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ABSTRACT

With the vast amounts of data recorded by the CWB seismic networks, a fast 
and precise algorithm for near real-time earthquake locations as well as fundamen-
tally urgent source and hazard studies of large damaging earthquakes in Taiwan be-
comes increasingly important. Here we present a novel method for automatic phase 
identification and event detection, modified from a Python-based PhasePApy pack-
age to be more computationally efficient and suitable for the high-rate seismicity and 
large-scale dense network in Taiwan. The performance efficiency is enhanced by 
substituting the Python code with a Fortran subroutine to calculate the characteristic 
function for phase picker. It is further improved by amalgamating the picks close 
enough in time but on different components, associating pairs of the amalgamated 
picks with the origin times of candidate events through an empirical linear relation 
between the P and S-P times reported in the CWB phase catalog, and isolating clus-
tered candidate events and corresponding phase picks to determine the locations of 
real earthquakes. The algorithm is applied to detecting in almost real time over two 
thousands of events that occurred within four days accompanying the 4 February 
2018 ML 5.89 foreshock and 6 February 2018 ML 6.25 Hualien mainshock, which 
far surpasses the capability of experienced human analysts. The temporal and spatial 
distributions of the detected aftershocks provide the timely and first-hand informa-
tion to estimate the aftershock decay rate and verify the orientation of the fault plane 
and rupture extent of the foreshock and disastrous mainshock as a guide for fast risk 
assessment and source characteristics analysis.
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1. INTRODUCTION

The currently active orogeny in Taiwan as a result 
from the arc-continent collision is accompanied by two 
nearly-orthogonal subduction zones to the northeast and 
south of Taiwan (Suppe 1984; Teng 1990). Such a complex 
tectonic setting makes the island suffer from frequent earth-
quake activities and potential risks of great subduction-zone 
megathrust events (Hsu et al. 2012; Chen et al. 2016). Every 
year, on average three earthquakes of magnitude 6 or larger 
hit Taiwan and near offshore region and posed imminent 
threats to public safety and property (Jian et al. 2017, 2018a; 
Kanamori et al. 2017). Real-time monitoring of seismicity 
and fast determination of accurate source parameters of 
strong earthquakes and their aftershock distributions are of 

urgent importance for both scientific and societal concerns.
Since the early 1990s, the Central Weather Bureau 

(CWB) of Taiwan has operated dense seismic networks 
including short-period instruments, and later-added strong-
motion and broadband stations, to monitor restless earth-
quakes in and around Taiwan (Shin et al. 2013). One of the 
major and challenging tasks is to provide timely and accu-
rate earthquake source information to help the community 
repond appropriately to possible seismic hazards. Currently 
an Earthquake Early Warning (EEW) system has been op-
erated at CWB for quick detection and characterization of 
large earthquake within a few to tens of seconds after they 
occur and issurance of alerts to people and infrastructures 
before strong shaking arrives (Chen et al. 2019a; Wu et al. 
2018). Different from the EEW system only concerning the 
earthquakes that meet a specific trigger criterion, the CWB 
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Seismological Center also processes continuous digital re-
cords in real time transmitted directly from every field sta-
tion and manually cuts the time-series segments that con-
tain possible event-generated signals used for the following 
phase picking and event location. The main aim of this task 
is to both monitor minor earthquakes and measure major 
earthquakes accurately and build up a complete event cata-
log that serves as a key foundation for the studies of seis-
motectonics, historical seismicity, earthquake statistics and 
source physics, and seismic risk mitigation plans in Taiwan 
(Chen et al. 2016, 2019b; Jian et al. 2017; Wen et al. 2019).

Since 2012, the CWB integrated the existing short-pe-
riod, broadband, and strong-motion stations distributed on 
more than 200 sites across Taiwan and at some offshore is-
lands which now attain over 400 instruments with 3-compo-
nent seismic records used in regional earthquake monitoring 
and other seismic studies (Fig. 1; Shin et al. 2013). Because 
of the rapidly expanding datasets, in recent years the CWB 
has started to run a prototype automatic procedure in paral-
lel with the manual detection and location of seismic events. 
However, the official report of the earthquake hypocenters 
and magntidues still relies heavily on subjective manual 
judgement. For large events such as the 2018 Hualien earth-
quake sequence starting with a ML 5.89 (Mw 5.9) foreshock 
two days before the ML 6.25 (Mw 6.4) mainshock that struck 
just offshore eastern Taiwan on 6 February 2018 and se-
verely damaged the nearby coastal city of Hualien (Jian et 
al. 2018b; Huang et al. 2019) , there were estimated to be 
over 20000 events occurring afterwards in one month above 
the detection threhold of the CWB network, almost a half 
the average annual number of earthquakes in the Taiwan 
region. The current processing procedures in CWB become 
intolerantly inefficient and impractical to identify and locate 
a huge number of aftershocks clustering in time and space 
after such destructive earthquakes. Therefore, an advanced 
and efficient automatic algorithm for such type of the works 
is very much needed.

