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ABSTRACT 

A method for the finite element computation of the s)·nthetic seismo­

gran1s of SH wave propagation in a two-dimensional (2-D) medium is pro­

posed. The finite element method has the ad,rantage of specifying the arbi­

trar)' density and velocity field in the medium. To complete the waveform 

modeling for an earthquake, the transformation of line source snapshots 

and seismograms of the 2-D finite element modeling to the point source 

responses is critically necessary. The accuracy of the finite element model­

ing is verified b)1 comparing it with the generalized ray method and \\1ith a 

finite difference method which computes the 2-D wave field from a differ­

ent approach. The aim of this study is to demonstrate the successfulness of 

seismogram synthesis by the finite element method and to propose the 

potential applications of this method in the Taiwan area. 

(Ke)· words: SH wave, Finite element method, Seismogram synthesis, 2-D modeling) 

1. INTRODUCTION 

Wav'e propagation problems in co1nplicated geological structt1res have generated consid­

erable interests in rec.ent )'ears. The full \vave equation modeling with numerical methods such 

as the finite dit'ferences (FD), the t111ite ele1nent (FE) and the pseudo-spect14um (PS) methods is 

a suitable approach. H<)\\lev'er, ffi(1deling wave propagation with three-di1nensi()nal (3-D) struc­

tures is, in fact, difficult to handle with present-day1 computers. These methods require a tre-

1nend()US amount ()f- cc)rnputer time and also allo\\1 C)nl)1 a limited 11umber ot· \\1avelengths to 

propagate. F1·on1 this p<)int <-lf \1iew, 2-D modeling is more practical to use. The '1pplication of� 

2-D ffi()deling has been pr()posed in many· problerns t)f·· seisn1olt)gical interest (Aki and Lamer, 

1970� Dravinski, 1983 ). Ho\\'ever, the Green's t�uncti()n of 2-D (line source) is actually differ­

ent to that of 3-D (poir1t S()Llrce), so applicatior1 is limited to earthquake \vaveform synthesis, 

such as the gene.ralized 14ay theo�y (GRT) method (Heaton and Helmberger, 1977), WKBJ 

method (Chapman, 1978) and the frequency-wavenumbe1· (FK) met.hod (Wang and Herrmann, 

1 980). Recent1y, Vi dale et al. ( 1985) ·proposed a new approach to seismic w·ave propagation 

mode.ling including laterally \'arying structures \vitl1 the 2-D FD scheme a11d applying it to 

wa\ief()fin synthesis. 
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. . 

They generated the seismic waves in source area by the GRT and computed the wave 
propagation by the 2-D· FD method. Finally, they calibrated the propagated energy from 2-D 
to 3-D by a suitable. transformation discussed below. This approach is success·ful in computing 
a 3-D wavefield for a 2-D lateral heterogene.ous model and is widely applied to ground motion 
simulation (Vidale et al., 1985; Ho-Liu and Helmberger, 1989). In this study, a new FE ap­
proach to model the 2-D Green's functions based on equivalent body force.s is proposed. The 
couples that we.re required to obtain equivalent forces for a generally oriented displacement 
discontinuity (Aki and Richards, 1980) were directly implemented. This simplified the nu­
merical computation for dislocation sources. The obtained Green's functions were easy to 
modify for the linear moment tensor inversions algorithms (Stump and Johnson, 1977; Kikuchi 
and Kanamori, 1991; Huang, 1994 ). Furthermore, a numerical technique of computing convo­
lution on grid points of the 2-D model is proposed to simulate the point source wavefield 
snapshots, which have not been discussed before. 

2.METHOD 

2.1 The Representation of the 2-D and 3-D Green's Functions 

The 3-D point source., scalar wave equation can be written as: 

(1) c 

where G3 is the 3-D Gree.n's function, 8 (t) is the Dirac delta function and V 3 is the 3-D 

Laplacian ope.rator in Cartesian coordinates. The wave speed c in equation (1) may be an 
arbitrary function of spatial coordinates, i.e., c(x,y·,z). For constant c, the solution of equation 
( 1) is: 

_ 8(t-rlc) G3(_x,y,z,t) = ; 
· 4nr 

r = x2 + v ·2 + z2 . 
o/. 

