
December 1991 TAO, Vol.f, No . .4, S17-Sf9 

A Note on the Correlation between b-value and Fractal 

Dimension from Synthetic Seismicity 

JEEN-HWA WANG* 

(Received 21 June 1991; Revised 30 December 1991) 

ABSTRACT 

Seismicity is dynamically simulated by one-dimensional mass-spring model 
with fractal distribution of breaking strengths.

-
A linearly rapidly-weakening-and

hardening friction law controls the sliding of the mass. The frequency-magnitude 
relations from synthetic seismicity for five values of friictal dimension show that b
values for events with intermediate magnitudes are close to 1, while those for events 
with larger magnitudes are from 1.68 to 2.52. For small events, the logN values are 
almost constant. 

1. INTRODUCTION 

3 17 

Gutenburg and Richter (1955) first mentioned the linear law between 
log N and M, where Mis the earthquake magnitude and N is the cummulative 
frequency of earthquakes with magnitude greater than M, in the following form: 
log N = a-bM. The b-value varies from region to region and is also dependent 
upon the used period of time, but is generally in the range of from 0.8 to 1.2. 
The variation of b-value before and after a major earthquake has been as an 
earthquake precursor (Smith, 1986; Chen et al., 1990). The b-value is also 
correlated to geotectonics (Wang, 1988; Tsapanos, 1990 ) .  An understanding 
of physical basis of b-value would be significant to the studies on earthquake 
generation process and earthquake prediction. 

Earlier studies on the physical processes associated b-value were primarily 
based on laboratory work of rock fracture. Mogi (1967) reported the effect of 
degree of heterogeneity of the media on b-value. Schulz (1968) correlated the 
increase of b-value with the decrease of the ambient stress level. Recently, nu
merous theoretical studies have been done to explore the relation of b-value with 
fault structure and fault dynamics. The studies are based on several aspects 
of physics: 1. fragmentation of materials (Turcotte, 1986a); 2. fractal distribu
tion of strain and stress of crustal deformation (Turcotte, 1986b); 3. percolation 
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theory (Lomnitz-Adler, 1988); 4. celullar automata with self-organization crit
icality (Bak and Tang, 1989; Ito and Matsuzaki, 1990; Nakanishi, 1990; Brown 
et al., 1991); and 5. dynamic simulation (Carlson and Langer, 1989; Wang and 
Knopoff, 1991).· The b-value obtained by Brown et al. {1991) is 1.5, while those 
done by others are about 1. 

The fault zones where earthquakes occur are quite complex. Map and 
field observations (Aviles et al, 1987; Okubo and Aki, 1987) and laboratory 
observations (Brown and Scholz, 1985; Power et al., 1987) showed fractal distri
bution of fault surface. The fractal dimension, whose explanation can be found 
in Turcotte (1986a), describes quantitativly the scale invariance of a structure 
or provides a measure of the relative importance of large versus small objects. 
Hence, fractal dimension might be a factor to influence b-value. The correlation 
between b-value and fractal dimension (D) is described by b = D /3 in Turcotte 
(1986a) and by b = D/2 in Turcotte (1986b). From a probabilitic synthesis, Aki· 
(1981) speculated the relation of the two parameters to be b = P/2. However, 
from the analysis of the actual earthquake data in the Tohoku area, Hirata 
(1989) reported a negative correlation (D = 2.3 - 0. 73 b) between the two pa
rameters. The ranges of D values and b-values are from 1.3 to 1.8 and from 
0. 7 to 1.2, res:pectively. It is obvious that more studies are needed to explore 
the relation between the two parameters. Wang and Knopoff ( 1991) used an 
one-dimensional mass-spring model (Burridge and Knopoff, 1967) with fractal 
distributfon of breaking strengths for the simulation of seismicity. Here, an at
tempt is to study the possible correlation between b-value and fractal dimension 
from synthetic seismicity. 

