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ABSTRACT

Bangladesh has experienced multiple freshwater issues including salinization 
from monsoonal floods and groundwater over-pumping that induces severe land 
subsidence. Therefore, using satellite observations to virtually build a monitoring 
network becomes an efficient and innovative means. We focus on the Sylhet My-
mensingh haor area that has the highest annual precipitation and the largest inun-
dation area in northeastern Bangladesh. The modified normalized difference water 
index is first used to extract water area from MODIS and Landsat-5/-7/-8 optical 
imageries. A weekly flood chance model is then created from a sequence of images 
to recover water extent from the cloud-covered images. Using MODIS images for 
water identification achieves an overall accuracy of 84% in rainy season and 41% 
in dry season as validated with Sentinel-1A radar images. This model can be further 
used to refine the Shuttle Radar Topography Mission digital elevation model (DEM). 
As compared with ICESat laser altimetry, the root-mean-square of the height differ-
ence is improved from 1.65 m to 1.16 m after DEM modification. By combining the 
recovered water area and the refined DEM, surface water volume (WV) is quantified. 
A comparison with the Gravity Recovery And Climate Experiment (GRACE) gravi-
metry retrieved equivalent water heights (EWHs) in 2002 - 2015 is conducted, where 
the correlation coefficient and root-mean-square of the EWH difference are 91.7% 
and 0.09 m, respectively.
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1. INTRODUCTION

In populated and low-lying deltaic countries, how to 
manage water resources is a necessary yet practically dif-
ficult issue. It is necessary to know how water cycle pro-
gresses and how much water resources are accessible all 
year round. Traditional methods to monitor water flow in a 
river or lake are the deployment of water level gauges and 
in situ wells. However, these methods are not only expen-
sive and time-consuming, but also require sustained labor 
cost to establish and maintain the infrastructure. In addition, 
observational quality is not always guaranteed and the data 

streaming is sometimes interrupted (Andersen et al. 2008; 
St. Jacques and Sauchyn 2009).

Bangladesh has the 10th highest population density in 
the world with a remarkable number of over 1100 people 
km-2 in 2000 (Neumann et al. 2015). It is located south of 
the Tibetan Plateau with a low-lying land formed by the 
Ganges-Brahmaputra-Meghna floodplain (Fig. 1). Hence, its 
main water resources are acquired from surface flow of these 
three major rivers. However, although the Indian monsoon 
and melting snow coming from the Himalayas have brought 
a considerable amount of surface runoff every year, water 
flow in river channels is almost impossible to retain by build-
ing reservoirs, dams or other water storage facilities due to 
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the flat terrain - most of land elevation is below 10 m coun-
trywide. As a result, Bangladesh is one of the most vulner-
able countries that suffer from serious freshwater problems. 
Periodic and flash floods owing to sudden increase in water 
volume have caused disastrous damages in many districts, 
for example, in the Sylhet Mymensingh haor (wetland) area 
(orange star in Fig. 1) (Islam and Sado 2000).

Due to the difficulties in capturing surface water, Ban-
gladesh relies heavily on groundwater for its municipal and 
agriculture usages. Unfortunately, the groundwater has been 
over-pumped in the last few decades and has caused serious 
land subsidence problems (Hoque et al. 2007). Besides, the 
Holocene strata in Bangladesh contains mass arsenic poison-
ing; while people drill water wells to acquire groundwater, 
the entire aquifer is contaminated by chemicals (Smith et al. 
2000). Thus, it is necessary for water management agencies 
to monitor the migration of surface and subsurface water 
resources. But the fact is that a water monitoring network is 
not complete in Bangladesh. The number of water gauges in 
the entire country is only 85 as of today (Bangladesh Water 
Development Board 2018, http://www.ffwc.gov.bd/), while 
lots of idle wells are not used for monitoring groundwater.

To observe basin-scale changes of hydrological re-
gime, many researchers are now seeking possibilities from 

spaceborne sensors. As reported in the literature, several 
satellite hydrology applications used a synergy of optical 
remote sensing, synthetic aperture radar (SAR), pulse-limit-
ed radar/SAR altimetry, and satellite gravimetry to monitor 
three basic parameters: water area (WA), water level (WL), 
and water volume (WV) (Henry et al. 2006; Hostache et al. 
2009; Liu et al. 2016; Tseng et al. 2016a, b). First, the mea-
surement of WA can be achieved by thematically classify-
ing optical or radar satellite images, such as the normalized 
difference water index (NDWI) (McFeeters 1996) or the 
modified NDWI (MNDWI) (Xu 2006) for optical (visible 
to mid-infrared) sensors. For SAR images, one could apply 
a single-threshold cutoff in the histogram of backscattering 
intensity for water identification (Hostache et al. 2009; Li 
and Takeuchi 2016). Second, the WL can be acquired from 
satellite altimetry or combined satellite images and digital el-
evation models (Maheu et al. 2003; Berry et al. 2005; Schu-
mann et al. 2008; Hostache et al. 2009; Kuo and Kao 2011; 
Tseng et al. 2016b). Although satellite altimetry is prone 
to land contamination in the radar echogram over inland 
waterbodies, there are many studies aiming at developing 
customized waveform retracking algorithms to reduce un-
modeled effects (Legresy et al. 2005; Frappart et al. 2006). 
Once both WA and WL parameters are obtained, one can 

Fig. 1. Political boundaries of Bangladesh and three major rivers. Orange star is the center of our study area. Orange box is a reference boundary 
approximating Gravity Recovery And Climate Experiment (GRACE) gravimetry data derived equivalent water height (EWH) change at 330 km 
spatial resolution. Red dots indicate major urban areas.

http://www.ffwc.gov.bd/
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combine them to calculate WV. However, the number of 
studies focusing on regional surface WV is quite limited. It 
is because most methods used to measure WA and WL have 
some restrictions. For example, optical satellite has cloud 
cover and aerosol contamination issues. In contrast, radar 
images contain too much noise due to similarity in backscat-
tering over a complex of surface types. For altimetry data, 
although radar waveforms can be retracked, the uncertainty 
is still too large to calculate WL for narrow rivers.

Another popular approach to study basin-scale hy-
drology is the Gravity Recovery And Climate Experiment 
(GRACE) satellite gravimetry mission. Its main goal is 
to observe Earth’s time-variable gravity field from subtle 
range changes between a twin-satellite design. The tempo-
ral gravity field anomaly (monthly mean minus long-term 
static background) measured by GRACE is composed of 
changes of total column water including surface and sub-
surface contributions (Rodell et al. 2007; Andersen et al. 
2008; Feng et al. 2013; Rateb et al. 2017). It reveals a 
possibility to observe groundwater transition from space-
borne measurements. Once surface water component been 
well observed or modeled, the groundwater variation and 
its long-term tendency can be estimated. However, the ac-
curacy of quantifying surface WV strongly influences the 
estimate of groundwater trend. How to accurately measure 
surface WV has become an important issue especially in the 
heavily flooded area.