(2) 

The significant properties of G1 are: (1) its amplitude decays (geometric spreading) as 
-· 

·11r, and (2) its propagating waveform is identical to the. source pulse. 
Corresponding to the 3-D wave equation, the 2-D wave equation is 

v; - lry G2(x,z,t) = - 0(.'.t)O(z)O(t), c'""' (3) 

where G2 is the 2-D Green's function and V 2 is the 2-D Laplacian operator. Physically, equa­

tion (3) describes a wavefield emanated from a point source in space with coordinates x and z, 

which are equivalent to a line source along the y-axis in space with coordinates x, y and z. The 
same conditions hold as in the 3-D case discussed above. Thus, the 2-D Green's function has 
the fallowing form: 

G ( )- H(t-r/c). 2 x, z, t - ' 
· 4nr 

r = --J x2 + z2 , (4) 
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where H(t) is the Heaviside step f'unction. The t·eatures of G2 are: (1) its an1plitude decays as 

l /(�r), (2) its propagating vv·avef'orm is different from the source pulse and includes a low 

decay tail. The differences betv,1een the 2-D and 3-D Green's functio11s are shown in Figure 1. 
1 
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Fi'-f?. I. Time histo1·ies ()f' the 2-D and 3-D analytic Green's t'unctions as shown in 

equations (_2) ai1d (_4). He14eir1, r=4 and c=8 are used. 

2.2 Point Source Expressions for the 2-D Green's Function 

Fol1ov\ling the deri\'atic)n ot· the GRT and being solved by· the Cagniard-de Hoop tech­

nique (Hel111berger, 1983 )., the displacement potential ot, the point SC)urce, </J1), in a whole-­

space can be expressed as: 

\V here ,,. and z are the r�ldi al and \'ertical coordinates, res pee ti ''el y, and 

. 

J(t) = Im v p dp , 
1] tit 

(5) 

(6) 

where p is the ra)' par,tmeter, and 1] == (1 I (�2 - p2). Im represents the image part of a com­

plex variable. Hc)we.ver., ff()l11 the \Vork of Gi1bert and Knopof'f ( 1961 ), the solution for the line 

S(1urce, </> 1_, excitation can be expressed as: 

clr n1ore explicitly 

• 

</>L(t,z,t) =Im( 1 dp), 11 dt 
(7) 
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Thus, the point source solution (</JP) represented from the line source solution J( t) in equation 

(6) as J=('1P) <PL can be determined. This approach can be used to simulate the wavefor1r1 of an 

earthquake using the 2-D numerical Green1s functions. 

2.3 Finite Element Formulation 

The 2-D wave equation, equation (3), can be formulated as the follo\\t·ing finite element 
equation for shear \\t·ave propagation 

[M] [A] + [K] [D] = [F] , (9) 

where [M] is the global mass matrix, [K] the global stiffness matrix, [A] and [D], respectively, 
the vectors of the global acceleration and displacement of the model at grid points. [Fl is the 
vector of the external loading fo14ces at source points. To solve the temporal derivativ'es of 
e.quation (9) on each grid point, in this study, the second derivati·ves are introduced by the use 
of explicit finite difference approximation (Wylie, 1975), as follows: 

[ V ( t + I I 2 !).t)] = [ V ( t - 1 I ·2 !).t)] + �t [A ( t)], 
[ D( t + flt)] = [ D( t)] + flt[ V ( t + 1 I 2 !it)], (10) 

where the definitions of A and D are the same. as those in e-quation (9). Vis the vector of the 

global v·elocity, and �t is the time interval used in numerical integration. Thus, the displace­

ment Don time t + '1.t is computed from the previous computed values of D(t), V(.t - 1/2 lit) 
and A(t). The finite element code development and mesh design are described in more detail 
in Huang (1989) and Huang and Yeh (.1994). 

2.4 Source Representation for Shear Dislocation Fault 

Following the definition of" Helmberger and Hark14ider (1978)� the tangential displace­
ment U5H can be expressed as: 

U.5H = TSS A4 + TDS A5, ( 1 I) 
where TSS and TDS are. the vertical tangential strike-slip and the dip-slip displacement Green's 
functions, respectively. Both A4 and A5 can be expressed as: 

A4 =cos28 cosA. sin8-l/2 sin28 sinA sin28, 
(12) A5 =sine cosA-cos8-cos8 sinAcos28, 

where () is the strike from the end of the fault, A is the rake angle, and 8 is the dip angle. To 
introduce the shear dislocation source to numerical mode-ling, Vidale et al. (1985) used the 
GRT to generate the displacements in a small ring around the source point. Those prescribed 
displacements drove the FD grids to simulate the Green's functions. In this stud)1, the concept 
of equivalent body forces (Aki and Richards, 1980) was employed. The direct implementa­
tion of the couple of body forces on the source grids made the modeling of the explosion and 

• 

shear dislocation sources successful, while simplifying the numerical computations. 
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3. RESULTS 

3.1 Testing for the 3-D Green's Functions 

Figure 2 shows the 2-D and 3-D nun1e14ical Green's t·unctions of the whole space model 

with diffe1·ent epicentral dista11ces. The 2-D S)inthetic seismog1�ams show the same tail beha\l­

ior as the anal1·tic Gree11's function (Figure 1 ) ; howe\rer. the 3-D synthetic seismograms show 

the 8-function behavior e.xcept f<.)r· s<>me numerical errors fr()JTI the inexact 8-ty·pe inpt1t source 

tirne function. 