In general, there are two important parts that make up 
the algorithm: an automatic phase picker and one kind of 
the assocaitors capable of effectively separating the phases 
arriving almost at the same time from different earthquakes. 
The first part of phase picking is essential to a variety of 
seismological studies on earthquake location, focal mecha-
nism determination, travel-time based seismic tomography, 
and etc. Manual picking subject to the experience of ana-
lysts can introduce inconsistencies in the picked arrival-time 
data, particularly those used in the routine catalog locations 
(Leonard 2000). With the improved digital seismic data and 
computing facilities, many automatic phase pickers based 
on different mathematical operations have been developed. 
These algorithms are mainly classified into, but not limited 
to, energy transient methods in time or frequency domain 
(e.g., Withers et al. 1998; Vassallo et al. 2012), autoregres-
sive (e.g., Leonard and Kennett 1999), neural network (e.g., 

Gentili and Michelini 2006), and wavelet transform (e.g., 
Zhang et al. 2003; Bogiatzis and Ishii 2015) methods, and 
each of them has its own advantages and limitations.

The second is to assign the phases of selection to as-
sociated earthquakes. Usually, it is very difficult to iden-
tify multiple earthquakes occurring close in time less than 
one minute, because the S arrivals of the preceding event 
are likely to be misjudged as the P of the later event (JMA 
2017). It is thus necessary to have a reliable method to au-
tomatically allocate the picked signals to correct seismic 
phases associated with individual earthquakes.

In this study, we present an efficient and stable algo-
rithm of automatic phase picking and event identification 
suitable for the current seismic data acquisition and process-
ing systems at CWB. Our algorithm is adapted from a Pure 
Python code package, called PhasePApy (Chen and Holland 
2016), originally developed and used in the Oklahoma Geo-
logical Survey for near real-time earthquake monitoring. 
The package not only takes advantage of very useful open-
source Python libraries, but also adopts Obspy, a Python 

Fig. 1. Map showing the distribution of short-period (SP), broadband 
(BB), strong-motion (SMT) stations from the CWB seismic network. 
The star symbols denote the epicentres of the largest foreshock (0204FS) 
and mainshock (0206MS) of the Hualien earthquake sequences.
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toolbox for processing seismological data (Beyreuther et al. 
2010; Megies et al. 2011). Therefore, it supports all common 
data formats used in the seismology community and others 
with the time-series forms, and provide clients to access data 
directly from the Earthworm through waveform web service. 
The algorithm is first tested and applied to the 2018 Hualien 
foreshock-mainshock-aftershock sequence, which we use 
to demonstrate the potential capability and applications of 
the algorithm in real-time monitoring and locations of earth-
quake activities in Taiwan.

2. METHOD
2.1 Phase Picker

The PhasePApy package provides three different al-
gorithms for automatic phase identification: the transient 
energy frequency-band picker (FBpicker) (Lomax et al. 
2012), the AICDpicker, and the KTpicker (Chen and Hol-
land 2016). The first method measures the relative change 
of transient energy between consecutive windows, while 
the last two respectively calculate the first derivative and 
kurtosis of the Akaike information criterion (AIC) function 
(Akaike 1974) to identify phase arrivals. We have applied 
each of them to waveform data from the CWB seismic net-
work that contain phase arrivals from a collection of known 
events. Comparisons of the picking results demonstrate that 
the AICDpicker achieves better performance with consider-
ation of accuracy and efficiency. Therefore, we implement 
the AICDpicker in our automatic picking algorithm.

