
31

Terr. Atmos. Ocean. Sci., Vol. 18, No. 1, 31-53, March 2007

Dispersion-Correction Finite Difference Model for Simulation of
Transoceanic Tsunamis

Sung Bum Yoon1, *, Chae Ho Lim1, and Junwoo Choi1

(Manuscript received 19 September 2006, in final form 20 November 2006)

ABSTRACT

1 Department of Civil and Environmental Engineering, Hanyang University, Ansan, Korea

* Corresponding author address:  Prof. Sung Bum Yoon, Department of Civil and Environmental

Engineering, Hanyang University, Ansan, Korea; E-mail: sbyoon@hanyang.ac.kr

A finite difference numerical model, which can correctly consider dis-
persion effect of waves over a slowly varying water depth, is developed for
the simulation of tsunami propagation. The present model employs a linear
Boussinesq-type wave equation that can be solved more easily than typical
Boussinesq equations. In the present model numerical dispersion is minimized
by controlling the dispersion-correction parameter determined by the time
step, grid size and local water depth. In order to examine the applicability
of the present model to dispersive waves, the propagation of tsunamis is
simulated for an initial water surface displacement of Gaussian shape for
the cases of several constant water depths and a submerged circular shoal.
The numerical results are compared with analytical solutions or numerical
solutions of linearized Boussinesq equations. The comparisons show that
satisfactory agreement is obtained.
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1. INTRODUCTION

Tsunamis are ocean water surface waves generated by undersea earthquakes, landslides,
volcanic eruptions or even meteoric impact on water surfaces. A tsunami travels in all direc-
tions from the source region where the water surface is disturbed. The tsunamis grow as they
approach shallow water and smash onto the shore. This may cause serious damage in coastal
areas. In order to reduce such damage, a proper monitoring, forecasting and warning system
needs to be established. Consequently, we need to fully understand mechanisms such as
generation, propagation, and inundation of tsunamis and to predict possible quantities such as
arrival times and run-up heights of a tsunami event. Thus, the development of an accurate and
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efficient numerical model for computing all aspects of tsunami propagation is indispensable.
When tsunamis are generated by an earthquake, they have a shape of solitary wave with a

long crest. After they propagate a long distance from the source area over deep oceans, tsunamis
evolve into a train of waves due to wave dispersion effect. When the source area is narrow, the
dispersion effect plays an important role in the deformation of tsunamis; this is also the case in
relatively shallow water areas. Boussinesq equations are one of the best choices for governing
equations to construct numerical models for far-field tsunamis as they can take into account the
dispersion effects. However, the Boussinesq numerical models, such as FUNWAVE (Kirby et al.
1998) and COULWAVE (Lynett and Liu 2004; Hsiao et al. 2005), require a small mesh size to
suppress numerical dispersion errors. This consumes huge amounts of computer resources due
to the implicit nature of the solution technique to deal with dispersion terms. Thus, the
Boussinesq model is not preferred for the simulation of the far-field tsunamis, and shallow-
water equations are generally employed instead.

Considerable efforts to construct a numerical model for the simulation of tsunamis have
been made. For example, finite difference models were developed by Hwang and Divoky
(1970), Goto and Shuto (1983), Kowalik and Murty (1984), and Mader and Curtis (1991).
Most of the existing numerical models are based on the shallow-water equations and have
been successfully applied to near-field tsunamis, which have little wave dispersion effect.
However, distant tsunamis generated far from the region of interest are mainly transformed
due to the accumulation of dispersion effects during propagation. Thus, numerical models
based on the shallow-water equations will suffer from a lack of accuracy inherent in the mod-
els for the simulation of distant tsunamis.

Imamura et al. (1988) presented a finite difference model for the simulation of transoce-
anic propagation of tsunamis. The model solves the shallow-water equations using a leap-frog
scheme. The physical dispersion is compensated by the numerical dispersion introduced by
the truncation error of the numerical scheme. This can be done only if the grid size is appropri-
ately selected for the given water depth and the time step satisfying the criterion proposed by
Imamura et al. (1988). Cho (1995) improved the numerical model of Imamura et al. (1988) for
tsunamis obliquely propagating to the principal axes of computational grids. However, strictly
speaking, those models have no capability to consider the dispersion effect of waves in practi-
cal application. The use of numerical models developed by Imamura et al. (1988) and Cho
(1995) is limited to the case of constant water depth.