Considering the advantage and limitation of each satel-
lite sensor discussed above, the goal of this research aims 
to develop a surface water quantification method by com-
bining multiple satellite data. We first use historical opti-
cal satellite imageries including the MODerate-resolution 
Imaging Spectroradiometer (MODIS) onboard Terra/Aqua 
and Landsat family to create weekly flood chance models to 
bypass the cloud-cover problem. This model is a historical 
statistics of inundation chance used to refer the “relative ele-
vation” in an enclosed basin, where the higher chance means 
lower elevation and vice versa. This model is later used to 
fill the cloud gaps left by the MODIS MOD09A1 product. 
After the cloud-pixel recovery process, European Space 
Agency’s (ESA’s) Sentinel-1A radar images is utilized to 
crosscheck water area predicted by this model. Next, we use 
a decadal overall flood chance model to modify the Shuttle 
Radar Topography Mission (SRTM) digital elevation model 
(DEM) in Sylhet to quantify surface WV. Finally, the sur-
face WV is compared with GRACE equivalent water height 
(EWH) product.

There are five sections in this paper. Section 1 intro-
duces the background and objective of this study. The study 
area is introduced in section 2. Section 3 explains the work-
flow, satellite datasets, and data processing methods. In sec-
tion 4. The results of image-derived DEMs are validated 
with ICESat data and the estimated WV are compared with 
GRACE. Finally, the conclusion is given in sections 5.

2. STUDY AREA

Sylhet Mymensingh haor area is located south of the 
Shilong Plateau of northern Indian shield. Shilong belongs 
to the Meghalaya state of India, which literally means “The 
Abode of Clouds”. The particular geographic landscape of 
Shilong makes it the first orographic barrier encountered by 
the humid southwesterly monsoon winds (Prokop 2014). 
Hence, annual precipitation is anomalously higher than the 
regional average. In Fig. 2, the Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analy-
sis (TMPA) monthly release 3B43 version 7 (Huffman et 
al. 2007) is used to depict the annual total precipitation. We 
adopt 20-year grid data (0.25° by 0.25°) from 1998 - 2017 
and take an average from its hourly rate to approximate the 
annual accumulation. As seen in the contours of Fig. 2, an-
nual accumulation of rainfall reaches more the 5500 mm in 
Shilong Plateau, which plays as a major cause of periodic 
flood in Sylhet. In fact, the annual total rainfall in Bangladesh 
is between 1500 and 5000 mm on average, with an increas-
ing tendency from west to northeast. Figure 2 also displays 
flat terrain in this region from the Shuttle Radar Topography 
Mission (SRTM) DEM. Sylhet floodplain is located in the 
hotspot of high precipitation area. Accordingly, the rise of 
Brahmaputra River and the overflow of Meghna River dur-
ing wet season would likely to worsen the flood situation.

3. DATA AND METHODS WITH INTERMEDIATE 
VALIDATION RESULTS

3.1 Workflow

The data used in this study include MODIS and Land-
sat optical satellite image, SRTM DEM, and GRACE ob-
servations. Besides, we use Sentinel-1A images and ICESat 
elevation products for water area and DEM validation, re-
spectively. The workflow from data preprocessing to esti-
mating surface WV is shown in Fig. 3. More in details are 
described in the following subsections.

3.2 Optical Remote Sensing for Water Identification

Using optical satellite images, for example MODIS 
and Landsat, to monitor surface water is a low-cost, effi-
cient, and accurate method for water resource management. 
Previous studies have demonstrated the usefulness, reliabil-
ity, and repeatability of these datasets (McFeeters 2013; Liu 
et al. 2016; Tseng et al. 2016b). In this research, MODIS 
MOD09A1 product and Landsat-5/-7/-8 images are used to 
identify surface WA.

The Moderate Resolution Imaging Spectroradiometer 
(MODIS) is a remote sensing payload onboard the Earth 
Observing System (EOS) Terra and Aqua satellite, jointly 
operated by the National Aeronautics and Space Adminis-
tration (NASA) and U.S. Geological Survey (USGS). Since 
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Fig. 2. SRTM elevation of Bangladesh and neighboring countries. Contours are the average annual precipitation in mm calculated from TRMM 
3B43 v7.

Fig. 3. Workflow of image processing, SRTM modification, and surface water quantification.
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Terra (EOS-AM) and Aqua (EOS-PM) launched in 1999 
and 2002, respectively, these two satellites have provided 
numerous multispectral images for large scale observation 
of atmospheric and terrestrial environment. With 36 bands 
in visible, near/mid infrared, and thermal infrared, MODIS 
has been proven extremely useful in monitoring aerosol 
properties (Tanré et al. 1997), vegetation (Huete et al. 2002) 
and also surface water variation. The spatial resolution of 
MODIS varies with its spectral bands. For band 1-2 the spa-
tial resolution is 250 m, while band 3-7 has 500 m resolu-
tion, and band 8-36 has the lowest resolution at 1 km. The 
revisit time of Terra and Aqua is 1-2 days, which enables 
a global coverage in a few days. In this study, the surface 
reflectance (SR) products are needed to detect water pix-
els in the wetland. MODIS SR products (MOD09) provide 
various temporal and spatial resolutions, from daily in 250 - 
1000 m grid to 8 days with 250 - 500 m resolution. Because 
of the frequent and heavy cloud in Sylhet Mymensingh haor, 
high-temporal resolution is not useful in this regard. Hence, 
the 8-day composite products MOD09A1 and MOD09Q1 
composed of cloud-free pixels in each 8 days are better to 
acquire surface information. However, because MOD09Q1 
in 250 m contains only band 1 and 2 without shortwave in-
frared, MOD09A1 in 500 m is finally chosen for this re-
search. All MOD09A1 files in Hierarchical Data Format 
(HDF) from 2000 - 2017 are downloaded from NASA Land 
Processes Distributed Active Archive Center (LP DAAC) 
data pool. Sylhet wetland is located in the sinusoidal grid 
number h26v6. After gathering all available images, the si-
nusoidal projection of raster data is converted into WGS84 
coordinate by using the MODIS Reprojection Tool (MRT).

In addition to the coarse grid information given by 
MODIS, we adopt more fine-granule Landsat images to pro-
vide details in surface inundation. Landsat is a well-known 
series of Earth resource exploring satellites. Since Landsat-1 
launched in 1972, this series of NASA/USGS joint mission 
has provided the longest and continuous land observations. 
As of today, Landsat-7/-8 are still working to provide imag-
es for environmental analysis seamlessly around the globe. 
In this research, the image taken from the Thematic Map-
per (TM) onboard Landsat-5 in 2000 - 2013, the Enhanced 
TM Plus (ETM+) onboard Landsat-7 in 2000 - 2017, and 
the Operational Land Imager (OLI) of Landsat-8 in 2013 
- 2017 are used as model training data. Each of these three 
satellites has a 30 m spatial resolution and 16-day repeat 
cycle. Higher spatial resolution can help on extracting more 
detailed surface water, especially for wetland channels. Un-
fortunately, due to the Scan Line Corrector (SLC) failure 
in 2003, Landsat-7 images observed thereafter contain null 
strips that makes some information lost. But the images still 
provide partial information for surface water extraction. We 
simply apply a linear interpolation to remove gaps at the 
step after the binarized water classification.