The principle of the AIC picker is to find a global mini-
mum of the AIC function of single or multiple component 
seismograms. For a discrete time-series seismogram s(t) of 
length N, it can be subdivided into two segments by a mov-
ing division point D (0 ≤ D ≤ N). A simple way to calculate 
the AIC function directly from the variance of the divided 
time series is expressed as follows (Maeda 1985; Sleeman 
and Van Eck 1999)
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where var(s[1, D]) and var(s[D + 1, N]) represent the vari-
ances of the two subdivided segments of a seismogram. 
If the entire seismic record of investigation only contains 
one P-wave phase, the choice of D that leads to a global 
minimum of the AIC function would simply give the cor-
responding phase pick. In reality, a seismogram is often 
composed of both the P- and S-waves excited from a single 
or multiple events occurring close in time to each other. It 
can become tricky and time-consuming to determine seis-
mic phase arrivals by searching global or more than one lo-
cal minima of the AIC function. Therefore, the PhasePApy 
alternatively adopts the absolute value of the first deriva-

tive (gradient) of AIC function as the characteristic function 
(CF) to identify the phase arrivals. Only those exceeding the 
dynamic threshold (DT) level, obtained with the short-time 
to long-time moving average of the CF, namely STA/LTA, 
are the accepted phase picks. In Fig. 2, we use 7-minute 
long, 3-component accelerogram data recorded by a strong 
motion station in the CWB network (Fig. 2a) to illustrate 
our automatic phase picking and earthquake location pro-
cedures. The AIC function for each component and the re-
spective characteristic function and dynamic threshold are 
displayed in Fig. 2b.

2.2 Associator Algorithm

After the phases are picked, an Associator algorithm 
is employed to ascribe them to specific earthquake events. 
Likewise, the PhasePApy has two built-in Associators: the 
1D Associator and the 3D Associator. Both use pre-calcu-
lated travel-time tables of P and S arrivals to determine the 
earthquake location associated with the picked arrivals. How-
ever, none of them meets our needs. The hypocentral depth 
is fixed in the 1D Associator which is obviously inappropri-
ate for a wide range of depths of earthquakes in the Taiwan 
region. The 3D Associator is designed for a small seismic 
network with tens of stations only, which neither is suitable 
for the dense CWB network containing over two hundred sta-
tions and more than four hundred seismograph instruments. 
The computational time required to extract travel-time in-
formation from a large database would be very demanding 
and unacceptably long. For all of the above reasons, we 
have modified the original algorithm to make the “Associa-
tor” procedure more efficient using the following steps: pick 
amalgamation, candidate event creation, earthquake origin 
time analysis, and event-phase association/location.

The first step is to amalgamate the picks from all the 
components of the same station. The same station name with 
different location codes are considered as different stations. 
Though P and S arrivals are most unambiguously picked 
on the vertical and horizontal component, respectively, 
the automatic phase picker sometimes identifies the same 
phase on the counterpart component. To remove redundant 
picks of the same phase, the original picks arriving within a 
time interval less than one second on different components 
are coalesced into one single modified pick (top panel in  
Fig. 2c). Only the first arrival time of the amalgamated 
modified pick is determined for the following event asso-
ciation analysis. This procedure would reduce the number 
of the original picks and greatly improve the computational 
efficiency of the Associator.

The second step is to create the candidate events for each 
station from all possible combinations of pairs of the modi-
fied picks found in the computed CF time series, but limited 
to those with their arrival-time differences no greater than 
80 s (bottom panel in Fig. 2c). Considering that the earlier  
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Fig. 2. (a) Examples of accelerograms recorded on the vertical (Z), north (N), and east (E) components of the strong-motion station, ALS, shown by 
blue, green, and red lines, respectively. (b) The AIC function of each seismic trace (top panel) and the corresponding characteristic function (CF) 
(bottom panel) obtained by taking the absolute value of the first derivative of AIC. The dynamic threshold (DT) calculated by STA/LTA of the CF 
is drawn with the magenta curve. Only those picks exceeding the DT level are the accepted phase arrivals marked with the orange vertical lines. 
(c) The modified picks (top panel) and the origin times of the candidate events (bottom panel) marked on the 3-component accelerograms with the 
orange and cyan vertical lines, respectively. The modified picks are obtained by amalgamating the phase picks arriving close in time within 1 s on 
all the components of the same station, while the origin times of the candidate events are estimated by the arrival-time differences between pairs of 
the modified picks no larger than 80 s. (d) The origin times of the four real earthquakes (E1-E4) marked on the 3-component accelerograms with the 
black lines, determined by the final source parameter inversion using the P and S phase picks shown in (c) at all the recording stations. Note that the 
S-arrival of the event E2 is not picked at this station and thus not marked in (c). However, it can be observed and picked at the other stations used 
for the earthquake location.