Yoon (2002) developed a new finite difference scheme that uses a uniform grid, but the
actual computations are made on a hidden grid of variable size determined from the conditions
proposed by Imamura et al. (1988). This model satisfies local dispersion relationships of waves
for a slowly varying topography. However, the accuracy of the model degrades when applied
to short waves due to numerical errors associated with the interpolation of quantities at hidden
grid points.

The primary objective of this study is to develop a highly efficient and relatively accurate
two-dimensional finite difference model to simulate the propagation of distant tsunamis over
varying topography. The present finite difference model is based on a simplified linear
Boussinesq wave equation. A new dispersion-correction scheme instead of adjusting the grid
size is employed. The dispersion-correction scheme developed in this study can properly cap-
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ture the dispersion effect by getting rid of the numerical dispersion error arising from the
numerical scheme and providing the physical dispersion by controlling the parameters deter-
mined from the given time step, grid size and local water depth.

After the tsunamis travel a long distance from the generation region, they experience
shoaling and run-up due to decreasing water depth over the continental shelf. Nonlinearity
plays a significant role in the transformation of tsunami waves in this region. Moreover, topo-
graphic changes are no longer slow. Thus, the accuracy of the present linear far-field model
developed for slowly varying topography becomes degraded, and the present model cannot be
applied. These difficulties can be solved by nesting the near-field model such as full Boussinesq
equation model or shallow water equation model with a finer mesh system to the present
transoceanic model as described in Yoon (2002).

2. GOVERNING EQUATIONS

For tsunamis of transoceanic propagation nonlinearity of waves can be neglected since
free surface displacement against water depth is small. The accuracy of the numerical simula-
tion of a given tsunami can be improved by proper consideration of the dispersion effects of
the tsunami. The following linear Boussinesq equations can be used as governing equations
for far-field tsunamis:
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where ζ  represents the free surface elevation from still water level (m), P and Q are the depth-
integrated volume fluxes (m2 s-1) in the x and y directions, respectively. g is the acceleration of
gravity (m s-2), and h is the water depth (m).

The equations of motion (2) and (3) include the dispersion terms in the right-hand side.
These dispersion terms cause numerical difficulties in practice because of the mixed form of
differentiations with respect to both time and space. Thus, an implicit scheme is generally
employed. Moreover, they should be solved using fine grids to reduce numerical errors.
Consequently, the numerical model requires a significant computational effort due to a huge
computer memory space requirement and an excessive execution time to solve Boussinesq
equations.
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To develop an efficient and relatively accurate numerical model for the propagation of
dispersive tsunamis over slowly varying topography a linear Boussinesq-type wave equation
for variable water depth is first derived from the linear Boussinesq equations (1) ~ (3) as:
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where the water depth is assumed to be slowly varying in the computational domain. (4) can
be split into two first-order partial differential equations in time as:
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where v denotes an auxiliary variable introduced for computational convenience. The solution
of (5) and (6) is identical with that of (4). To simulate the propagation of distant tsunamis over
a slowly varying topography with improved wave dispersion effect, the new governing equa-
tions (5) and (6) can be solved by using a relatively simple explicit numerical scheme.

3. DISPERSION-CORRECTION SCHEME

In this section a finite difference numerical scheme to solve (5) and (6) will be first devel-
oped for the case of uniform water depth. Then, it will be extended to the case of slowly
varying topography.

3.1 Determination of Dispersion-Correction Parameter

The linear Boussinesq wave equation (4) can be reduced for the case of uniform water

depth under the assumption of long waves (i.e., kh   10-1〈 π ) to the following linear Boussinesq

wave equation:
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where k in the truncated error term denotes the wave number (rad m-1) of uniform waves, and
C gh0 =( ) is the phase speed of waves. The 3rd group of terms in (7) represents the physical
dispersion of waves.

On the other hand, Krenk (2001) proposed a modified wave equation (8) by adding an
artificial dispersion term to a two-dimensional wave equation to eliminate the numerical dis-
persion errors as:
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where γ  is a dispersion-correction parameter introduced to eliminate the numerical dispersion
errors caused by the explicit finite difference scheme to solve the original wave equation. The
original wave equation is recovered if γ  = 0.0 . The wave equation (8) proposed by Krenk
(2001) is similar to the linear Boussinesq wave equation (7). In the present study, the disper-
sion-correction parameter γ  will be chosen to minimize the numerical dispersion error and
also to provide the physical dispersion of waves. As a result the numerical solution of (8) will
be very close to the solution of (7).

