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ABSTRACT

A method for the finite element computation of the synthetic seismo-
grams of SH wave propagation in a two-dimensional (2-D) medium is pro-
posed. The finite element method has the advantage of specifying the arbi-
trary density and velocity field in the medium. To complete the waveform
modeling for an earthquake, the transformation of line source snapshots
and seismograms of the 2-D finite element modeling to the point source
responses is critically necessary. The accuracy of the finite element model-
ing is verified by comparing it with the generalized ray method and with a
finite difference method which computes the 2-D wave field from a differ-
ent approach. The aim of this study is to demonstrate the successfulness of
seismogram synthesis by the finite element method and to propose the
potential applications of this method in the Taiwan area.
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1. INTRODUCTION

Wave propagation problems in complicated geological structures have generated consid-
erable interests in recent years. The full wave equation modeling with numerical methods such
as the tfinite ditterences (FD), the finite element (FE) and the pseudo-spectrum (PS) methods 1s
a suitable approach. However, modeling wave propagation with three-dimensional (3-D) struc-
tures 1s, 1n fact, difficult to handle with present-day computers. These methods require a tre-
mendous amount of computer time and also allow only a mited number of wavelengths to
propagate. From this point of view, 2-B modeling 1s more practical to use. The application of
2-D modeling has been proposed in many problems of setsmological interest (Aki and Larner,
1970; Dravinski, 1983). However, the Green's tunction of 2-D (line source) 1s actually differ-
ent to that ot 3-D (point source), so application 1s limited to earthquake wavetorm synthesis,
such as the generalized ray theory (GRT) method (Heaton and Helmberger, 1977), WKBJ
method (Chapman, 1978) and the trequency-wavenumber (FK) method (Wang and Herrmann,
1980). Recently, Vidale er al. (1985) proposed a new approach to seismic wave propagation
modeling including laterally varying structures with the 2-D FD scheme and applying it to
waveform synthesis.
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They generated the seismic waves in source area by the GRT and computed the wave
propagation by the 2-D FD method. Finally, they calibrated the propagated energy from 2-D
to 3-D by a suitable transtormation discussed below. This approach is successful in computing
a 3-D wavefield for a 2-D lateral heterogeneous model and is widely applied to ground motion
simulation (Vidale et al., 1985; Ho-Liu and Helmberger, 1989). In this study, a new FE ap-
proach to model the 2-D Green's functions based on equivalent body forces is proposed. The
couples that were required to obtain equivalent forces for a generally oriented displacement
discontinuity (Aki and Richards, 1980} were directly implemented. This simplified the nu-
merical computation for dislocation sources. The obtained Green's functions were easy to
modity for the linear moment tensor inversions algorithms (Stump and Johnson, 1977; Kikuchi
and Kanamori, 1991; Huang, 1994). Furthermore, a numerical technique of computing convo-
lution on grid points of the 2-D model 1s proposed to simulate the point source wavetield
snapshots, which have not been discussed betore.

2. METH®D

2.1 The Representation of the 2-D and 3-D Green's Functions

The 3-D point source, scalar wave equation can be written as:

V% 9 Gg(xa)’azaf):"5(35)5(}’)5(2)50), (])

where G; is the 3-D Green's function, O (t) is the Dirac delta function and V; is the 3-D

Laplacian operator 1n Cartesian coordinates. The wave speed ¢ 1n equation (1) may be an
arbitrary function of spatial coordinates, 1.e., c¢(x,y,z). For constant ¢, the solution of equation

(1) 1s:

Gi(x,y,2,t) = ﬁ(t_r/c); r=\/x2+y2+zz. (2)
| 4 r

The significant properties of G5 are: (1) 1its amplitude decays (geometric spreading) as