2. THEORY 

The one-dimensional mass-spring model consists of a chain of N masses 
with equal mass (m) and springs with each mass being linked by a spring of 
strength (K) with two other neighborf). Each mass is also pulled through a 
spring of strength (L) by a constant velcoity (v) . Each mass is located at posi
tion x;, measured from its initial equilibrium position. This system is illustrated 
schematically in Figure 1. Each mass is subjected to a velocity-dependent fric
tion law, F(xi), where xi is the velocity of thej-th mass. Hence, the equations 
of motion for the system are: 

m xi= K(xi+1 - 2 xi+ X;-d - L(x; - vt) - F(xi)· (1) 

The dots represent differentiation with respect to time t. It is noted that mem
ory effect is not included. The periodic boundary condition is applied at the 

·two end masses. 
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Fig. 1. One-dimensional mass-spring inodel. 
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As one mass starts to slide, the static friction force subjected to this mass 
immediately becomes the dynamic one, which is time-dependent (Dieterich, 
1978). The velocity-dependent friction law is very commonly considered for 
controlling sliding of the fault (Ruina, 1983). Dieterich (1978), Ruina (1980), 
Tullis and Weeks (1986} and some others showed that at low velocities, the 
friction decreases with increasing velocity (i.e. velocity-weakening) . However, 
Weeks and Tullis (1985}, Shimamoto (1986), and Blanpied et al. (1987) re
ported that the velocity dependence actually changes from negative to positive 
(i.e. velocity-hardening) as slip velocity is increased. Horowitz (1988) sug
gested a mixed state variable friction law to describe both velocity-dependent 
weakening and hardening processes. Hence, a velocity-dependent friction law, 
including velocity-weakening process as the sliding velocity smaller than a crit
ical velocity (Ve) and velocity-hardening process as sliding velocity greater than 
ve, is taken into account. The critical velocity is the one at which the dynamic 
friction force reaches the minimum value. The generalized velocity-dependent 
friction law is quite complicated. In this study, a linear friction law, includ
ing a decreasing function for weakening process and an increasing function for 
hardening process (see Figure 2): 

F(x,.) = . Foi - "11 x,. 
= q Foi + "12 x,. 

(x,. $ vc)i 
(x,. > vc) 

(2a) 
(2b) 

is taken as the first-order approximation of the friction law. The decreasing 
rate ( 71) and increasing rate ( 72) for the variation of friction force with sliding 
velocity are two parameters of the model. At velocity Ve, the dynamic friction 
force is the minimum value (q F0), where q is a positive number smaller than 1. 

The distribution of breaking strengths or static.friction forces at all masses 
of the system is considered to be fractal. The Midpoint Displacement Method 
developed by Saupe (1988) is used to yield fractal distribution. This method 
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Fig. 2. Linearly velocity�dependent friction la:w. Quantities /0 and tic are breaking strength 
and critical velocity, respectively. 

can only produce fractals at N (= 2level + 1) points, where "level" is a posi
tive integer. The normalized fractal distributions of breaking strengths for five 
valu� of fractal dimension: 1.1, 1.3, 1.5, 1.7, and 1.9 are shown in Figure 3. 
Besides, a parameter defined as the ratio of the difference of the maximum 
and minimum values of breaking strengths to the mean value of them is taken 
into account to control the roughness of the fault. This parameter is named as 
roughness (R). In Figure 3, the R value is 0.5 for the five distributions. 

' 
In the practical computation, Equation (1) is normali.Zed by letting m and 

L be one unit. Hence, Equation (1) becomes 

Xi = s(x.i+1 - 2 Xj + Xj- d - Xj +Vt- f;(x;) (3) 

wheres= K/L = K. From the observed data, vis about 50 mm/yr, or the 
order of 10-12 km/yr. 

For solving this problem with nonlinear boundary condition, a technique 
developed by Wilson and Clough (1962) is used to numerically integrate Equa
tion (1). The velocities x,(t + 6 t) and displacements x, (t + 6 t) at times t + 6 t 
for the i-th sliding mass can be calculated by the following expressions: 
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Fig. 3. Normalized fractal distribution of breaking strengths: (a} for D=l.1, (b} for D=l.3, 
(c) for D=l.5, (d) for D=l.7 and (e) for D=l.9. 

(4a) 

and 

where x, (t) is the acceleration of the i-th mass at time t. 