The equation (8) is split into two first-order partial differential equations in time as:
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To obtain an explicit finite difference representation of the linear Boussinesq wave equa-
tions (9) and (10) a leap-frog difference approximation is used for the time derivatives, and a
second-order central difference approximation is used for the spatial derivatives. The finite
difference approximation of (9) and (10) can be written as:
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where indices i (and j) and n represent a spatial grid point and a time level, respectively, as
shown in Fig. 1. ∆x  and ∆y  are the spatial grid sizes, and ∆tdenotes the time step.
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This finite difference scheme gives numerical dispersion errors. The effects of the nu-
merical dispersion can be clearly understood by deriving the following modified equation of
(11) and (12) through the expansion of each equation using the Taylor series as:
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where C t xr = C0∆ ∆/( ) represents the Courant number. In the derivation of (13) from (11) and
(12), it is assumed that the water depth h is uniform, and ∆x = ∆y . The 3rd and 4th groups of
terms in the left-hand side of (13) are the truncation errors due to numerical discretization. The
truncation errors of (13) are so called numerical dispersion that affects the phase speed of
wave propagation.

Krenk (2001) insisted that the truncation errors can be eliminated if the dispersion-correc-
tion parameter γ  is equal to 1/12 and the dispersion free solution for the wave equation can be
obtained. However, the 3rd group of terms can be eliminated only in the case of an infinitesi-
mally small time step. To get rid of the dispersion error associated with the 3rd group of terms
in (13) completely, the dispersion-correction parameter γ  should be 1 122 -  Cr( ) / . On top of

Fig. 1. Sketch of the arrangement of variables and grid points. (a) Grid system in
time; (b) Grid system in space.
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this, the 4th group of terms introduces an additional dispersion error for the waves propagating
obliquely to the principal axes of the grid system and should also be eliminated.

On the other hand, Imamura et al. (1988) proposed a leap-frog finite difference model to
simulate the propagation of distant tsunamis based on the linear shallow-water equations.
Imamura et al. (1988) found that the numerical dispersion inherent in the leap-frog scheme
mimics the physical dispersion of (4) in x and y directions for uniform water depth if the grid
size is chosen to satisfy the following criterion:

∆ ∆x gh tIm  =  4h  +  2 2    . (14)

However, the dispersion-correction in the diagonal direction is incomplete. As a result,
the conventional model developed by Imamura et al. (1988) gives a less dispersive solution in
the diagonal direction. Cho (1995) made an improvement to achieve a uniform dispersion-
correction in every direction by adopting the idea of Abbott et al. (1981).

In the present study the finite difference representation (11) is reformulated based on the
grid system shown in Fig. 2 to achieve an orientation-free dispersion-correction as proposed
by Abbott et al. (1981).

Fig. 2. Sketch of the arrangement of variables for dispersion-correction in di-
agonal direction.
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The following finite difference approximation of (9) is obtained:
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where α  is a weighting factor to be determined later. The modified equation of the proposed
finite difference equations (15) and (12) is derived, and the result is presented here as:
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To get an orientation-free scheme the 4th term in (16) is first eliminated by setting α  = 1/6.
Next, the dispersion-correction parameter γ  is determined here. If the coefficient of the 3rd

group of terms in the linear Boussinesq wave equation (7) is set to be equal to that of the
modified wave equation (16), the two equations become identical. Thus, the dispersion-cor-
rection parameter γ  is determined as:
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If the dispersion-correction parameter γ  calculated by (17) for given local water depth,
spatial grid size and time step is used, a considerably accurate solution can be achieved for the
linear Boussinesq wave equation (7). Thus, the selection of grid size ∆x  is free from condition
(14) of Imamura et al. (1988). This means that the present dispersion-correction scheme is
much more flexible in the selection of grid size than the conventional scheme. We remark here
that when the uniform grid size ∆x  is selected for constant water depth to satisfy condition
(14), then γ  becomes 0.0 and the present scheme is reduced to the numerical scheme of Imamura
et al. (1988). This implies that the scheme developed by Imamura et al. (1988) is a special case
of the present scheme for constant water depth.
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3.2 Stability Analysis

