites subjected to hanging-wall effect. 
In addition, considering multiple GMPEs can be captured 
epistemic uncertainty associated with site effects. The pro-
cedure for site correction was then performed by estimating 
two sets of prediction values relevant to measured VS30 and 
reference VS30 of 760 m s-1 given M, Rrup, and hanging-wall 

flag. The site amplification factor was determined between 
two sets of prediction value, and thus the ground motion at 
reference site condition with VS30 = 760 m s-1 is equivalent to 
the observed ground motion differed by the site amplifica-
tion factor.

Figure 11b shows the plot of lnPSA(T = 0.01 sec) - Rrup 
for the observed data (hollow circles) compared with the 
corrected data at reference site (color dots) after filtering the 

(a) (b)

Fig. 10. Comparison of (a) magnitude scaling and (b) distance scaling between the representative common form model and the candidate GMPEs.

(a)

(b)

Fig. 11. (a) Magnitude-Distance-region distribution of the dataset selected for weights computation. Regional data are identified by the color symbols. 
Different symbols denote style of faulting: circle = strike slip, triangle = reverse fault, and star = normal fault. (b) The plot of lnPSA(T = 0.01 sec) - 
Rrup shows for the observed data (hollow circles) compared with the corrected data at reference site (color dots). Color bar indicates the VS30 varying 
from soil to rock site.
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criteria described in Table 2. The ground motion at refer-
ence site condition is equivalent to the observed ground mo-
tion differed by the site amplification factor. Since data and 
models are available, the mean between-event residual and 
the log-likelihood can be calculated using Eqs. (7) and (10) 
of Abrahamson and Youngs (1992) as described below. 
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The calculation was employed a fixed inter-event stan-
dard deviation (x) and fixed intra-event standard deviation 
(z) obtained from CY14adj. The EDR-index is estimated 
using Eq. (11) of Kale and Akkar (2013). Figure 12 respec-
tively shows the contour plot for the log-likelihood, the 
mean between-event residuals and the EDR-index of the 
selected dataset that are generated by each common form 
model. The contours from the log-likelihood, as shown in 
Fig. 12a, are distinguished by ten distinctly colored spans 
from the smallest to the largest likelihood value (-2509 to 
-2076). The contours from the residuals, as shown in Fig. 
12b, are separated by a number of bands having a constant 
width of 0.15 unit and varying from -0.8 to 0.9. Figure 12c 
shows the contours for the EDR-index with a span color of 
0.1 unit varying from 0.82 to 1.77. Figure 12d plots distribu-
tion of the common-form models with no contours, indicat-
ing that the weight is derived from the models themselves 
and not from the data.

6.2 determination of Weight Associated with Each 
representative Model

The weight associated with each of the representative 
model (or the weights for median), used in GeoPentech 
(2015) is defined in Eq. (10). The weight is proportional 
to its area and weighted by the mean value of the selected 
metric (Lij) as follows: 
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where Ai is the area of the ith cell and Nj is the number of 

the model in the ith cell. The metrics Lij are considered fol-
lowing:
(1)  One over the absolute mean between event residual plus 

a small constant c (e.g., c = 0.0075 to avoid a possible 
singularity). This is equivalent to C1 Ben + .

(2)  The shifted log-likelihood values by a constant C

L C LogLikij ij= - +  (11)

(3)  The shifted EDR-index values by a constant C

L C EDRij ij= - +  (12)

(4)  The prior values, is the probability density of the com-
mon form parameters.

( , , )L Nij iji n R= i i  (13)

It is noted that the direct use of the log-likelihood value or 
the EDR value in the computation may lead to an indistin-
guishable weight; that is, all seventeen representative mod-
els can receive a portion of equally about 5.88%, and this is 
not desirable. In other words, if the likelihood weight (wLL) 
computed from the original log-likelihood value (without C), 
the result was not significant importance of the center body 
and range of TDI of GMPE prediction. It is therefore sug-
gested that both the log-likelihood and the EDR values are 
subtracted by a constant C to shift log-likelihood/the EDR 
values to those that can be used to refine the weights. Such a 
constant C is the average metric value and can be determined 
from the models outside the outer polygon. As a result, we 
propose to use constant C to shift the original log-likelihood 
values as it can be used to normalize the weights giving ei-
ther adequately distinguishable or more informative.