In 2017, USGS reprocessed Landsat images and offered 

the “Collection 1 Level-1/-2” data. The Level-2 surface re-
flectance product has been atmospheric-corrected by either 
the 6S radiative transfer model (Vermote et al. 1997) for 
Landsat-4/-5/-7 or by the internal algorithm for Landsat-8 
(Vermote et al. 2016). Landsat Collection 1 Level-2 GeoTiff 
images are accessible in the USGS EarthExplorer website. 
The Digital Numbers (DNs) in raster format are converted 
into surface reflectance by a simple rescaling factor.

Following that, we adopt MNDWI (Xu 2006) to ex-
tract surface water owing to its efficiency in delineating 
water area from surrounding sandbar and manmade build-
ings. MNDWI was evolved from NDWI (McFeeters 1996), 
which adopts IR as weak reflectance band for water. Based 
on a few studies, MNDWI outperforms NDWI especially 
in vegetated areas (Singh et al. 2015) and had been used to 
map flood area in Cambodia (Ledien et al. 2017) and coast-
al Bangladesh (Ghosh et al. 2015). MNDWI uses the band 
contrast of green band and middle infrared band because 
water body shows a strong reflectance in green and higher 
absorption in middle infrared. These two bands are thus sen-
sitive to check water existence. The formula of MNDWI is 
shown in Eq. (1) (Xu 2006).

MNDWI Green MIR
Green MIR= +

-  (1)

where green band is MODIS band 4, Landsat-5/-7 TM/
ETM+ band 2 or Landsat-8 OLI band 3. MIR band is 
MODIS band 6, Landsat-5/-7 TM/ETM+ band 5, or Land-
sat-8 OLI band 6. A zoom-in view of MNDWI map of 
Landsat near Sylhet Mymensingh haor area (orange star in 
Fig. 1) is shown in Fig. 4, where the warm color means the 
stronger signal potentially contributed by water surfaces. A 
threshold is set manually by confirming with original true-
color images. The threshold is set as 0.2 for MODIS and 0 
for Landsat series.

3.3 Seasonal Inundation Model from Water Area Time 
Series

As mentioned, one major restriction hampering satel-
lite optical imageries to continuously monitor surface water 
in Sylhet is the persistently cloud-cover problem. A method 
is proposed here to potentially recover cloud-covered areas 
by using the flood chance model of each week. We use 771 
MODIS MOD09A1 images between 2000 and 2017 (18 
years) and 487 Landsat-5/-7/-8 TM/ETM+/OLI images in 
Sylhet area, which has seasonal floods every year to build 
weekly flood chance models.

All images in the same week of year are stacked or 
summed up and then divided by the number of images to get 
the flood chance of each pixel on a weekly basis, as shown 
in Eq. (2).
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where Pm(i, j) is the probability (0 - 100%) of flooding in the 
mth week in row i and column j. ( , )S i jm

k  is the clear pixel 
(no cloud) of kth MODIS and Landsat image in the mth week 
after MNDWI thresholding, where water equals to 1 and land 
equals to 0. nm(i, j) is the number of clear images for each 
pixel in the mth week. An example of the weekly flood chance 

model in the area similar to Fig. 4 is plotted in Fig. 5. In this 
figure, red color indicates higher chance of inundation or, 
in equivalent, low surface elevation in an enclosed wetland 
basin. In contrast, blue color means less flooding chance as 
learned from historical data.

To use this model is quite straightforward - any cloud 
pixels ( , )S i jm

k  having equal or higher chance of inundation 
than the maximum observed chance in a satellite image are 
set as water. The threshold Tk determination and cloud pixel 
recovery are expressed in Eqs. (3) and (4):

Fig. 4. A sample of MNDWI map from a single Landsat image.

Fig. 5. An example of weekly flood chance model in Sylhet.
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where Tk in % is the flood chance threshold of the kth sat-
ellite optical image. ( , )S i jm

k  is the predicted map of water 
area from a cloud-cover image belonged to the mth week.

The abovementioned calculations are programmed and 
executed in MATLAB.

3.4 Sentinel-1A SAR Image for Validation

To verify the accuracy of the recovered result, three 
Sentinel-1A images are collected as validation data. Senti-
nel-1A is the first Sentinel-1 constellation launched in 2014 
as part of European Union’s Copernicus program, which 
was earlier named the Global Monitoring for Environment 
and Security (GMES) mission. The peer satellite Sentinel-
1B was launched in 2016. The goal of GMES is to moni-
tor the changes of ocean and land in more details without 
weather restrictions. With a C-band SAR sensor onboard, 
Sentinel-1 satellites provide high spatial (~10 m) and mod-
erate temporal resolution in 12 days (6 days for Sentinel-
1A and 1B constellation). Sentinel-1 has different modes in 
multiple resolution and swath. In this research, we adopt the 
Interferometric Wide (IW) mode VV/VH polarization Lev-
el-1 Ground Range Detected (GRD) product as validation 
data. The data is downloaded from ESA Copernicus data 
portal and processed by the Sentinel Application Platform 
(SNAP) complementary software.

The data preprocess includes four steps: radiometric 
correction, geometric correction, speckle filtering, and im-
age subset. The radiometric correction aims to remove the 
effects of slant range, incidence angle and illumination pat-
tern of antenna. After correcting radiometric noise, the DNs 
value of Sentinel-1A image can be converted into intensity 
as expressed in Eqs. (5) - (7).

( )log sin I10i i i#v b= +  (5)

log DN A A10 3 2i i j
2#b = +^ h6 @ (6)

arcsin sinI R H Ri e iiz= +^ ^h h6 @ (7)

where iv  is the backscatter coefficient in dB, ib  is the radar 
brightness in dB, and Ii is the incidence angle in degree. All 
these three parameters are orientationally dependent in the 
ith pixel. ib  is derived by Eq. (6), where A3 is offset and A2 
is the gain value. In Eq. (7), Re is the radius of Earth in km, 

H is the orbital height in km, iz  is the spherical angle in 
degree, and Ri is the slant range in km.

Next, the geometric correction step aims to correct 
surface deformation caused by the slanting photography of 
radar images. We apply SRTM 1 arcsec DEM to correct the 
distortion. The third step is speckle filtering, which removes 
the speckle noise caused by the interference of radar signal. 
Finally, the Lee filter (Lee 1980) is used to keep features of 
image after smoothing and also to eliminate the remaining 
noise.