The stability analysis of the self-adjusting dispersion-correction numerical scheme is con-
ducted under the condition of the uniform waves over constant water depth following the
Fourier stability analysis of Lapidus and Pinder (1982). By substituting the Fourier compo-
nents for each time step and spatial grid point into the finite difference equations (15) and (12),
the amplification factor G can be obtained. The procedure is straightforward but lengthy. Thus,
only the final result is presented here as:
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where ∆ ∆x y =   is assumed. The magnitude of G is determined by the Courant number Cr ,
the resolution of grid k x∆ , and the dispersion-correction parameter γ . The stability require-
ment is G   1≤ . This requirement is satisfied if δ 2  1≤ . The first condition, δ  1≤ , is auto-
matically satisfied, and the second condition, δ  -1≥ , gives the following criterion for the
Courant number as:

0
1 2
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δ γδ    . (22)

This criterion gives no explicit relationship between the time step ∆t  and the grid size
∆x , because the γ  in (22) is also related to ∆t  and ∆x . Figure 3 shows the allowable Courant
number Cr  for given γ  and k x∆  to get a stable solution. Judging from Fig. 3 the minimum
value of the allowable Courant number occurs when k x∆  =  π  for   >  0Cr . Thus, for the case
of k x∆  =  π  the values δ1 = -8/3 and δ2  = 64/3 are obtained from (20) and (21), respectively,
and (22) gives the stability criterion for the Courant number as:

Cr  
3

 +  32
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4 γ    . (23)
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The Courant number should be positive as shown in (22). This gives γ δ δ  ≥ 1 2/  (= -0.125)
for k x∆  =  π . Another limitation on γ  for ∆x =  ∞ can be found using (17). This gives
γ  /12≤ 1  (= 0.083). As a result, the range of stability for the dispersion-correction parameter
when k x∆  =  π  is theoretically − ≤ ≤0 125.     0.083γ . The most critical value for Cr  is 0.67
when γ  = 0.083. Thus, the stability criterion for the whole range of k x∆  is Cr  0.67≤  with
− ≤ ≤0 125.     0.083γ .

The dispersion-correction parameter γ  calculated by (17) is shown in Fig. 4. This figure shows
that the grid size ∆x  greater than 0 63. Im∆x  must be used for stability because ∆ ∆x xIm /  is 1.581
for γ  = -0.125. In other words, the uniform grid size greater than approximately 1.27 times of a
local water depth must be employed for the stability of the present dispersion-correction scheme.

Fig. 3. Allowable Cr  with respect to γ  and k x∆ .

Fig. 4. Dispersion-correction
parameter vs. ratio of
grid size.
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3.3 Extension to Slowly Varying Topography

If the bottom slope changes slowly, it is possible to assume a locally constant water depth
at each grid point. Thus, the same dispersion-correction parameter γ  and the weighting factor
α  determined for uniform water depth can be employed without loss of generality for the
simulation of tsunami propagation over a slowly varying topography. Therefore, if the water
depth changes slowly, the linear Boussinesq-type wave equations (5) and (6) can also be solved
by employing the numerical scheme developed for constant water depth. The finite difference
approximation of (5) with additional shoaling terms for varying topography can be written as:
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(12) can also be employed for the finite difference representation of (6) by replacing the
coefficient h2/3 by −γ∆x 2 . (12) is repeated here for completeness:
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where the weighting factor α  is given as 1/6 and the dispersion-correction parameter γ  is
given by (17). The validity of the variable depth version of finite difference approximation, i.e.,
(24) and (25), will be tested in subsequent sections.

4. TEST OF PRESENT NUMERICAL SCHEME

4.1 Tsunami Propagation over Constant Depth Regions

In order to test the applicability of the present model, the propagation of tsunamis is first
simulated with an initial Gaussian shape of the water surface for the case of various constant
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water depths, and the computed free surface displacements are compared with the analytical
solutions of the linear Boussinesq equations (Carrier 1991). The initial free surface profile and
the velocity of free surface movement are described by (26) and (27), respectively, as:

ζ θr e
r a

,
/( ) −( ) =  2

2

   , (26)

∂ζ θ
∂
r

t

,( )
 =  0   , (27)

where a is the characteristic radius of the Gaussian function, r [= (x2 + y2)1/2]denotes the dis-
tance from the center of the Gaussian hump, and θ  is the angle from the x axis as shown in Fig. 5.