Figure 13 shows the weighting scheme from different 
metric. The residual weight (wR), tends to distribute a higher 
portion to the sub-regions close to the zero contour (thick-
black contour) where the models fit the data better; those are 
the sub-regions S9, S1, S8, S17, S7, S5, S6, and S13 contrib-
uting up to 68.57% of the total weight. The log-likelihood 

GLB + TW dataset

nGA-West2 database Taiwan database

M ≥ 6.0 M ≥ 5.0

RRUP ≤ 30 km RRUP ≤ 60 km 

VS30 ≥ 300 m s-1 VS30 ≥ 300 m s-1

Table 2. Data selection criteria for crustal source.

Note:  Select events with at least 5 recordings. Select events with at least 1 
recording within 20 km. Remove Chi-Chi main shock and aftershock 
events from the NGA-West2 database event.
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(a) (b)

(c) (d)

Fig. 12. The contour lines underlying the Sammon’s map indicate; (a) the value of the mean between-event residual, (b) the likelihood value, and 
(c) the EDR value computed for each model. (d) The distribution of common form models.

Fig. 13. Comparison on the weighting schemes calculated using the mean between event residual, the log-likelihood, the EDR, and the prior 
value.
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weight (wLL) and the EDR weight (wEDR) are comparable 
with the similar trend. The weighting schemes produce larger 
values in the center and falls off towards to the outer range. 
The results show that these weighting schemes conform with 
the log-likelihood or the EDR contours and gives higher por-
tions to the inner ring: 8 cells including S17, S1, S2, S3, S4, 
S5, S6, S7, and S8 (up to about 63% of the total weight). 
Unlike the residual weight and likelihood weight, the prior 
weight is a non-data driven weight, which is derived from the 
normal variate distribution since the mean (μθ) and covari-
ance (Σθ) of common form coefficients are known. The prior 
weight reflects how often the generated common form mod-
els appear in a particular location. Indeed, the cells S8, S17, 
and S16, where the models are more densely sampled, have 
higher portions of 12.41, 10.75, and 10%, respectively. The 
cells S11, S14, S13, and S12, conversely, have few models 
and thus received lower weights with portions of 1.01, 1.48, 
2.35, and 2.52 %, respectively.

The contour maps as shown in Fig. 12 for mean between 
event residual, log-likelihood and EDR-index are consistent 
with each other. Given a number of GMPEs, it is suggested 
that a GMPE model receive a relatively high weight if it was 
examined to fit the observed data; in other words, a model 
whose log-likelihood is larger or its residual (or EDR) value 
is smaller in comparison with others is considered as a good 
prediction and thus given a higher weight.

6.3 An Alternative Way to Evaluate the Weight for the 
Median

The idea of method is based on the distribution of cal-
culated metrics of the continuous models on the Sammon’s 
map. The mean between event residual, log-likelihood, EDR 
and the prior values were calculated from the common form 
models and dataset, as presented in Fig. 14a. The color dots 
indicate the values of candidate GMPEs, and the black dots 
are the average metric value over a sub-zone. Correspond-
ing to the bar chart, the cumulative density function can be 
obtained and shows in Fig. 14b. Each of the black dots takes 
a value from the cumulative density function, and thus re-
sults in a set of seventeen numbers, which are normalized to 
one to obtain the weight. Figure 15 shows the proper weight 
scheme on which each of the component of the proposed ap-
proach is being compared with that calculated based on the 
formula Eq. (10) (i.e., wR, wLL, wEDR, and wPri). The re-
sult can be used to check, as compared to the weight calcu-
lated based on the formula in Eq. (10), whether the weights 
are properly assigned to each sub region. The alternative 
method leaves an aspect that is especially beneficial in the 
context of probability. On the one hand, the method does 
provide a cumulative distribution function (CDF) curve that 
quickly help to quantify the weight given to candidate mod-
els. For example, on Fig. 14b, the residual weight of Chao17 
and Bi7adj models could be given higher portions as com-