1/r, and (2) 1ts propagating waveform 1s identical to the source pulse.
Corresponding to the 3-D wave equation, the 2-D wave equation 1s

v C{ G, (x,2.1) = —8(x)8(2)8(1), 3)
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where G is the 2-D Green's function and V, is the 2-D Laplacian operator. Physically, equa-

tion (3) describes a wavetield emanated from a point source in space with coordinates x and z,
which are equivalent to a line source along the y-axis in space with coordinates x, y and z. The
same conditions hold as in the 3-D case discussed above. Thus, the 2-D Green's function has
the following form:

H(t—r/ >
Gtz = HUILO, o "
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where H(t) 1s the Heaviside step function. The teatures of G, are: (1) 1its amplitude decays as
1/(\r), (2) its propagating waveform 1s different from the source pulse and includes a low
decay tail. The differences between the 2-D and 3-D Green's tunctions are shown in Figure 1.
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Fig. [. Time histories of the 2-B and 3-D analytic Green's functions as shown in
equations (2) and (4). Herein, r=4 and ¢=8 are used.

2.2 Point Source Expressions for the 2-D Green's Function

Following the derivation ot the GRT and being solved by the Cagniard-de Hoop tech-
nique (Helmberger, 1983), the displacement potential of the point source, @ , in a whole-

space can be expressed as:

21[ 1 .
=*J(1) ), (5)

\ ool ANt

where » and z are the radial and vertical coordinates, respectively, and

\pdp
n dt

J(r) =Im ] (6)

where p is the ray parameter, and 17 =(1/¢> — p~). Im represents the image part of a com-
plex variable. However, from the work of Gilbert and Knopoft (1961), the solution for the line
source, @, ,excitation can be expressed as:

| dp
n dr

¢, (t,z.1) =Im( ), (7)

or more explicitly
H(t—r/c)
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Thus, the point source solution ( @) represented from the line source solution J(z) in equation

(6) as J :(\/P) ¢, can be determined. This approach can be used to simulate the waveform of an
earthquake using the 2-D numerical Green's functions.

2.3 Finite Element Formulation

The 2-D wave equation, equation (3), can be formulated as the following finite element
equation for shear wave propagation

(M [A] + [K] D] =[F], (9)

where [M] 1s the global mass matrix, [K] the global stiffness matrix, [A] and [D], respectively,
the vectors of the global acceleration and displacement of the model at grid points. | F] 1s the
vector of the external loading forces at source points. To solve the temporal derivatives of
equation (9) on each grid point, 1n this study, the second derivatives are introduced by the use
of explicit finite difference approximation (Wylie, 1975), as follows:

[V(e+1/2 AD]=[V(—1/2 Ar)]+ At A(¢#)].

. . (10)
[D(r+ At =[D(t)]+ At]V(t +172 At)],

where the definitions of A and D are the same as those in equation (9). V is the vector of the
global velocity, and At is the time interval used in numerical integration. Thus, the displace-

ment D on time ¢ + At is computed from the previous computed values of D(t), V(t - 1/2 At)

and A(¢). The finite element code development and mesh design are described in more detail
in Huang (1989) and Huang and Yeh (1994).

2.4 Source Representation for Shear Dislocation Fault

Following the definition of Helmberger and Harkrider (1978). the tangential displace-
ment U, can be expressed as:

U, =TSS A, +TDS A., (1)

where 78S and TDS are the vertical tangential strike-slip and the dip-slip displacement Green's
functions, respectively. Both A, and A5 can be expressed as:

A, =c0s260 cosA sind—1/2 sin26 sinA sin20,

12)
A, =sin@ cosA coso —cosB sinA cos20, (

where 0 is the strike from the end of the fault, A is the rake angle, and 0 is the dip angle. To
introduce the shear dislocation source to numerical modeling, Vidale er al. (1985) used the
GRT to generate the displacements 1n a small ring around the source point. Those prescribed
displacements drove the FD grids to simulate the Green's functions. In this study, the concept
of equivalent body forces (Aki and Richards, 1980) was employed. The direct implementa-
tion of the couple of body forces on the source grids made the modeling of the explosion and

shear dislocation sources successful, while simplifying the numerical computations.
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3. RESULTS