1.00 0.65 0.55 a.so 0.41 

20 sec 

1.00 0.46 0.31 0.25 0.18 

j i.--

16.9 km 42.4 km 62.0 km 75. 1 km 110.3 km 

Fig. 2. Comparison ot�the seismograms ot� both the 2-D and 3-D numerical Green1s 

functions i11 whole space. The tin1e scale is the same for all seismograms 

and sho\:vn in the figure. The number in the bottom of each column is the 

distance between sou14ce and receivers. The seismograms in the uppe1· row 

are the line source (2-D) Green's t�unctions. Those in the middle row are 

the input source time functions. The lower row 1·epresents the corrected 

point source (3-D) Green's functions. The associated number \vith each 

plot represents the amplitude. 

3.2 Comparison With Other 1"1ethods 

To test the accuracy L)f. this method, the results are compared \Vith those from other meth­

ods. Herein, a model \\1ith ()ne lc1yer 0\1er a halt'-space. that was well tested by the GRT (Apsel 

and Luco, 1983) is used t�or compa1·ison. The TSS Gre.en's functions ot' the shear dislocation 

fault are C()mpared in Figure 3 and the TDS in Figure 4. Following the 1·esults of Vidale et al. 
( 1985)� the synthetics ()f. this study are con-v·oluted \\t'ith the long-pe-riod WWSSN instrument 

response. The waveforms com.puted by the GRT, FD and FE of this study are close to each 

other. This indicates that the. method proposed in this study is indeed suitable for modeling 

e.a1·thquake ground motions from lateral inhomogeneous models. 
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f-i('?· �3. Co1nparisc)n of the S)1nthetic seis1nograms computed by diffe1·ent n1eth­
ods; (a) the Cagniard-de Hoop method, (b) the t'inite difference Method 
(_Vidale et lll., 1985), and (c) the t'inite element method of this stud)'. The 
earth model is a one la)1er over half space structure as used by Vidale et 
al. ( 1 995). The source 1nechanisrn is a point strike-slip fault on the up­
pe1· laye1·. The synthetic seismograms of· columns (a) and (b) are from 
Vida le et c1!. ( 1985). 
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Fig. 4. Comparison of� the. S)1nthetic seismograms computed b)' differe11t meth­
ods. A1 1 definitions are the same as those in Figure 3. The seismograms of 
this figure were con1puted from a point source \\1ith dip-slip fault mecha-

• 

n1sm. 
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3.3 Point Source sn,1psh<ltS l\1odif"icati<>rl 

Figure Sa sh(lw·s the synthetic SH-wave displacerr1ent seismogr<11ns 1-·r()ffi a. �1t1re strike­
slip poir1t sc>t1rce ()n a lc1teral inhomogene<)llS e'lrth model (FigL1re 5b). Tl1e i·ec()fding sites are 
on a f1·ee su.rf ace ar1d are i 11dice:lted <:ls cJpen tri�1ngle sig11s in Fig111·e Sb. lt is f'<.)und that the 
lateral phclses <)f:- seisn1()gr�1n1s ftre str()ngly dist()1·ted by· the embeclded 2-D strL1ctt1re. �fhe t·e<:t·­
tu1·es C)f. these sei sr11l1g1·t.l1r1s �lt·e their ]()rlg dur<.1tic)n (-)n tl1c i·ight ()f. the SClLtrce and the cotTtplex 
\.V·avefc)rn1s ()n tl1e left. Tc_) clea1·ly· ir1te1-1Jret the i11te.1·action <)t, <:l C<)111plex e.a1·th n1c)del and 
seisl11ic \\'avet.ield� t1sL1a11)'� the ex�t111ination of� \\'<.lve 1-·ie.lcls in space (:i.e. sn,11)shots) is neces­
sar·y. HC)\\ie\ier, no exact p<)i nt S()llrce sn apsl1ots h�t \'e been di sct1ssed p1·evi C)t1sl y. ,.r o cal ibr<.lte 
the \\i .. avet·c)rrn and c1r11plitucle at· the nu1nerical p()i11t soLtrce Gi·een's t'ttncti()n as shc)wr1 in eqLicl­
ti<·)n (5)� a C()l1V())t1ti()tl is necessa.1·y t'o1· the 2-D Gree111s t·uncti()l1 (,/(t)). Ho\vever, it is \1e1·)1 
dif·fictJlt tc) ctpply the (tbo\1e technit1ue t·or the c'1lib1·�1ti<.111 <)f. the li11e S<)ltt·ce wave t'iclds C)\1er <.tll 
spatial grid p<)i11ts becat1se l:lll sntlpshots c)t. the 2-D ITI()Cfel ()11 eve1·y ti1ne step �lr·e nccessa1·y'. 
Tl1ose datcl ai·e ha1·ci t<) stc)1·e i11 prese11t-day cc)n1pute1·s. Fc)rtl111atel)', tc) v'e1·it'y the vvave ·t'ields 
vari[ttions in sp(lCe, it is ur111ecessary tl1 check st1c:h snc1pshc)tS 011 eve1·y tiine. step. Usually, C)r1ly 