After pre-processing, a histogram can be formed by the 
intensity values of an image, as shown in Fig. 6. In this histo-
gram, a double-peak curve formed by the water and non-wa-
ter components behaves distinguishable scattering character-
istics. Since water-like features with relative smooth surfaces 
show relatively low backscatter coefficient as compared to 
other objects, most of the pixels in the left peak are formed 
by water pixels. Here, we simply use a two-degree Gaussian 
function to fit the histogram and set a threshold to extract wa-
ter area, as expressed in Eq. (8) (Hostache et al. 2009).

Threshold mean _left peakleft_peak v= +  (8)

Three examination results for the recovered inundation 
areas in wet/dry seasons using MODIS and Landsat are given 
in Figs. 7 - 9. Figure 7a is the original cloud-covered MODIS 
8-day composite (2015/08/13) after MNDWI thresholding, 
where red patches indicate water area, blue means non-water, 
and white represents cloud pixels. Figure 7b is the recovered 
result using flood chance model of that week. A Sentinel-1A 
image near the same time (2015/09/09) is obtained to delin-
eate water area as shown in Fig. 7c.

By comparing Figs. 7b and c, we notice that most wa-
ter patches (red) are successfully predicted from the help 
of weekly model, even if the original image is heavily 
covered by cloud at ~50%. The overall accuracy of recov-
ered water area is 84% as compared against Sentinel-1 ob-
servation, where the recovered and observed water area is  
2.17 × 103 km2 and 2.39 × 103 km2, respectively.

Another cloud-covered MODIS image (2016/12/14) is 
demonstrated in Fig. 8a for dry season. By using flood chance 
model for WA recovery, Fig. 8b removes cloud patches and 
suggests potential WA pixels. A Sentinel-1 image taken on 
2016/12/15 (Fig. 8c) is used to verify water pixels. The over-
all accuracy of recovered water area is 41% as compared 
against Sentinel-1 observation, where the recovered and ob-
served water area is 6.11 × 102 km2 and 5.97 × 102 km2, re-
spectively. A low accuracy appearing in this case is because 
the coarse resolution of MODIS data is not sensitive to nar-
row wetland channels. Once in dry season when the water 
bodies are small and sparse, the predicted water patches are 
overestimated owing to spectral mixing. It should be noted 
that the performance of flood chance model is determined 
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Fig. 6. Two-peak histogram of intensity values discriminating water and non-water surfaces in a Sentinel-1 image.

(a) (b)

(c)

Fig. 7. Water identification and simulation result, where red means water and blue means non-water pixels. (a) MODIS water identification with 
cloud cover in wet season (2015/08/13). (b) Recovered WA by flood chance model. (c) Sentinel-1 (2015/09/09) water classification for validation.
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(a)

(b) (c)

Fig. 8. Water identification and simulation result, where red means water and blue means non-water pixels. (a) MODIS water identification with 
cloud cover in dry season (2016/12/14). (b) Recovered WA by flood chance model. (c) Sentinel-1 (2016/12/15) water classification for validation.

(a) (b) (c)

Fig. 9. Water identification and simulation result, where red means water and blue means non-water pixels. (a) Landsat water identification with 
cloud cover in dry season (2016/03/19). (b) Recovered WA by flood chance model. (c) Sentinel-1 (2016/03/07) water classification for validation.
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by the resolution of input data. Because MODIS in 500 m is 
wider than many narrow rivers or small water bodies, once 
a pixel in the input image classified as water has a pixel size 
large than the actual waterbody, the resampled 30 m grid 
will cover “high elevation” or “low flood chance” pixels in 
the flood chance model. Consequently, the threshold Tk in 
Eq. (3) will be lowered and many high elevation pixels will 
be classified as water. However, it would less harmful be-
cause the absolute WA error is also small in dry season. The 
water volume quantification would be less affected by the 
WA estimating error.

In order to proof the usefulness of flood chance model, 
another cloud-covered Landsat image (2016/03/19) is test-
ed as shown in Fig. 9a. By using the flood chance model 
for this heavily cloud-covered (85%) image, Fig. 9b clears 
cloud patches and suggests potential WA pixels. A Senti-
nel-1 image taken on 2016/03/07 (Fig. 9c) is used to verify 
water pixels. The overall accuracy of estimated water area 
is 96% as compared against Sentinel-1 observation, where 
the estimated and observed water area is 2.42 × 102 km2 and 
2.18 × 102 km2, respectively. This case successfully demon-
strates the possibility of WA recovery from a retrospective 
analysis of surface conditions.

3.5 GRACE Temporal Gravity Field Terrestrial Water 
Storage

GRACE is a joint mission of NASA and the German 
Aerospace Center (DLR) since 2002. This satellite is com-
posed of two identical spacecrafts separated along track 
by 220 km. By using the K-Band Ranging System (KBR) 
onboard each satellite, the distance change as small as  
10 μm over 220 km is measured. The distance change due 
to orbit perturbation is caused by the mass inhomogeneity 
of the Earth, where the perturbed orbit can be converted into 
the temporal gravity field anomaly. It can be further used to 
study the terrestrial water storage change in terms of equiva-
lent water height (EWH) change. The data set represents 
a long-term change of the Earth’s gravity field or its mass 
change including, for example, seismic deformation, geo-
dynamics, ice ablation, precipitation, hydrologic cycles, and 
mass change of the ocean. By removing the long-term ob-
served or inverted gravity field from each individual month-
ly solution, the result is the temporal gravity field anomaly 
sampled every month.

The GRACE Level 2 data products are produced by 
official data centers including Center for Space Research 
(CSR) at The University of Texas at Austin, NASA/Jet Pro-
pulsion Laboratory, and German Research Centre for Geo-
sciences (GFZ). We choose CSR Release (RL) 05 monthly 
EWH product to obtain temporal gravity field changes. This 
product is originated from CSR release (RL) 05 monthly 
60 degree/order spherical harmonics product that has an 
approximate 330 km spatial resolution. Since GRACE ob-

servations have errors that result in spatial “stripe” errors 
in north-south direction, all GRACE products need to be 
spatially filtered or post-processed to mitigate these errors. 
CSR RL 05 product is smoothed by the Decorrelation Filter 
(DDK). DDK 1 filter is a non-isotropic smoothing method 
proposed by Kusche (2007) to reduce the non-isotropic 
noise in GRACE data. Based on this method, Kusche et 
al. (2009) modified the smoothing method and named it 
as DDK 5. As an improvement over DDK 1 filter, DDK 5 
can be applied to higher resolution with far less unsolved 
coefficients in the decorrelation process (e.g., Duan et al. 
2009; Guo et al. 2010). The CSR RL 05 data product can be 
acquired from the GRACE Plotter website provided by the 
Centre National d’Etudes Spatiales/Groupe de Recherches 
de Géodésie Spatiale (CNES/GRGS) of France. The unit of 
temporal gravity field change has been converted into EWH 
(Wahr et al. 1998). EWH is used to represent mass change 
of a unit area as totally covered by water. To compare with 
the GRACE derived EWH, we divide estimated surface WV 
by a 330 km × 330 km grid corresponding to the GRACE 
spatial resolution.