3.1 Testing for the 3-D Green's Functions

Figure 2 shows the 2-D and 3-D numerical Green's functions of the whole space model
with different epicentral distances. The 2-D synthetic seismograms show the same tail behav-
1or as the analytic Green's function (Figure 1); however, the 3-D synthetic seismograms show
the O -function behavior except for some numerical errors from the inexact O -type input source
time function.
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Fig. 2. Comparison of the seismograms of both the 2-D and 3-D numerical Green's
functions in whole space. The time scale 1s the same tor all seismograms
and shown in the figure. The number 1n the bottom of each column 1s the
distance between source and receivers. The seismograms in the upper row
are the line source (2-D) Green's functions. Those 1n the middle row are
the input source time functions. The lower row represents the corrected
point source (3-D) Green's functions. The associated number with each
plot represents the amplitude.

3.2 Comparison With Other Methods

To test the accuracy of this method, the results are compared with those from other meth-
ods. Herein, a model with one layer over a half-space that was well tested by the GRT (Apsel
and Luco, 1983) 1s used for comparison. The TSS Green's functions ot the shear dislocation
fault are compared in Figure 3 and the TDS 1n Figure 4. Following the results of Vidale er al.
(1985). the synthetics of this study are convoluted with the long-period WWSSN instrument
response. The waveforms computed by the GRT, FD and FE of this study are close to each
other. This indicates that the. method proposed 1n this study 1s indeed suitable for modeling
carthquake ground motions from lateral inhomogeneous models.
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Fig. 3. Comparison of the synthetic seismograms computed by different meth-
ods; (a) the Cagniard-de Hoop method, (b) the finite difference Method

(Vidale et al.

, 1985), and (c) the finite element method of this study. The

earth model is a one layer over halt space structure as used by Vidale er
al. (1995). The source mechanism 1s a point strike-slip fault on the up-
per layer. The synthetic seismograms of columns (a) and (b) are from

Vidale et al. (1985).
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Fig. 4. Comparison of the synthetic seismograms computed by different meth-
ods. All definitions are the same as those in Figure 3. The seismograms of
this figure were computed from a point source with dip-slip fault mecha-

nism.
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3.3 Point Source Snapshots Modification

Figure 5a shows the synthetic SH-wave displacement seismograms {rom a pure strike-
slip point source on a lateral inhomogeneous earth model (Figure Sb). The recording sites are
on a free surface and are indicated as open triangle signs in Figure 5b. 1t 1s found that the
lateral phases of seismograms are strongly distorted by the embedded 2-D structure. The {ea-
tures of these seismograms are their long duration on the right of the source and the complex
waveforms on the left. To clearly interpret the mteraction ot a complex earth model and
seismic waveftleld. usually. the examination of wave fields in space (1.e. snapshots) is neces-
sary. However, no exact point source snapshots have been discussed previously. To calibrate
the waveform and amplitude of the numerical point source Green's function as shown in equa-
tion (5). a convolution 1s necessary tor the 2-D Green's tunction (J/(f)). However, it 1s very
dithicult to apply the above technique for the calibration of the line source wave ticlds over all
spatial grid points because all snapshots ot the 2-D model on every time step are nccessary.
Those data are hard to store in present-day computers. Fortunately, to verify the wave fields
variations in space, It ts unnecessary to check such snapshots on every time step. Usually, only
some snapshots separated in tine are selected. Herein. the correction of the line source snap-
shot to the point source snapshot was accomplished according to the following approach. For
snapshots sclected 1n a defined time step (z,), the convolution of 1/(\5'1') of equation (3) in
spatial domain can be impiemented by the integration ot the Iine source time histories at each
arid point with the folding 1/(Nt) which was initiated at 7,. The corrected snapshot was ob-
tained following the computation of wave propagation step by step till 7. In the real case, the
corrected snapshots may be the by-product of the main computation. The successtulness of