(a)

(b)

(c)

(d)
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and later arrivals from a given pair of the modified picks are 
associated with the P and S phase arrivals of the same event, 
their time difference equal to the S-P time can be directly 
used to determine the P arrival time and thus the origin time 
of the event through the Wadati diagram (Wadati and Oki 
1933), which is constructed a priori by finding the best-fit 
liner relationship between the observed S-P times and P ar-
rival times of local earthquakes occurring before. For each 
station, we choose the historical events which have both the 
P and S arrival-time picks reported in the CWB phase data-
base to obtain the linear regression relation. Figure 3 shows 
a typical Wadati diagram plotting the P against the S-P ar-
rival times from the events between July and December of 
2016 recorded at station ALS and the best least-squares fit 
line through all the data points. It is worth mentioning that 
the P arrival times predicted from the linear regression equa-
tion and used to determine the origin times of the candidate 
events would deviate from the actually observed arrival times 
because there exists inconsistency between the observed and 
predicted S-P times with the root-mean-square (RMS) error 
of ~1.47 s due to data noise, phase picking errors, and uncer-
tainty of the velocity structure used in earthquake location. 
However, such deviation won’t cause misidentification of 
the candidate events unless the origin times of the successive 
candidate events are too close less than two seconds, which 
would be difficult to distinguish them separately even by an 
experienced analyst. The actual origin time of each potential 
real earthquake together with its hypocenter and local mag-
nitude will be determined simultaneously in the final step of 
earthquake location using the arrival times of the modified 
picks and the same 3-D velocity model (see details in the 
following introduction).

On the other hand, because of the inevitable uncertain-
ties in the picked P and S arrival times, the modified picks 
recorded at different stations and associated with the actu-
ally same earthquake are normally assigned to a cluster of 
candidate events with the origin times all very close to that 
of the actual earthquake. In particular, the earthquakes with 
larger magnitude and/or well recorded by the dense stations 
nearby would yield a substantial number of the candidate 
events. Therefore, the following step is to merge those clus-
tering around the peak number of the candidate events into 
a single trial event and collect all the associated modified 
picks to locate the respective hypocenter.

After assigning the origin times of the candidate events 
detected by all the stations and putting one marker for each 
of them at the specified origin time along the time axis, the 
algorithm would employ a moving window of 3-s in length 
shifted by 0.01 s, the sampling time interval of the seismo-
grams, and count the total markers, i.e., the number of the 
candidate events in every 3-s window, which are shown as 
a function of time in Fig. 4. If the total number exceeds a 
given threshold, it will consider a trial earthquake occurring 
at this time instant. Ideally, the minimum threshold is three 

since at least three stations are required to determine the 
earthquake location. However, the number of the clustered 
candidate events largely depend on the earthquake mag-
nitude and station distribution around the event epicenter. 
Thus, rather than using a global fixed threshold, we choose 
local dynamic thresholds to make the event location proce-
dure more computationally efficient. The threshold is set to 
increase with the total numbers of the candidate events and 
stations recording the paired modified picks and tested with 
some earthquake data by trial and error. We then choose to 
pre-specify the least number of stations recording the paired 
modified picks for a given number range of candidate events 
as a threshold to declare a trial earthquake for the following 
location procedure. In general, the larger the total number of 
candidate events, the higher the least number of the stations 
with the paired modified picks or the acceptance threshold 
number is.

The final step is to locate the hypocenter of each trial 
earthquake at the time instant when the total number of the 
counted candidate events exceeds the local threshold num-
ber. It starts with the one which has the maximum number of 
the candidate events by collecting all the pairs of the modi-
fied picks associated with those events occurring within this 
particular 3-s time interval. The respective auto-picked P 
and S arrival times are then given as input to an external 
location program, HYPO71 (Lee and Lahr 1972) to invert 
for the source parameters, the origin time and hypocenter 
of the trial earthquake using the 3-D P and S velocity mod-
els obtained from local earthquake tomography (Wu et al. 
2007). If the resulting solution passes all the quality control 
checks, that is, the RMS errors in the origin time, epicen-
ter, and depth of the located event have to be less than 9 s,  
10 km, and 10 km, respectively, the Associator assigns it as 
a real earthquake and calculates the predicted P and S ar-
rival times at all the stations.

In some cases as exemplified in Fig. 2c, the automatic 
phase picker may solely detect either the P or S picks at a 
few stations which are unable to form pairs of the modified 
picks used in the previously-described location procedure. 
To include the arrival-time data from these unpaired modi-
fied picks which may help improve the azimuthal coverage of 
stations and the estimated hypocenter, the algorithm further 
finds the unpaired modified picks that arrive closest to and 
within a time interval centered around the predicted P or S ar-
rival times based on the source parameters inverted with the 
paired modified picks only. The width of the time interval is 
set as a fraction (10%) of the predicted arrival time. By add-
ing more data from the unpaired modified picks, the HYPO71 
program is rerun to obtain the final origin time and hypocen-
ter of the earthquake. The Associator and earthquake loca-
tion are then repeated for the remaining modified picks and 
candidate events. However, before taking the second largest 
number of the candidate events as the next trial earthquake, in 
order to avoid producing the duplicate events, the algorithm 
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Fig. 3. A “reverse” Wadati diagram plotting the P arrival time against the S-P time of the events between January and June of 2016 recorded at ALS 
station from the CWB event phase catalog. The equation of the best-fitting straight line through these data points is used to quickly determine the 
origin time and P phase arrival time of each candidate event from a given S-P time obtained with the separation time between a pair of the modified 
picks.