4. RESULTS AND DISCUSSIONS
4.1 Image-Derived DEM and WV Quantification

After recovering WA from all optical satellite images, 
WL needs to be determined for the quantification of sur-
face WV. We utilize SRTM v3 global 30 m product released 
in 2015 as a height reference. SRTM provides orthometric 
height based on EGM96 geoid and covers terrestrial area 
from 56°S - 60°N. This model is also available in the USGS 
EarthExplorer data portal. SRTM has been used in many 
studies, however, 90% random error is about 5 m in Ban-
gladesh (Rodríguez et al. 2005), while most terrains in Ban-
gladesh is less than 10 m. It implies that the relative error 
of SRTM in Bangladesh may still be high. Here we use our 
developed method to demonstrate whether the referenced 
SRTM could be improved by removing possible errors or 
outliers.

As mentioned, the flood chance model can represent 
terrain information because the boundary of an enclosed 
waterbody would have a unique orthometric elevation. 
Therefore, we assume that the pixels with the same flood 
chance have the same elevation. This method is similar to 
the hypsometry approach widely adopted in hydrologic re-
search to recover WL of waterbodies. With this presump-
tion, the overall flood chance model is first used to define 
multiple independent wetland watersheds (Fig. 10a). In 
this step, pixels with flooding chances less than 5% are ig-
nored to avoid subtle noise in small waterbodies, such as 
agriculture zones. Next, we convert raster data into mul-
tiple polygons, where each polygon means an independent 
watershed. Each independent watershed is used to create a 
mask for the co-registered SRTM and flood chance model. 
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10. (a) Isolated wetland basins in different colors. (b) Original SRTM 30 m DEM in Sylhet area, with ICESat tracks (black line) in dry season 
for validation. (c) MODIS-derived DEM. (d) Comparison between MODIS-derived DEM and ICESat estimates. (e) Landsat-derived DEM. (f) 
Comparison between Landsat-derived DEM and ICESat estimates. (g) Merged (MODIS + Landsat) DEM. (h) Comparison between merged DEM 
and ICESat estimates. (i) A sample of river channel in SRTM. (j) A sample of river channel in the merged DEM. Panel (b), (c), (e), (g), (i), (j) share 
the same color bar as in (b).
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For each watershed, we set the highest and lowest elevation 
by averaging SRTM pixels with the same boundary flood 
chance (lowest and highest flood chance). The elevation of 
remaining pixels in the same wetland are linearly interpo-
lated based on flood chance order. The computation follows 
a similar work (Tseng et al. 2017) applied for coastal DEM 
reconstruction:

( , ) ( , ) ( ) ( , )i j P i j H H H M i jDEMsat fs h l l# #= - +6 @  (9)

where DEMsat(i, j) is the satellite image-derived DEM, 
Pfs(i, j) is the feature-scaled probability of Pm(i, j) in  
Eq. (2). Hh is an average of the highest 2% (to avoid ex-
tremely values) of SRTM elevation within the co-registered 
water patch. Hl is an average of the lowest 2% of SRTM 
elevation within the co-registered water patch.

To verify the image-derived DEM, ICESat surface 
elevation (GLA14, release-33) is used for comparison. 
ICESat is a laser altimetry mission operated in campaign 
mode during 2003 - 2009. The elevation of the illuminated 
surface can be precisely retrieved from the photon counting 
technique (Abshire et al. 2005; Urban et al. 2008). Here, we 
choose 6 out of 18 operating periods in dry seasons (Febru-
ary to April) for the validation of surface height. The origi-
nal SRTM is displayed in Fig. 10b, in which a few ICESat 
ground tracks are overlaid as black lines. A comparison of 
image driven DEM and SRTM is shown in Figs. 10c - j.  
Figures 10c, e, and g are the image-derived DEM based on 
MODIS, Landsat, and a combination of two, respectively. 
Figures 10d, f, and h are the scatter plots of derived DEM 
(red dots) and SRTM (black dots) against ICESat mea-
surements in geoidal heights. For all these comparisons, 
the SRTM and satellite images have been resampled to 
30 m and co-registered. Meanwhile, all DEM results are 
linearly interpolated from the longitude and latitude of 
ICESat ground points. The statistical results of compari-
son are shown in Table 1. In Figs. 10c - d, we find that 
the MODIS-derived DEM appears a positive bias as com-
pared with ICESat. However, it has a smoother surface as 
seen in the continuous distribution of red dots in Fig. 10d. 
In contrast, SRTM with integer number of elevations ap-
pears a vertical-strip pattern. The root-mean-square of the 
difference (RMSD) and correlation coefficient (CC) is 
1.65 m/0.72 for SRTM and 1.48 m/0.75 for MODIS. For 
Landsat-derived DEM as shown in Figs. 10e - f, the bias is 
reduced and the uncertainty level is a little smaller than that 
of SRTM. The RMSD/CC is 1.37 m/0.75 for Landsat. When 
we merge two datasets altogether to calculate the inundation 
chance and create a merged DEM, the result in Figs. 10g - h  
shows an even better result, with RMSD/CC equal to  
1.16 m/0.79. It is noticed that the noisy SRTM has been 
smoothed and improved by using this method, regardless of 

the image resolution in this case.
After the modification of SRTM, extracted water area 

in MODIS images can be co-registered with the merged 
DEM to compute water volume. Here, the water level is as-
signed to each watershed by finding the highest elevation 
within the co-registered water patch, and column water is 
integrated as the volume between DEM and water surface.

4.2 Comparison and Validation Using GRACE EWH

The comparison of estimated surface water volume and 
GRACE data in Sylhet haor area is shown in Fig. 11. Here, 
the MODIS product is linearly interpolated to synchronize 
the timing with GRACE data in the middle of each month. 
This plot demonstrates the capability of the developed 
method to capture the transportation of surface water stor-
age. The amplitude of annual signal is similar in two inde-
pendent approaches for WV quantification. The correlation 
coefficient in between is 0.91, where the root-mean-square 
of the difference (RMSD) is 0.09 m in EWH during overlap-
ping years (2002 - 2014). Also, two major floods happened 
in 2004 and 2007 are observed in the estimated WV. They 
were barely seen in the studies using remote sensing and al-
timetry satellites owing to cloud cover or the lack of ground 
tracks, respectively. Our work is one of a few in the litera-
ture that can estimate temporal water volume changes solely 
from the optical remote sensing imageries and SRTM.