this calibration is demonstrated by a band limited 0 -tunction prepagating in the whole space
as shown in Figure 6. The Heaviside step type tail of the line source snapshot has effectivel y
been corrected 1n the point source snapshot. In complex earth models. the variation becomes
more complex than that in Figure 6. Figure 7 1s the color display of the point source snapshot
at time 48 sec after a pure dip-ship tault rupture ot the model (Figure Sb). Comparing Figure 7
with its line source response (Figure 8). 1t 1s tound that although the travel time of snapshots
from both the line and point source 1s the same, the energy distribution is different. Again, the
Heaviside step type tatl of line source snapshot has etfectively been corrected 1n the point
source snapshot. Only the point source snapshot represented the true amphitude ol the wavefield
In space.

4. DISCUSSION

The FE approach with the line to point source transform has been shown to successtully model
the SH waveforms. A numerical test of this method against an analytical method and the FDM
shows a good agreement. The major advantage of this method 1s that the model can have
arbitrary velocity and density variations, including dipping and curve boundaries, velocity and
density gradients, and a low-velocity zone. The mesh design for the FE numerical grids can be
irregular. The FE model can effectively be defined as fine grids 1n a low velocity zone or
shallow layers with high velocity gradients. and therefore be defined as coarse grids in high
velocity areas. However. such changed grid sizes are not allowed by the FD method. Employ-
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Fig. 5. (a) The seismic profile of a point source with dip-slip mechanism. The
number at the end of each seismogram represents its normalized ampli-
tude. (b) A lateral inhomogeneous model used to compute the seismic
profile of Figure 5 (a). The star sign shows the location ot the source.
The triangle signs are the receivers on free surface. The density and shear
velocity are denoted as RHO and VS.

ing this method to propagate earthquake energy, the path effects can be computed for the
complex earth model in different scales. The application of this approach may be contributed
to strong ground motion modeling for shallow structure amplification, determining source
parameters in regional distance using broad band seismograms and studying slab structure at
teleseismic distance. The extension to model the P-SV case 1s straightforward and 1s easily
moditied based on this study. The major disadvantages of this approach are that the computa-
tions take too much time to propagate earthquake energy numerically and the nature of the
high frequency results is limited. Usually, the grid size constraints the highest frequency which
1s allowed. Furthermore, the model must be two-dimensional. In principle, the third dimen-
sion, which 1s perpendicular to the model, should be considered as an infinite extension.

The potential applications of this method to earthquake study in the Taiwan area extend
into several branches. First, newly deployed strong motion instruments in the wide area of
Taiwan provide an excellent data set to study strong motion amplification in shallow basins as
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well as the topographic eftects in the Central Mountain Range. Second, modeling seismo-
grams from the Taiwan east-west cross section may provide important information of the deep
structures. Third, constructing the lateral inhomogeneous Green's functions data bank of the
Taiwan area by this FE approach provides accurate source parameter estimations 1n regional
distance using the broad-band seismograms.
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Fig. 6. Snapshot of the line source response (2-D) and its point source correction

(3-D) in whole space. The input source is a band limited O -function as
shown 1n Figure 2 with the explosive type source mechanism. Two hori-
zontal components define the model and a vertical component represents
the wavetield amplitude. For the symmetry ot the wavetields, the ampli-
tudes of half model on the front side are muted.
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Fig. 7. The seismic energy distribution for the case ot Figure 5 after 48 seconds
from source rupture. The amplitude at each grid point of the model has
been corrected as a point source radiation using the method proposed 1n
this study. The amplitudes of the grid points of this snapshot are normal-
1zed based on the color tape on the right hand side of this tigure. The
model definition 1s the same as in Figure 3.
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Fig. 8. The snapshot of the line source response of Figure 7. The amplitudes of
the grid points ot this snapshot are normalized based on the peak value ot
this snapshot.
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5. CONCLUSIONS

A new method to numerically synthesize seismograms was proposed and well tested.
This method 1s based on the equivalence body force concept, in which only suitable body
forces are loaded on the source points of the finite element mesh, and no interface between
source area and numerical model 1s needed. Furthermore, a simple method to calibrate the line
source snapshots to point source was developed. These Green's functions are easily substi-
tuted for the standard Green's functions of the linear moment tensor inversion algorithms, but

include 2-D structures. Potential applications of this method for seismological research in
Taiwan have also been proposed.