pared to representative models as well as the other candidate 
models. On the other hand, the CDF for the log-likelihood 
shows that the model of CY14adj, ASK14adj, Phung17, and 
Chao17 appear up to above 80% and higher than the rest 
models indicating the dominant weights of those models if 
one considers the weights possibly given to the set of can-
didate models. Therefore, the present approach offers clear 
advantages over previous attempt related to the weights.

7. concluSIonS

In this paper, the work of GeoPentech (2015) in the 
SWUS 2015 report was carefully studied, re-examined, and 
applied to the Taiwan region to develop the representative 
GMPE as well as the weighting schemes for PSHA study. In 
the analysis, the selected candidate GMPEs were reviewed 
with great care, and then adjusted or developed for use in 
the Taiwan region. The Sammon’s mapping technique, de-
veloped by Scherbaum et al. (2010), was then applied to 
assess the spread of median GMPE prediction and corre-
lation through 2-dimensional visualization. Such maps can 
qualitatively provide insight on the epistemic uncertainty 
associated with GMPEs, by weighting the GMPE-distances 
through informative map distances. In the generation of 
the map, the hazard de-aggregation was assigned to weight 
GMPE distances. A set of GMPEs models including both 
the original models and candidate models together with the 
reference models were projected together on the same 2-D 
Sammon’s map to assess differences between GMPEs over 
an important magnitude-distance range. It is shown that 
the changes in GMPE distance (either uniform weighted or 
de-aggregation weighted GMPE distance) for each pair of 
GMPEs (original GMPE vs. candidate GMPEs) are visu-
ally explained by looking at the reference models. PSHA is 
interested in the hazard space; therefore, the de-aggregation 
weighted GMPE distance is suggested to have the final haz-
ard outcome.

To generate the maps in this paper, a large suite of new 
models (2000 random GMPEs) were created from the can-
didate GMPEs, which both interpolate between and extrap-
olate beyond the range of the existing GMPEs. The ground 
motions of the candidate GMPE models and 2000 random 
models were combined into a high-dimensional vector of 
the ground motion values, which was then projected into the 
2-D Sammon’s map. The median GMPE predictions in the 
Sammon’s map approach created a continuous distribution 
values as a proxy to assign the weights on the logic-tree.

The representation of the candidate GMPEs (GMPEs) 
and additional epistemic uncertainty around the median 
(GMPEs ± 2σAY14) provide a widely enough range on 2-D 
Sammon’s map, and an ellipse was adequately considered 
as a general representative shape to enclose the outermost 
points of all GMPEs. The ellipses were guided to define 
the range and body of the distribution of the common-form  



Analysis of Epistemic Uncertainty Associated with GMPEs 627

models and discrete the range into a small number of sub-
regions in which a number of representative common form 
models can be selected for each sub-region. Different 
weighting schemes were presented, based on comparisons 
to ground motion data and on the distribution of the covari-
ance matrix for the common form coefficient weights, to 
assign weights to the selected representative common form 
models developed from each sub-region. The weights as-
signed to the inner cells are equally likely to be stable, but 

those assigned to the outer cells vary significantly from one 
cell to another. Finally, the developed weight as well as the 
representative GMPE can be used for PSHA.

The weights formula used in GeoPentech (2015) for 
the median GMPEs were verified through computation for 
a number of metrics which either the likelihood, the EDR-
index and residuals derived from models and data or the 
distribution of model parameters based on mean and cova-
riance of model’s coefficients. Regarding to the likelihood 

(a) (b)

Fig. 14. (a) Bar chart showing histogram of log-likelihood of the models on the Sammon’s map. (b) Cumulative density function obtaining from the 
histogram. The color dots indicate the likelihood value of each candidate GMPEs, and the black dots are the average metrics over one sub-region 
and given to that sub-region.