S<)111e. sn[tpsh()ts separated in tirne '11·e selected. He1·ein, the. CC)t·rection of, the line soL1rce snc.tr)­
sl1ot t() the p()i11t soL11·ce sn<:ifJSh()t \\1a:; C:lCC<)mplished <1cco1·dir1g t() the fc)}f(1wing apJ-'l.<)�lcl1. f'c)I� 
sr1apsl1<)tS selected ir1 a def'ine(:l ti111e step (trJ), the convl1lutic)n C)t· l/(\,,l) <.)t· ec1L1'-1ti()ll (5) ir1 
spatial domain ca11 be irnple1ne11ted by' the intcg1·(ttic)n ()f. the J·lne st1t11�ce ti111e hist()t·ies at e[tcl1 
g1·id point with the foldir1g l /(�t) 'vvhich was i11itiate<l ctt tr_,· Tt1e co1·re.cteci snc1psh{)t \Vas ob­
tained ·t'o)]()\\'i11g the C<ltTitJt1tc1tic.)n of �'ctve pro(J<:1gati<)11 step by step till ti,. In the 1�eal case, the 
cc>1�1·ected snapsh()tS 111ay l)e the. by-prc)clt1ct ()f. tt1e rnai11 C()11·1pt1t('.tti(111. ·-r·he suct�essf'Lilness <)f. 

tl1is calibr(1tio11 is (femo11st1-e:1tecl by �l bc:l11d 1in1itecJ 8 -t'L1nctic)tl J?f<)11c:tgclti11g i11 the. vv·hc)le sprtce 
as sh()Wll in Figure (). The I-fe£1 vi side step type tail ()t' the I in.e Sl1u1·ce s11apshot l1<:1s et·t·ecti vel y 
been cor1·ected i11 the p()i11t S()Ltrce snapshot. In Ct)n1plex ea1·th n1odels� the vari�ttion be-C()t11es 
more co111plex than th<:1t. i11 FigLtre 6. Figure. 7 is the CC}lor· displct)' l1f the p<-)int SC)t11·ce snapsll()t 
at tin1e 48 sec af'ter a �1L11-c dip-slip f[tult rt1ptt11·e ot· the TTil)del (Figt1re Sb). Compari11g Figure 7 
\\1i th its li 11e sc)urce res pllnse (l::;i gt1re 8 ) � it is f:-ound thctt <:tlth()ugh the tra \1el ti1ne of· snapshots 
t'1·()rn l1oth the 1ir1e and pc.lint S()ttrce is the sa111e� the energy c.listribt1ti()n is clit'fe1·ent. l\gain, ttie 
Hea\1iside ste.p type tail ()f' line Sl)urce snC:1pshot has et't:cctively been c(·)rrected in the poir1t 
source s11apshot. Onl)1 tl1c l1<)int soL1 .rce snapshot rep1-cse11ted the t1·ue a1nplitt1de 01· the \\'ave ·t .. ield 

• 

in space .. 