Acknowledgments The author would like to express his special thanks to D. V. Helmberger
and H. Kanamori for valuable discussion. This research was supported by Academia Sinica

and the National Science Council of the Republic of China under grants NSC 82-0202-M-001-
098, NSC 83-0202-M-001-040 and NSC 84-2111-M-001-008.

REFERENCES

AKki, K., and K. L. Larner, 1970: Surtace motion of a layered medium having an irregular
interface due to incident plane SH waves. J. Geophys. Res., 75, 933-954.

Aki, K., and P. G. Richards, 1980: Quantitative Seismology: Theory and Methods. Free-
man, San Francisco, Calitornia, 932pp.

Apsel, R. J., and J. E. Luco, 1983: On the Green's functions for a layered halfspace. Bull. Seis.
Soc. Am., 73, 909-925.

Chapman, C. H., 1978: A new method for computing synthetic seismograms. Geophys. J., 34,
481-318.

Dravinski, M., 1983: Scattering of plane harmonic SH waves by dipping layers of arbitrary
shape. Bull. Seis. Soc. Am., 73, 1309-1319.

Gilbert, F., and L. Knopoff, 1961: The directivity problem for a buried line source. Geophys-
ics, 26, 626-634.

Heaton, T. H., and D. V. Helmberger, 1977: A study of the strong ground motion of the
Borrego Mountain, California, earthquake. Bull. Seis. Soc. Am., 67, 315-330.

Helmberger, D. V., 1983: Theory and application of synthetic seismograms, In: H. Kanamori

and E. Boschi (Eds.), Earthquakes: Observations, Theory and Interpretation, Proc. Int.
Sch. Phys. Course LXXXV, 174-221.

Helmberger, D. V., and D. G. Harkrider, 1978: Modeling earthquakes with ray theory, In; J.

Miklowitz and J. D. Achenbach (Eds.), Modern Problems in Elastic Wave Propaga-
tion, John Wiley and Sons, New York, 499-518.

Ho-Liu, P., and D. V. Helmberger, 1989: Modeling regional Love waves; Imperial Valley to
Pasadena. Bull. Seis. Soc. Am., 79, 1194-1209.

Huang, B. S., 1989: Modeling seismic source geometry and rupture processes by the finite
element method. Ph. D. Thesis, National Central Univ., 136pp.



268 TAO, Vol. 7, No. 3, September 1996

Huang, B. S., 1994: Estimation of source parameters by the inversion of near source strong
motion wave forms. TAO., §, 11-26.

Huang,B.S.,and Y. T. Yeh, 1994: Near-source ground motion of a propagating rupture fault
from the finite element modeling,. TAO, 5, 295-311.

Kikuchi, K., and H. Kanamori, 1991: Inversion of complex body waves-111. Bull. Seis. Soc.
Am., 81, 2335-2350.

Stump, B. W., and L. R. Johnson, 1977: The determination of source properties by the linear
inversion of seismograms. Bull. Seis. Soc. Am., 67, 1489-1502.

Vidale, 1. E., D. J. Helmberger, and R. W. Clayton, 1985: Finite-difference seismograms for
SH waves. Bull. Seis. Soc. Am., 75, 1765-1782.

Wang, C. Y., and R. B. Herrmann, 1980: A numerical study of P-, SV-, and SH-wave genera-
tion 1n a plane layered medium. Bull. Seis. Soc. Am., 70, 1015-1036.

Wylie, C. R., 1975: Advanced Engineering Mathematics. McGraw-Hill, Inc, 937pp.