4.3 Discussion About Image Sources for Deriving DEM

In the current form of our workflow, there are only op-
tical imageries considered as the sources for DEM produc-
tion, because a sufficient amount of water areas in different 
levels needs to be collected to form an inundation chance 
map and to further generate DEM. However, one major dis-
advantage is that we need to fill cloud gaps in each image 
on the stage of water identification. This step may introduce 
commission/omission errors in predicted water patches due 
to DEM uncertainty. Thanks to the open data policy of Sen-
tinel-1 (Torres et al. 2012), this problem could be mitigated 
in the future while using frequent Sentinel-1A/B constel-
lation with 6-day revisit, or even shorter if both ascending 
and descending passes are included. SAR images will pro-
vide faster inundation assessment (Borah et al. 2018) with 
high accuracy (Huang et al. 2018). Sentinel-1 SAR will 
enormously increase the efficiency in water identification 
(Palmer and Ruhi 2018). In other words, it requires short 
time span to collect sufficient number of images for weekly 
flood chance model, so that the dependence on optical im-
ages could be reduced. Also, more images-recognized water 
area (WA) means that we can estimate water level and water 
volume in a frequent manner. In our future work, we will 
use weekly SAR images, or at a higher sampling rate, to 
investigate flood-induced rapid surface water migrations.
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5. CONCLUSIONS

In this paper, we propose an effective method to improve 
the quantification of surface water by integrating historical 
optical satellite imageries and convert the water appearance 
chances into relative orthometric heights. The study mainly 
focuses on Sylhet floodplain which has the highest annual 
precipitation in Bangladesh. During monsoon season, the 
recovered water area shows 84% overall accuracy as com-
pared with Sentinel-1A classification result. The accuracy 
may be less than 50% in dry season if the study area contains 
many narrow tributaries that is hardly detected by MODIS 
MOD09A1. But the accuracy improves as an increasing 
resolution of input sources, such as Landsat 30 m imageries. 
The method of flood chance model is useful considering its 
ability of extending surface WA measurements, especially 
in the heavily cloud-covered area in a long rainy season. The 
model accuracy can be improved if we keep adding satellite 
images with higher resolution sources, for example Land-
sat-7/-8, Sentinel-2 and even SAR satellites.

Furthermore, the flood chance model also provides a 
means to reduce the uncertainty in SRTM DEM, and ac-
tually improve the model. The RMSD improves from 1.65 
m in SRTM to 1.16 m in the merged (MODIS + Landsat) 
DEM as compared with ICESat altimetry results. The vali-
dation indicates that the method developed in this study 
smooths out the stepwise SRTM in integer meters. With the 
recovered water area and reconstructed DEM, a continuous 

quantification of surface water volume can be derived. The 
signals of two extreme flood events in 2004 and 2007 are 
observed in the curve of estimated surface WV. From the 
comparison with GRACE EWH, the water storage changes 
in Sylhet Mymensingh haor can be modelled with a good 
spatiotemporal resolution. Assuming other mass changes, 
such as tectonics and groundwater variability are ignorable 
in this area, a majority of mass changes caused by surface 
water is well explained by using the introduced workflow.

In conclusion, this research develops a monitoring sys-
tem which relies only on the low-cost data to the end us-
ers. It effectively monitors surface water volume on a basin 
scale. Owing to the accessibility of abundant satellite im-
ages nowadays, this monitoring system is transportable to 
other study areas of the world. Moreover, the open data of 
Sentinel-1 may also serve as an important image source in 
the flood chance model as the number of images accumulat-
ed. A better estimation of surface WV may further be used 
for investigating subsurface water changes. With more and 
more satellite missions being launched, it is expected that 
this monitoring approach could become an efficient tool for 
hydrological studies and water resources management.
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SRTM MODIS Landsat Merged (MODIS + Landsat)

RMS of the difference (m) 1.65 1.48 1.37 1.16

Correlation Coefficient 0.72 0.75 0.75 0.79

Table 1. Comparison between SRTM, image-derived DEM, and ICESat altimetry height.

Fig. 11. Time series of estimated surface water and GRACE EWH in Sylhet. Blue line is the estimated surface water EWH from merged DEM and 
satellite images. Green line is GRACE-observed EWH.



Tseng et al.124

REFERENCES

Abshire, J. B., X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, 
S. Palm, D. Yi, and P. Liiva, 2005: Geoscience laser 
altimeter system (GLAS) on the ICESat mission: On-
orbit measurement performance. Geophys. Res. Lett., 
32, doi: 10.1029/2005GL024028. [Link]

Andersen, O., P. Berry, J. Freeman, F. G. Lemoine, S. 
Lutsckhe, F. Jakobsen, and M. Butts, 2008: Satellite Al-
timetry and GRACE Gravimetry for Studies of Annual 
Water Storage Variations in Bangladesh. Terr. Atmos. 
Ocean. Sci., 19, 47-52, doi: 10.3319/TAO.2008.19.1-
2.47(SA). [Link]

Berry, P. A. M., J. D. Garlick, J. A. Freeman, and E. L. 
Mathers, 2005: Global inland water monitoring from 
multi-mission altimetry. Geophys. Res. Lett., 32, doi: 
10.1029/2005GL022814. [Link]

Borah, S. B., T. Sivasankar, M. N. S. Ramya, and P. L. N. 
Raju, 2018: Flood inundation mapping and monitoring 
in Kaziranga National Park, Assam using Sentinel-1 
SAR data. Environ. Monit. Assess., 190, doi: 10.1007/
s10661-018-6893-y. [Link]

Duan, X. J., J. Y. Guo, C. K. Shum, and W. van der Wal, 2009: 
On the postprocessing removal of correlated errors in 
GRACE temporal gravity field solutions. J. Geod., 83, 
1095-1106, doi: 10.1007/s00190-009-0327-0. [Link]

Feng, W., M. Zhong, J. M. Lemoine, R. Biancale, H. T. 
Hsu, and J. Xia, 2013: Evaluation of groundwater de-
pletion in North China using the Gravity Recovery and 
Climate Experiment (GRACE) data and ground-based 
measurements. Water Resour. Res., 49, 2110-2118, 
doi: 10.1002/wrcr.20192. [Link]

Frappart, F., S. Calmant, M. Cauhopé, F. Seyler, and A. Ca-
zenave, 2006: Preliminary results of ENVISAT RA-2-
derived water levels validation over the Amazon basin. 
Remote Sens. Environ., 100, 252-264, doi: 10.1016/j.
rse.2005.10.027. [Link]

Ghosh, M. K., L. Kumar, and C. Roy, 2015: Monitoring 
the coastline change of Hatiya Island in Bangladesh 
using remote sensing techniques. ISPRS J. Photo-
gram. Rem. Sens., 101, 137-144, doi: 10.1016/j.is-
prsjprs.2014.12.009. [Link]

Guo, J. Y., X. J. Duan, and C. K. Shum, 2010: Non-iso-
tropic Gaussian smoothing and leakage reduction for 
determining mass changes over land and ocean using 
GRACE data. Geophys. J. Int., 181, 290-302, doi: 
10.1111/j.1365-246X.2010.04534.x. [Link]

Henry, J.-B., P. Chastanet, K. Fellah, and Y.-L. Desnos, 
2006: Envisat multi-polarized ASAR data for flood 
mapping. Int. J. Remote Sens., 27, 1921-1929, doi: 
10.1080/01431160500486724. [Link]