For a· certain mass point, as the sum of tectonic driving force and spring 
forces from its neighbors exceeds frictional force, this mass point is accelerated 
and starts to slide. After a while, the increase of either spring forces due to the 
change of relative positions of the mass and its neighbors or dynamic friction 
force as the sliding velocity is greater than vc gives rise to resistant force to 
decelerate the sliding mass. The mass stops and sticks when the total force 
acting on the mass becomes zero. The increase oi total force due to the increase 
of tectonic driving force will reactivate the mass. 

The displacement of a mass is measured from its new equilibrium position 
to the position where it sticks. The position where the mass sticks after motion 
is a new equilibrium position for the next stage of motion. Since several neigh
boring masses slide almost simultaneously during a certain time interval, the 
time history of sum of displacements of such masses is taken to represent one 
event. Seismic energy released by one mass for an event equals to the product 
of.its maximum displacement and stress drop. The logarithmic value of the sum 
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of seismic energy of all masses for an event is considered to be the magnitude 
(M) of the event. 

3. NUMERICAL RESULTS AND DISCUSSION 

The tectonic driving force due to the moving plate with velocity v is a 
main source to push the mass to slide. From the real data, v is a very small value 
of the order of 10-12 units, hence, a very long computational time is needed 
for yielding significant pattern of synthetic seismicity. In this work, a larger v 
value of 10-4 units is used. The time unit o t is 0.1, which is much smaller 
than natural period of 2 'lr of the oscillation of one mass. For the frictional law, 
only the case with 11 = -:-oo and 12 = +1 and q = 0.8 is considered. Wang 
and Knopoff (1992) study the effects due to the variation of the parameters of 
frictional law on synthetic seismicity in detail. Their major results are: (1) Both 
"ti and 12 values influence the b-value (2) Smaller q value gives smaller b-value; 
and (3 ) Larger value of stiffness (s) produces smaller b-value. Stiffness is a 
factor to represent the coupling between the moving plate. and masses. In this 
study, the s value is· taken to be 10. Roughness (R) is also a signifkant factor to 
change synthetic seismicity pattern and b-value. Practical computation shows 
that small R value, for instance 0.1, will cause a large number cf masses to 
slide, thus producing large events. For understanding the distribution of events 
magnitudes, a larger R value of 0.5 is selected. 

Figure 4 shows an example of the spatial-temporal pattern (ST-pattern) 
with D = 1.5. Each line segment represents one event. The spatial distribution 
of breaking strengths for all masses is shown by symbols '+'. The amount of 
breaking strength increases from left to right. The maximum and minimum 
values of breaking strengths are 5.00 and 1.67 units. Longer line segment of the 
ST-pattern indicates larger .number of broken masses and thicker line segment 
reprents longer sliding time of the related masses. It can be seen that in the 
time interval earlier than tc = 2 X 106 units, larger events repeatedly appear 
at the masses with higher breaking strength in the lower part of the fault. 
This phenomenon does not appear after time tc. Besides, the time intervals of 
occurrence of �vents are smaller before than after tc. It is assumed that the 
computed events in the time interval before tc are the unsteady- or transient
state solutions. Hence those events will not be included in the further discussion. 
The time series of number of events for the five values of fractal dimension are 
shown in Figure 5. It is noted that those time series are different for various 
values of fractal dimension. However, the detailed analysis of the ST-pattern 
and the related time series will be given in a seperate paper. Here only the 
slope of data points of log N vs. Mis taken into account. 

The data points of log N vs. M for the five time sequences of synthetic 
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Fig. 5. Time series of number of events: (a) for D=l.1, (b) for D=l.3, (c) for D=l.5, (d) 
for D=l.7 and (e) for D=l.9. 