Fig. 4. The total number of the candidate events detected by all the stations counted as a function of event origin time estimated from the pairs of the 
modified picks and the Wadati diagram. The two largest peaks correspond to the two biggest earthquakes that occurred in Taitung (ML 4.7) and the 
Nanao Basin (ML 3.9) during the processing time period spanning from GMT 01:02:30 to 01:05:10 on 31 May 2018.
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would first exclude those with the origin times that fall within 
a pre-specified time window centered at the origin time of the 
earthquake being located in the previous step. Considering 
the width of the peaks of the event counts shown in Fig. 4 and 
detection limitations for the phase arrivals of the later event 
mixed or hidden within stronger long coda waves of the pre-
ceding large earthquake which are seen in the waveform data, 
we choose 10 s for the half-width of the time window. The 
whole procedure is conducted iteratively until either all the 
modified picks have been assigned to the located earthquakes 
or the number of stations detecting the paired modified picks 
for the given number of the candidate events remained are all 
lower than the specified dynamic threshold.

3. ALGORITHM TESTING

To demonstrate the performance of our automatic 
phase picker and event association/location algorithm, we 
first validate the accuracy and improved efficiency of our 
modified algorithm by running a comparison test with the 
3D PhasePApy package. Both the algorithms are employed 
to automatically pick phase arrivals and associate them with 
located earthquakes using the same waveform data, which 
comprises seven hundreds of ~7-minute long, 3-component 
seismic traces recorded by the CWB stations (Fig. 2a). The 
CPU times spent on the eight processors of Intel Xeon E5-
2690 v4 with 8G RAM running the AICDpicker and Asso-
ciator are summarized in Table 1a. It is obvious that the effi-
ciency of the automatic picker is substantially improved by 
replacing the original Python module with a Fortran code. 
The Associator that adopts the linear regression relation be-
tween S-P versus P arrival times of historical events also 
speeds up by almost a factor of 3. Both the algorithms detect 
4 out of 5 manually located earthquakes during the 7-minute 
seismic records. The origin times and hypocenters of four 
detected earthquakes determined by the two automatic algo-
rithms and human analysts are compared in Table 1b.

The second test is that we apply our algorithm to sys-
tematically detect the earthquakes during the first 6 months 
of 2017 and compare the results with those from routine 
event locations by the CWB analysts. Among 16675 earth-
quakes reported in the CWB catalog, our algorithm detects 
10169 events. Figure 5 shows the cumulative percentage 
and number of the automatically detected earthquakes of a 
given magnitude or greater. The percentage rate of detec-
tion for the events within each 0.1 magnitude interval is also 
displayed for comparison. For those larger events with ML 
≥ 4.0, 100% of them can be located by our algorithm. For 
the events with ML ≥ 2.0, the detection rate can still reach 
about 75%.

Comparing the epicentral distributions between the de-
tected and undetected earthquakes shown in Fig. 6, we find 
that most of manually located events missed by our auto-
matic algorithm occurred in the offshore areas of Taiwan, 

primarily because the azimuthal gap of the recorded stations 
exceeding 180° often fails to obtain the qualified hypocen-
teral solutions. Some of the undetected events occurred in-
land Taiwan, mostly associated with aftershock clusters or 
earthquake swarms which have relatively small magnitudes 
(ML < 3). Their corresponding phase arrivals are often too 
close in time or too weak to be isolated or identified by the 
automatic picker. We notice that a few larger events with 
ML > 3 in the south-central Taiwan are undetected inside 
the network. By checking the waveforms and manual phase 
picks used in locating these earthquakes, we find their P 
and S phase arrivals are usually hidden or mixed within the 
stronger long coda waves of the preceding large earthquake. 
For such situations, the analysts can judge to apply a suit-
able filter to waveform data to enhance the phase signals 
of the later event for manual picking, but there would be a 
large uncertainty in the estimated magnitude.