4. DISCUSSI.ON 

The FE approach vvitl1 the 1 i ne t() IJ<)int SC)Ltrce t1-c_1nsf<-)rm hc1s been sho\\'n tc) st1ccesst·11lly 1nc)del 
the SH wa\1efo1·ms. A r1u1neric�al test ()f tl1i s rnethod [lg,1i 11st. a11 a!l(,l])1tical 111ettl()d c111d the FDM 
shows a gol)d agree1nent. The 111c1j()f ctdva11tage of tl1is 1n.ethod is tl1ctt the model can have 
�trt)it1·ary v·elocity an<l der1sity \'a1·iatio11s, i11clt1di11g (li11pi11g [lJ1d ct1rve l1()t1ndaries, veloc.�ity and 
density gradients, and (.l lo\V-\.rel<-1cit.y zc)ne. The 111est1 design t'c)r the FE nt1n1e1·ical g1·ids ca11 he 
i1-1·egt1la1·. The FE i11odel c<111 et·t·ect.ivelv be dcf.i11e.d <:ts t'i11e g1·ids i11 a lo�' \!e]c)citv Z()ne ()f 

,., '-' ., 

shall()\\' laye1·s with high \)elocity g1·adients� ctn(l theref'()fe he defined as coarse grids ii1 11igh 
velocity ar·eas. f-Io\vev'e1·� SL1ch ch(1ngeci grid sizes ai-e n<.)t al lt)wed by the FD 1nethod. Emp]C))'-
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Fig. 5. (a) The seisn1ic profile of a point source with dip-slip mechanism. The 
number at the end of each seismogram represents its normalized ampli­
tude. (b) A lateral inhomogeneous model used to compute the seismic 
profile of Figure 5 (a). The star sign shows the location of the source. 
The triangle signs are the receivers on free surface. The density and shear 
velocity are denoted as RHO and VS . 
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ing this method to propagate earthquake energy, the path effects can be computed for the 
complex earth model in different scales. The application of this appr·oach may be contributed 
to strong ground motion modeling for shallow structure amplification, determining source 
parameters in regional distance using broad band seismograms and stud)1ing slab structure at 
teleseismic distance. The extension to model the P-SV case is straightforward and is easily 
modified based on this study. The major disadvantages of this approach are that the computa­
tions take too much time to propagate earthquake energy numerically and the nature of the 
high frequency results is limited. Usually, the grid size constraints the highest frequency which 
is allo\\1ed. Furthermore, the model must be two-dimensional. In principle, the third dimen­
sion, which is perpendicular to the model, should be considered as an infinite extension. 

The potential applications of this method to earthquake study in the Taiwan area extend 
into se.veral branches. First, newly deployed strong motion instruments in the wide area of 
Tai"W·an provide an excellent data set to study strong motion amplification in shallow basins as 
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well as the top()grapl1ic e.ffects in the Central Mc)untain Range. Second, modeling seismo­

grams from the Tai\v,111 east-west cross section may provide important int .. orrnation ot· the deep 

st1�uctures. Third, constructing the 1ate1-al i11homogeneous Green's t'unctic)ns data ba11k l)f. t.he 
Tai \�lan area by this FE approach prc)vides acct1rate source para1neter estimations in regil)nal 

distance using the bi-oad-band seism<.)grams. 

LINE SOURCE 

POINT SOURCE 

l 
I I 

I�. 
• . . . • 

Fil'?· 6·. Snapshot of .. the line source response (2-D) and its point source correction 

(3-D) in \�lhC)le space. The input S()Urce. is a band limited 8 -function as 

shown in Figure 2 with the explosive type source mechanism. T\\lO hori­

zontal C<lmp<)nents def.ine the model and a vertical component represents 

the \:vavefield. amplitude. For the symmetry of the �lavefields, the ampli­

tudes of' half model <)TI tl1e. t'rc)nt side are. muted. 
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POINT SOURCE SNAPSHOT 

0 120 160 200 240 280 320 360 400 
DISTANCE (KM) 

Fig. 7. The seismic energy distribution for the case of Figure 5 after 48 seconds 

from source rupture. The amplitude at each grid point of the model has 

been corrected as a point source radiation using the method proposed in 

this study. The amplitudes of the grid points of this snapshot are normal­

ized based on the color tape on the right hand side of this figure. The 

model definition is the same as in Figure 5. 
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Fig. 8. The snapshot of the line source response of Figure 7. The amplitudes of 
the grid points of this snapshot are normalized based on the peak value of 
this snapshot. 
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5. CONCLUSIONS 

A new method to nume1·ically synthesize seismogra1ns was proposed and we1l tested. 
This method is based l)n the equiv·alence body force concept, in V\1hich only suitable body 
forces are loaded on the source points of the finite element mesh, and no interface betV\1een 
source area and numerical mode.I is needed. Furthermore, a simple method to calibrate the line 
source snapshots to point sou1·ce was developed. These Green's functions are easily substi­
tuted for the standard Green's functions of the linear moment tensor in\1ersion algorithms, but 
include 2-D structures. Potential applications of this method for seismological research in 
Taiwan have also been proposed. 
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