Hoque, M. A., M. M. Hoque, and K. M. Ahmed, 2007: 
Declining groundwater level and aquifer dewater-
ing in Dhaka metropolitan area, Bangladesh: Causes 

and quantification. Hydrogeol. J., 15, 1523-1534, doi: 
10.1007/s10040-007-0226-5. [Link]

Hostache, R., P. Matgen, G. Schumann, C. Puech, L. Hoff-
mann, and L. Pfister, 2009: Water level estimation and 
reduction of hydraulic model calibration uncertainties 
using satellite SAR images of floods. IEEE Trans. 
Geosci. Remote Sensing, 47, 431-441, doi: 10.1109/
TGRS.2008.2008718. [Link]

Huang, W., B. DeVries, C. Huang, M. W. Lang, J. W. Jones, 
I. F. Creed, and M. L. Carroll, 2018: Automated Ex-
traction of Surface Water Extent from Sentinel-1 Data. 
Remote Sens., 10, doi: 10.3390/rs10050797. [Link]

Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, 
and L. G. Ferreira, 2002: Overview of the radiometric 
and biophysical performance of the MODIS vegeta-
tion indices. Remote Sens. Environ., 83, 195-213, doi: 
10.1016/S0034-4257(02)00096-2. [Link]

Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nel-
kin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. 
Wolff, 2007: The TRMM Multisatellite Precipitation 
Analysis (TMPA): Quasi-global, multiyear, combined-
sensor precipitation estimates at fine scales. J. Hydro-
meteorol., 8, 38-55, doi: 10.1175/JHM560.1. [Link]

Islam, M. M. and K. Sado, 2000: Development of flood 
hazard maps of Bangladesh using NOAA-AVHRR 
images with GIS. Hydrolog. Sci. J., 45, 337-355, doi: 
10.1080/02626660009492334. [Link]

Kuo, C. Y. and H. C. Kao, 2011: Retracked Jason-2 altim-
etry over small water bodies: Case study of Bajhang 
River, Taiwan. Mar. Geodesy, 34, 382-392, doi: 
10.1080/01490419.2011.584830. [Link]

Kusche, J., 2007: Approximate decorrelation and non-iso-
tropic smoothing of time-variable GRACE-type grav-
ity field models. J. Geod., 81, 733-749, doi: 10.1007/
s00190-007-0143-3. [Link]

Kusche, J., R. Schmidt, S. Petrovic, and R. Rietbroek, 2009: 
Decorrelated GRACE time-variable gravity solutions 
by GFZ, and their validation using a hydrological 
model. J. Geod., 83, 903-913, doi: 10.1007/s00190-
009-0308-3. [Link]

Ledien, J., S. Sorn, S. Hem, R. Huy, P. Buchy, A. Tarantola, 
and J. Cappelle, 2017: Assessing the performance of 
remotely-sensed flooding indicators and their poten-
tial contribution to early warning for leptospirosis in 
Cambodia. PLOS ONE, 12, e0181044, doi: 10.1371/
journal.pone.0181044. [Link]

Lee, J. S., 1980: Digital image enhancement and noise fil-
tering by use of local statistics. IEEE Trans. Pattern 
Anal. Mach. Intell., PAMI-2, 165-168, doi: 10.1109/
TPAMI.1980.4766994. [Link]

Legresy, B., F. Papa, F. Remy, G. Vinay, M. van den Bo-
sch, and O. Z. Zanife, 2005: ENVISAT radar altimeter 
measurements over continental surfaces and ice caps 
using the ICE-2 retracking algorithm. Remote Sens. 

https://doi.org/10.1029/2005GL024028
https://doi.org/10.3319/TAO.2008.19.1-2.47(SA)
https://doi.org/10.1029/2005GL022814
https://doi.org/10.1007/s10661-018-6893-y
https://doi.org/10.1007/s00190-009-0327-0
https://doi.org/10.1002/wrcr.20192
https://doi.org/10.1016/j.rse.2005.10.027
https://doi.org/10.1016/j.isprsjprs.2014.12.009
https://doi.org/10.1111/j.1365-246X.2010.04534.x
https://doi.org/10.1080/01431160500486724
https://doi.org/10.1007/s10040-007-0226-5
https://doi.org/10.1109/TGRS.2008.2008718
https://doi.org/10.3390/rs10050797
https://doi.org/10.1016/S0034-4257(02)00096-2
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1080/02626660009492334
https://doi.org/10.1080/01490419.2011.584830
https://doi.org/10.1007/s00190-007-0143-3
https://doi.org/10.1007/s00190-009-0308-3
https://doi.org/10.1371/journal.pone.0181044
https://doi.org/10.1109/TPAMI.1980.4766994


Satellite Imageries for Water Quantification in Sylhet 125

Environ., 95, 150-163, doi: 10.1016/j.rse.2004.11.018. 
[Link]

Li, X. and W. Takeuchi, 2016: Land surface water coverage 
estimation with PALSAR and AMSR-E for large scale 
flooding detection. Terr. Atmos. Ocean. Sci., 27, 473-
480, doi: 10.3319/TAO.2016.01.06.01(ISRS). [Link]

Liu, K. T., K. H. Tseng, C. Shum, C. Y. Liu, C. Y. Kuo, 
G. Liu, Y. Jia, and K. Shang, 2016: Assessment of the 
impact of reservoirs in the upper Mekong River using 
satellite radar altimetry and remote sensing imageries. 
Remote Sens., 8, doi: 10.3390/rs8050367. [Link]

Maheu, C., A. Cazenave, and C. R. Mechoso, 2003: Water 
level fluctuations in the Plata Basin (South America) 
from Topex/Poseidon satellite altimetry. Geophys. Res. 
Lett., 30, doi: 10.1029/2002GL016033. [Link]

McFeeters, S. K., 1996: The use of the Normalized Differ-
ence Water Index (NDWI) in the delineation of open 
water features. Int. J. Remote Sens., 17, 1425-1432, 
doi: 10.1080/01431169608948714. [Link]

McFeeters, S. K., 2013: Using the Normalized Difference 
Water Index (NDWI) within a geographic information 
system to detect swimming pools for mosquito abate-
ment: A practical approach. Remote Sens., 5, 3544-
3561, doi: 10.3390/rs5073544. [Link]

Neumann, B., A. T. Vafeidis, J. Zimmermann, and R. J. 
Nicholls, 2015: Future coastal population growth and 
exposure to sea-level rise and coastal flooding - A 
global assessment. PLOS ONE, 10, e0118571, doi: 
10.1371/journal.pone.0118571. [Link]

Palmer, M. and A. Ruhi, 2018: Measuring Earth’s rivers. 
Science, 361, 546-547, doi: 10.1126/science.aau3842. 
[Link]

Prokop, P., 2014: The Meghalaya Plateau: Landscapes in 
the abode of the clouds. In: Kale, V. S. (Ed.), Land-
scapes and Landforms of India, World Geomorpho-
logical Landscapes, Springer, Dordrecht, 173-180, doi: 
10.1007/978-94-017-8029-2_17. [Link]

Rateb, A., C. Y. Kuo, M. Imani, K. H. Tseng, W. H. Lan, 
K. E. Ching, and T. P. Tseng, 2017: Terrestrial Water 
Storage in African Hydrological Regimes Derived from 
GRACE Mission Data: Intercomparison of Spherical 
Harmonics, Mass Concentration, and Scalar Slepian 
Methods. Sensors, 17, doi: 10.3390/s17030566. [Link]

Rodell, M., J. Chen, H. Kato, J. S. Famiglietti, J. Nigro, and 
C. R. Wilson, 2007: Estimating groundwater storage 
changes in the Mississippi River basin (USA) using 
GRACE. Hydrogeol. J., 15, 159-166, doi: 10.1007/
s10040-006-0103-7. [Link]

Rodríguez, E., C. S. Morris, J. E. Belz, E. C. Chapin, J. M. 
Martin, W. Daffer, and S. Hensley, 2005: An assess-
ment of the SRTM topographic products. Technical 
Report JPL D-31639, Jet Propulsion Laboratory, Pasa-
dena, California, 143 pp.