In Fig. 7, we compare P and S phase arrival-time picks, 
local magnitudes, and hypocentral locations of the detected 
earthquakes determined by our automatic algorithm and hu-
man analysts. The average arrival-time difference between 
the automatic and manual picks and the respective standard 
deviation are 0.1622 ± 0.346 s for 148568 P and 0.100 ± 
0.465 for 120007 S phase picks (Figs. 7a - b). The local 
magnitude estimated by the maximum amplitude on the 
horizontal components between the automatic and manual 
picks generally agrees with each other except for the events 
with magnitude smaller than 1.5 where the automatic algo-
rithm tends to overestimate the magnitude (Fig. 7c). The 
differences in longitude, latitude, and depth of automati-
cally and manually determined hypocenters are on average 
3 - 4 km in the lateral directions (0.003 ± 0.040° in longitude 
and 0.0006 ± 0.032° in latitude), and about 7 km in depth 
(-0.366 ± 6.98 km).

4. APPLICATION TO THE 2018 HUALIEN  
EARTHQUAKE SEQUENCE

Since November of 2017, the novel algorithm has been 
formally implemented in the CWB automatic event detec-
tion system, providing in near real time the origin time, lo-
cation, and local magnitude of earthquakes in the Taiwan 
region. On 6 February 2018, a powerful earthquake with 
ML = 6.25 struck off the northeast coast of Taiwan, causing 
severe injuries, fatalities, property damages, and financial 
losses along the shoreline of the Hualian region. It is the 
largest event ever recorded since the new system started to 
operate. Within a few hours after this disastrous mainshock 
hit the Hualien city heavily, hundreds of felt aftershocks 
were triggered in the initial rupture and surrounding area. 
As they may further devastate the damaged houses, build-
ings, and public facilities, not only the academics but the 
government, media, and public are all eager to know the 
spatiotemporal distributions of the aftershocks in order to 
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(a)
3D PhasePApy Modified algorithm

AICDpicker 4394 s 72 s

Associator 43 s 16 s

# of events: Auto (Manual) 4 (5) 4 (5)
(b)

Origin Time (hr:mn:sec) Epicenter (lat, lon) Depth (km)

Manual

14:20:09.40
14:22:21.39
14:23:40.39
14:24:38.03

(23.58°N, 120.72°E)
(23.59°N, 120.72°E)
(23.58°N, 120.71°E)
(23.60°N, 120.74°E)

15.24
14.32
15.58
13.72

Modified algorithm

14:20:09.45
14:22:21.64
14:23:40.49
14:24:38.34

(23.58°N, 120.72°E)
(23.60°N, 120.72°E)
(23.58°N, 120.72°E)
(23.60°N, 120.74°E)

14.81
11.77
12.52
11.41

3D PhasePApy

14:20:08.76
14:22:21.65
14:23:40:52
14:24:38.14

(23.55°N, 120.75°E)
(23.55°N, 120.75°E)
(23.55°N, 120.75°E)
(23.65°N, 120.75°E)

5.0
15.0
15.0
15.0

Table 1. (a) Comparison of the performance efficiency between the 3D PhasePApy 
and our modified algorithm based on the CPU times spent in running the AICDpicker 
for automatic phase picking and the Associator for associating the modified picks with 
the detected earthquakes. Both the algorithms detect 4 out of 5 manually located earth-
quakes during ~7-minute long seismic records shown in Fig. 1. (b) Comparison of the 
origin times, epicenters, and depths of the four detected earthquakes determined manu-
ally and by the two automatic algorithms.

Fig. 5. The cumulative percentage (left y-axis) and number (right y-axis) of earthquakes of a given magnitude or greater detected by our automatic 
algorithm, which are counted in every 0.1 magnitude bin and recorded between January and June of 2017. The red dots indicate the percentage rate 
of detection with respect to the number of the manually located events.
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(a) (b)

Fig. 6. Epicenters of earthquakes with local magnitude equal to or greater than 2.0 that occurred between January and June of 2017 and were (a) 
detected and (b) missed by our automatic location algorithm.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Comparison of (a) - (b) P and S phase arrival-time picks, and (c) determined local magnitudes, (d) - (e) epicenters, and (f) depths of our 
automatically detected earthquakes between January and June of 2017 with those from manual picking and location.
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quickly make post-earthquake risk assessment and mitiga-
tion plans. On the other hand, the Hualien mainshock was 
preceded by foreshock activities starting about three days 
earlier with the largest foreshock (ML = 5.89) located about 
6 km NNE of the mainshock epicenter on February 4. As 
the foreshocks and aftershocks are key to unravel the pre-
nucleation stage, the geometry of the subsurface causative 
fault, and the rupture extent of the mainshock, it is of es-
sential importance to provide the community with the rapid 
and precise information of their hypocentral and magnitude 
distributions. The novel algorithm offers a timely and effi-
cient solution to respond these urgent needs, reporting near 

real-time locations and magnitudes of the 2018 Hualien 
foreshock-aftershock sequences.