324 TAO Vol.2, No.4 

seismicity are shown in Figure 6. The pattern of data points seems to be similar 
to that obtained from the real earthquake data. For the five cases, the distri
butions of data points can be divided into three portions. The first portion has 
data points with magnitudes smaller than -0.6 and the related log N values 
are nearly constant. The second portion includes the data points with magni
tudes ranging from -0.6 to +0.1. The data points distribute almost around a 
line with slope of -1. The third portion includes the data points with larger 
magnitudes and the related log N values decrease rapidly with magnitude. For 
the first and second portions, the data points of the five values of fractal di
mension have very similar distribution, but for the third one, the data points 
are somewhat scattering. It is obvious that the data points of the second por
tion seem to follow a linear relation as suggested by Gutenburg and Richter (1953). Due to normalization of the problem and definition of magnitude in 
this study, the present magnitude is not equal to the commonly-used earth
quake magnitude, and the slope of linear portion of data points is not exactly 
the b-value of Gutenberg and Richter's relation. Nevertheless, this slope is to 
some degree similar to the b-value because both of them show the correlation 
between frequency and size of earthquakes. The slope obtained from synthetic 
seismicity would provide significant information for understanding the physics 
of the b-value. For convience, the present slope is called as b-value; 

The b-values together with standard deviation and magnitude ranges for 
the second and third linear portions (denoted by SLP and TLP respectively) 
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Fig. 6. Figure shows the data points of logN vs. M for five values of fractal dimension. 
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for the five values of fractal dimension are shown in Table 1. For the purpose 
of reference, included also in the table are the magnitude ranges and numbers 
of events. The numbers of events for· all cases are greater than 610. The 
magnitude ranges are essentially the same for the five cases. The values of 
standard deviation vary from 0.01 to 0.04 for SLP and from 0.06 to 0.15 for 
TLP. Obviously, the b-values ofTLP are larger than those of SLP. The b-value 
of D = 1.5 is the smallest value among the five values. The b-values of D � 1.5 
are very close to 1; while those of D > 1.5 deviate from 1. 

As the above mention, the liner relations between b and D values are given 
by several authors. However, the b-values obtained from the present work are 
close to 1 and not remarkably dependent upon D values. A possible reason 
for this difference is that the D value used by those anthers is related to the 
geometry of the fault, while the D value used in this work is concerning the 
distribution of breaking strengths of the fault. 

Comparison of Figures 3 and 4 shows that the time series of five values 
of fractal dimension are different in spite of the similarity of their b-values. 
It indicates that the ST-pattern of synthetic seismicity is more sensitive to the 
variation of fractal dimension than the.b-value. The linear frequency-magnitude 
relation is considered to be a universal or collective trail of seismicity (Keilis
Borok, 1990). The present model is a complicated one consisting of many simple 
systems with masses and springs, which obey simple physical laws. However, 
the whole system is self-organized to show an integral trait, which is very inde
pendent upon the .details of the properties of its elements (Kadanoff, 1991). The 
b-value is such a parameter to indicated the integral trait of the fault system. 

Lomnitz-Adler (1985), Carlson and Langer (1989) and Nakanishi (1990) 
reported the existence of events ruptured at all masses. Such events have largest 
values of magnitude and their log N values can not be predicted from the linear 
equation obtained from the smaller events. Those events are called as "runaway 
events" by Knopoff (1990), who correlated them either with the finite size of the 

Table 1. Table shows the numbers of events (N) , magnitude ranges for the whole data points 
(WMR), magnitude ranges for linear portion of data points of logN vs. M (LMR) 
and b-values with their standard errors, far the second (SLP) and third (TLP) 
linear portions for five fractal dimensions (D) . 

D N SLP TLP 

1.1 627 1.16±0.02 2.40±0.09 

1.3 610 1.13±0.01 1.81±0.06 

1.5 630 1.08±0.02 1.68±0.08 

1.7 708 1.26±0.04 2.18±0.09 

1.9 666 1.30±0.04 2.52±0.15 
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lattice used in the computations or with the ·correlations across the fracture. 
These authors used homogeneous modeis for breaking strengths. For those 
models, there is a characteristic length above which the stress concentration is 
always larger than the breaking strength. However, no such a runaway event 
can be found from the real data and from the present computational results. 
The use of homogeneous model for the synthesis of seismicity is considered to 
be not appropriate. 

4. CONCLUSIONS 

The b-values for events with intermediate magnitudes obtained froin syn
thetic seismicity by one-dimensional mass-spring models with fractal distribu
tions of breaking strengths are close to 1. But those for events with larger 
values of magnitude are from 1.68 to 2.52. For small events, the log N values 
are almost zero. 
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