Schumann, G., P. Matgen, M. E. J. Cutler, A. Black, L. Hoff-

mann, and L. Pfister, 2008: Comparison of remotely 
sensed water stages from LiDAR, topographic contours 
and SRTM. ISPRS J. Photogram. Rem. Sens., 63, 283-
296, doi: 10.1016/j.isprsjprs.2007.09.004. [Link]

Singh, K. V., R. Setia, S. Sahoo, A. Prasad, and B. Pateriya, 
2015: Evaluation of NDWI and MNDWI for assessment 
of waterlogging by integrating digital elevation model 
and groundwater level. Geocarto International, 30, 650-
661, doi: 10.1080/10106049.2014.965757. [Link]

Smith, A. H., E. O. Lingas, and M. Rahman, 2000: Contam-
ination of drinking-water by arsenic in Bangladesh: A 
public health emergency. Bull. World Health Organ., 
78, 1093-1103.

St. Jacques, J.-M. and D. J. Sauchyn, 2009: Increas-
ing winter baseflow and mean annual streamflow 
from possible permafrost thawing in the Northwest 
Territories, Canada. Geophys. Res. Lett., 36, doi: 
10.1029/2008GL035822. [Link]

Tanré, D., Y. J. Kaufman, M. Herman, and S. Mattoo, 1997: 
Remote sensing of aerosol properties over oceans using 
the MODIS/EOS spectral radiances. J. Geophys. Res., 
102, 16971-16988, doi: 10.1029/96JD03437. [Link]

Torres, R., P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, 
E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown, 
I. N. Traver, P. Deghaye, B. Duesmann, B. Rosich, 
N. Miranda, C. Bruno, M. L’Abbate, R. Croci, A. Pi-
etropaolo, M. Huchler, and F. Rostan 2012: GMES 
Sentinel-1 mission. Remote Sens. Environ., 120, 9-24, 
doi: 10.1016/j.rse.2011.05.028. [Link]

Tseng, K. H., C. K. Shum, J. W. Kim, X. Wang, K. Zhu, 
and X. Cheng, 2016a: Integrating landsat imageries 
and digital elevation models to infer water level change 
in Hoover Dam. IEEE J. Selected Topics Appl. Earth 
Observations Rem. Sens., 9, 1696-1709, doi: 10.1109/
JSTARS.2015.2500599. [Link]

Tseng, K. H., C. P. Chang, C. Shum, C. Y. Kuo, K. T. Liu, 
K. Shang, Y. Jia, and J. Sun, 2016b: Quantifying Fresh-
water Mass Balance in the Central Tibetan Plateau by 
Integrating Satellite Remote Sensing, Altimetry, and 
Gravimetry. Remote Sens., 8, doi: 10.3390/rs8060441. 
[Link]

Tseng, K. H., C. Y. Kuo, T. H. Lin, Z. C. Huang, Y. C. Lin, W. 
H. Liao, and C. F. Chen, 2017: Reconstruction of time-
varying tidal flat topography using optical remote sens-
ing imageries. ISPRS J. Photogram. Rem. Sens., 131, 
92-103, doi: 10.1016/j.isprsjprs.2017.07.008. [Link]

Urban, T. J., B. E. Schutz, and A. L. Neuenschwander, 
2008: A survey of ICESat coastal altimetry applica-
tions: Continental coast, open ccean island, and inland 
river. Terr. Atmos. Ocean. Sci., 19, 1-19, doi: 10.3319/
TAO.2008.19.1-2.1(SA). [Link]

Vermote, E. F., D. Tanré, J. L. Deuzé, M. Herman, and J.-
J. Morcrette, 1997: Second simulation of the satellite 
signal in the solar spectrum, 6S: An overview. IEEE 

https://doi.org/10.1016/j.rse.2004.11.018
https://doi.org/10.3319/TAO.2016.01.06.01(ISRS)
https://doi.org/10.3390/rs8050367
https://doi.org/10.1029/2002GL016033
https://doi.org/10.1080/01431169608948714
https://doi.org/10.3390/rs5073544
https://doi.org/10.1371/journal.pone.0118571
https://doi.org/10.1126/science.aau3842
https://doi.org/10.1007/978-94-017-8029-2_17
https://doi.org/10.3390/s17030566
https://doi.org/10.1007/s10040-006-0103-7
https://doi.org/10.1016/j.isprsjprs.2007.09.004
https://doi.org/10.1080/10106049.2014.965757
https://doi.org/10.1029/2008GL035822
https://doi.org/10.1029/96JD03437
https://doi.org/10.1016/j.rse.2011.05.028
https://doi.org/10.1109/JSTARS.2015.2500599
https://doi.org/10.3390/rs8060441
https://doi.org/10.1016/j.isprsjprs.2017.07.008
https://doi.org/10.3319/TAO.2008.19.1-2.1(SA)


Tseng et al.126

Trans. Geosci. Remote Sensing, 35, 675-686, doi: 
10.1109/36.581987. [Link]

Vermote, E. F., C. Justice, M. Claverie, and B. Franch, 2016: 
Preliminary analysis of the performance of the Landsat 
8/OLI land surface reflectance product. Remote Sens. 
Environ., 185, 46-56, doi: 10.1016/j.rse.2016.04.008. 
[Link]

Wahr, J., M. Molenaar, and F. Bryan, 1998: Time vari-

ability of the Earth’s gravity field: Hydrological and 
oceanic effects and their possible detection using 
GRACE. J. Geophys. Res., 103, 30205-30229, doi: 
10.1029/98JB02844. [Link]

Xu, H., 2006: Modification of normalised difference water 
index (NDWI) to enhance open water features in re-
motely sensed imagery. Int. J. Remote Sens., 27, 3025-
3033, doi: 10.1080/01431160600589179. [Link]

https://doi.org/10.1109/36.581987
https://doi.org/10.1016/j.rse.2016.04.008
https://doi.org/10.1029/98JB02844
https://doi.org/10.1080/01431160600589179