(a)

(b)

Fig. 15. Comparison on the weighting schemes: (a) wLL and wEDR and (b) wR and wPri. The weights wR, wLL, wEDR, and wPri calculated based 
on the formula Eq. (10) and the weights wR*, wLL*, wEDR*, and wPri* calculated based on the CDF distribution.
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weight, the weight cannot be directly obtained from the raw 
log-likelihood. It is therefore a constant C was introduced to 
find a shifted value so that the log-likelihood and/or the EDR 
weight can be meaningful and justifiable. The results showed 
that the weight scheme does lead to adequately explainable 
with regards to center body and range of technically defen-
sible interpretation of GMPE prediction. We propose an al-
ternative way to re-evaluate the weighting schemes based on 
the cumulative distribution function curve, and this method 
provide the benefit enable to quick assess the weights not 
only for the suite of representative models but also for the 
candidate models. The weighting schemes obtained by this 
new approach can also be compared with the weight using 
the formula in Eq. (10) and thus achieved the goal of PSHA 
study. Besides, the EDR index was tested on the Global + 
Taiwan dataset using 2000 common-form models. The de-
rived weight using EDR index performs comparable with the 
log-likelihood weight and the residual weight. Therefore, we 
concluded that the EDR index is a good metric for estimating 
the logic tree weight, and this appropriate metric could con-
sequently be used as an additional branch on the logic tree.

The method is not the only option to correctly define 
the weighting of GMPEs for PSHA; however, it offers a 
systematic way to combine different sources of knowledge, 
such as recorded data and prior information for PSHA.  
Figure 16 shows an example of logic tree weight assignment 
for the median base models utilizing the presented method. In 
fact, when performing PSHA in a practical way, a sensitivity 
analysis discussing different choices for weight assignment 
to each branch of the logic tree and how those changes affect 
the result of the hazard curve needs to be presented.

7.1 data and resources

This study used the ground-motion database compiled 
for the Taiwan SSHAC Level 3 PSHA project. The strong 
ground-motion data in the SSHAC GMC Ground-Motion 
database version 4-20161228 is provided by NCREE and 
SINOTECH. All calculations are carried out using the 

MATLAB 2017 program.
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VI. Hypo-central depth Term
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Where
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I. Magnitude Term
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II. Path Term
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III. Style of faulting Term
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IV. Site response Term
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I. Where Magnitude Term
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(8) Phung17
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(9) chao17
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I. Source Scaling Term
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II. Path Scaling Term
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III. Site Scaling Term
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APPEndIx b

Procedure to determine the ellipse:
(1)  The reference directions are determined by fitting a lin-

ear equation to each reference models (defined these di-
rections are S-direction, M-direction, and R-direction).

(2)  Project the candidate GMPE models on each reference 
direction. The open-red circles are the projection of the 
candidate GMPE models and the candidate GMPE mod-
els ± 2σAY14.

(3)  Calculate the maximum Euclidian distance of the can-
didate GMPE models on the S-direction, M-direction, 
and R-direction are DS dir

1
- , DM dir

1
- , and DR dir

1
- ; and the 

candidate GMPE models ± 2σAY14 on the S-direction, M-
direction, and R-direction are DS dir

2
- , DM dir

2
- , and DR dir

2
-

, respectively.
(4)  Determine the maximum Euclidian distance of reference 

models on each reference direction as dS dir- , dM dir- , and 
dR dir- , and satisfy the following criterion: 
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As shown in the following figure.

(5)  Select the values of  as they yield a set reference models, 
and  are defined as
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Numerous values of a , b , and c  can satisfy the constraint 
criterion; however, a set of suitable values a , b , and c  will 
be decided which can lead to the center range closest to the 
average of all candidate models.