Figure 8 shows the local magnitudes, numbers, detec-
tion rates, and spatial distributions of earthquakes located 
in the Hualien mainshock area during February 2018 by the 
new and old automatic algorithms, compared with those de-
termined manually. The results demonstrate that the new al-
gorithm surpasses the old one in terms of the minimum mag-
nitude and number of events detected. Compared to the old 
one, the new algorithm is capable of detecting more after-
shocks with the magnitude lower than 1.5 (Fig. 8a). The de-
tection rate calculated by the percentage ratio of the number 

(a) (b)

(c) (d) (e)

Fig. 8. Local magnitudes, numbers, detection rates, and spatial distributions of the 2018 Hualien foreshock-mainshock-aftershock sequences occur-
ring in February 2018 and determined automatically by the new and old algorithms, compared with those from manual location. (a) Local magnitude 
versus origin time with the blue, red, and orange open circles corresponding to the earthquakes located manually and by the new and old automatic 
algorithms, respectively. (b) The number of earthquakes counted in every 6-hr bin (bottom panel), which are detected manually and by the new and 
old automatic algorithms shown with the blue, red, and orange bars, respectively. The corresponding detection rates calculated by the percentage ra-
tio of the number of events from the automatic to the manual location are displayed in the top panel. (c) - (e) Spatial distributions of the earthquakes 
with their hypocenters and local magnitudes determined by the old and new automatic algorithms and manual location, respectively. The color and 
size of circles are respectively scaled with the hypocentral depths and magnitudes estimated by each location method.
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of events from the automatic relative to the manual location 
is also effectively improved and increased almost by a factor 
3 (Fig. 8b). In particular, the old algorithm seems to miss a 
large number of aftershocks clustering in time accompany-
ing the occurrence of the largest foreshock and mainshock 
with a sudden drop of the detection rate below 10% (the top 
panel of Fig. 8b). Though the detection rate of the new al-
gorithm is also degraded below 50% during the bursts of the 
aftershocks in the first few hours to one day after the main-
shock occurrence which leaves room for improvement, the 
aftershock activity generally following a power-law decay 
with time (Omori 1894) is better characterized by the time 
sequence of the aftershocks detected by our new algorithm 
(the bottom panel of Fig. 8b).

In terms of fast hypocenter determinations, the epi-
centers of the aftershocks obtained with the new algorithm  
(Fig. 8d) appear to be less scattered and distributed along 
some linear trends similar to those seen in the manually lo-
cated aftershocks (Fig. 8e). In Fig. 9, we further make quan-
titative comparisons of the P and S arrival-time picks, mag-
nitudes, and hypocentral locations of the Hualien earthquake 
sequences detected in February by our automatic algorithm 
with those by the human analysts. The differences between 
the picked phase arrival times, the determined source pa-
rameters and magnitudes all exhibit similar distributions 
as those seen in the previous 6-month test period (Fig. 7). 
However, we notice the residuals between the automatic 
and manual P and S picks shows much larger peaks at zero 
times (Figs. 9a - b), suggesting that many automatic phase 
picks checked by the manual analysts are considered to be 
accurate enough and directly adopted in the later manual 
location. If the automatic algorithm is further improved, we 
expect that it can greatly speed up the manual phase pick-
ing and location procedures particularly during the seismi-
cally very active period following the occurrence of a large 
mainshock.

To better illuminate the aftershock distributions asso-
ciated with the largest foreshock and mainshock, we plot 
the 2-day aftershocks following the largest foreshock but 
before the mainshock occurrence and the aftershocks after 
the mainshock until the end of February 2018 on the cross 
sections cut along the strikes of two nodal planes of the 
foreshock in Fig. 10b and the strike of the fault plane of 
the mainshock in Fig. 10c. The nodal plane orientations are 
determined from the point-source moment tensor inversion 
using regional broadband waveform data (Jian et al. 2018a). 
The depths of the two-day aftershocks following the larg-
est foreshock show a gradual decrease from northeast off 
the east coast toward the southwest closer to the shoreline 
(Fig. 10b). We thus inferred that the foreshock probably 
nucleated and ruptured on an NE-dipping low-angle fault 
plane, in general agreement with that determined by a more 
sophisticated back-projection (BP) rupture imaging method 
(Jian et al. 2018b). On the other hand, the distribution of 

the aftershocks occurring within the first few hours forms 
a subhorizontal streak extending southwestward, implying 
that the mainshock rupture primarily propagated horizon-
tally toward the SW direction, which is also consistent with 
the focal mechanism of the mainshock with the predominant 
NE-SW striking, left-lateral strike-slip motion and the rup-
ture propagation history revealed by the BP analysis (Jian 
et al. 2018b).

5. DISCUSSION AND CONCLUSION

Toward real-time monitoring of very frequent earth-
quake activities in Taiwan using the dense, island-wide 
seismic networks operated by the CWB, we have developed 
a rapid and precise algorithm based on PhasePApy devel-
oped in Oklahoma Geological Survey for automatic phase 
identification and event location, which improves the per-
formance efficiency and limitations of the network size and 
number of stations of the original Python-interface pack-
age. The algorithm mainly consists of two parts: the AIC-
based phase picker which identifies and picks phase arrival 
times and the Associator which assigns the pairs of picks 
to candidate events and then isolates the local peaks of the 
numbers of the clustered events for further location of real 
earthquake events.

We have tested our automatic algorithm with the data-
base of the CWB earthquake catalog between January and 
June of 2017. The results demonstrate that our algorithm 
is capable of detecting 100% of the reported earthquakes 
with ML ≥ 4 and 75% of the earthquakes with ML ≥ 2 in 
the selected time period. The difference in the determined 
local magnitude is quite small except for the small events 
with ML < 1.5 that reach the detection threshold of the Tai-
wan network (Chen et al. 2016). The statistics show that the 
differences between automatically and manually picked P 
and S phase arrival times and located hypocenters are a few 
tenths of one second and a few kilometer, respectively, on 
the same order of the manually-picking errors and uncer-
tainties of event locations.

Our algorithm is also capable of detecting in near real 
time the bursts of aftershock activities within the first few 
hours to one day following the largest foreshock and main-
shock of the 2018 Hualien earthquake sequence. The tem-
poral distributions of the detected events clearly exhibits the 
frequency of the aftershocks decays with the reciprocal of 
time elapsed since the mainshock. The locations and mag-
nitudes of the aftershocks provide the almost synchronized 
guides to quickly distinguish the fault-plane ambiguity, di-
agnose the source characteristics and rupture extent of the 
foreshock and devastating maishock as well as assess seis-
mic hazards and make risk mitigation decisions.

Currently our algorithm has not yet been designed to 
run in complete real time. This is partly because too many 
stations and channels in the CWB network which comprises 
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Comparison of P and S phase arrival-time picks (a) - (b), and determined local magnitudes (c), epicenters (d) - (e), and depths (f) of the 
Hualien earthquake sequences during February 2018 from our automatic algorithm with those determined manually.

(a) (b)

(c)

Fig. 10. (a) Map and (b) - (c) cross section views of the spatial distributions of the 2018 Hualien foreshock-mainshock-aftershock sequences with ML 
≥ 2 automatically located by the new algorithm. The dashed and blue curves denote the Ryukyu trench and Milun fault considered as the causative 
fault of the mainshock (Central Geological Survey 2018), respectively. The AA’ and BB’ cross sections cut parallel to the strike of the fault plane 
and conjugate nodal plane of the 0204 largest foreshock, while the CC’ is parallel to the strike of the fault plane of the 0206 main shock verified by 
the BP rupture images (Jian et al. 2018b). The focal mechanism diagrams of the foreshock and mainshock shown on the map and cross sections are 
viewed from the lower-hemisphere and side projection, respectively.
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of short-period, broadband, and strong-motion instruments 
such that the AICDpicker and the Associator cannot run 
concurrently in a synchronized fashion. Instead that contin-
uous seismic data are fed into the algorithm directly, seismic 
waveforms containing pulse-like oscillations considered to 
be triggered by possible seismic events are cut and stored 
into short time-series files for the automatic phase picker and 
event detection. Besides, the false triggered or real phases 
from multiple events arriving at the same time may confuse 
the Associator to create redundant candidate events for real 
earthquake locations. The current cluster analysis of candi-
date events provides a simple way to separate and identify 
the multiple events occurring close in time in a local region 
such as the peak aftershock activities following the 2018 
Hualien mainshock. Once we modify the phase picker to 
individually identify the P and S phase arrival times, we can 
avoid the identification of the false candidate events in the 
cluster analysis and largely improve the processing speed 
of the Associator and the capability of smaller earthquake 
detection in the future.
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