The analytical solution of the linear Boussinesq equations is given by Carrier (1991) as:
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where J0  is the 0th-order Bessel function of the first kind and g = 9.81 m s-2. The parameters
used for the solution are a = 7500 m, ∆x  = 2086 m, and ∆t  = 6 sec. The numerical simulations
using the present scheme are performed for various constant water depths of h = 500, 1000,
and 1500 m.

Fig. 5. Coordinate system and initial free surface profile to test the accuracy of
the present numerical scheme.
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Figures 6 ~ 8 present the comparisons of analytical solutions and numerical results calcu-
lated considering or neglecting the dispersion-correction parameters γ  and the weighting fac-
tor α  proposed in this study. We remark here that the numerical scheme of Imamura et al.
(1988) is recovered if we set intentionally γ  = α  = 0.0. The orientation-free scheme of Cho
(1995) is obtained if γ  = 0.0 and α  = 1/6. These figures show a time history of free surface
displacements at the location of 150∆x  (r = 312900 m) far from the center of the initial Gaussian
hump.

The free surface profiles calculated by the present finite difference model considering or
neglecting dispersion-correction are compared with the analytical solution of Carrier (1991)
for the case of 500-m water depth in Fig. 6. Since the grid size ∆x  (= 2086 m) employed in the
computation is larger than ∆xIm  (= 1085 m) evaluated by (14), the free surface profiles calcu-
lated without dispersion-correction are more dispersive than those of the analytical solutions
as shown in Fig. 6a. Especially, the numerical model gives a less dispersive profile along the
diagonal direction (  θ =  45o ) than along principal axes (  θ =   0 90o o, ), while the numerical
solution with α  = 1/6 shows no directional dependency as shown in Fig. 6b. The present
model with the dispersion-correction parameter γ  = 0.061 and the weighting factor α  = 1/6
gives a good agreement with the analytical solution in the surface profiles in all directions as
shown in Fig. 6c. Figure 7 shows the comparison of numerical and analytical free surface
profiles for the case of 1000-m water depth. All the numerical solutions except the diagonal
profiles calculated with α  = 0.0 agree well with the analytical solutions, because the grid size
∆x  (= 2086 m) coincides with ∆xIm  (= 2086 m) obtained by (14). On the other hand, for the
case of 1500-m water depth, ∆x  (= 2086 m) is smaller than ∆xIm  (= 3087 m). Thus, the
numerical solutions calculated with γ  = 0.0 show less dispersive nature in the surface profiles
than the analytical solutions based on the linear Boussinesq equations as shown in Figs. 8a and b.
The present numerical model using γ  = -0.099 and α  = 1/6, however, still gives a correct
dispersion effect in each direction as shown in Fig. 8c.

From the results discussed above, it is concluded that the present numerical model is less
sensitive to the choice of grid size than the models of Imamura et al. (1988) and Cho (1995).
As a result, the present model gives more flexibility in selecting grid size.

4.2 Tsunami Propagation over a Submerged Circular Shoal

In this section, the validity of the present finite difference model (FDM) in the case of
slowly varying topography is tested using a submerged circular shoal. Figure 9 shows a com-
putational domain with a submerged circular shoal with a conical frustum shape. The center of
the shoal is located at x0 = 500 km and y0 = 250 km. The base radius  R1 and the top radius  R2

are 150 and 86 km, respectively. The bathymetry of the computational domain is given by:
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Fig. 6. Comparison of free surface calculated using FDM and analytical solu-
tion for the case of h = 500 m ( ∆xIm = 1085 m, ∆x  = 2086 m). (a)γ  = 0.0,
α  = 0.0 (Imamura et al. 1988); (b)γ  = 0.0, α  = 1/6 (Cho 1995); (c)γ  = 0.061,
α  = 1/6 (present).
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Fig. 7. Comparison of free surface calculated using FDM and analytical solu-
tion for the case of h = 1000 m ( ∆xIm = 2086 m, ∆x  = 2086 m). (a)γ  = 0.0,
α  = 0.0 (Imamura et al. 1988); (b)γ  = 0.0, α  = 1/6 (Cho 1995); (c)γ  = 0.0,
α  = 1/6 (present).
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Fig. 8. Comparison of free surface calculated using FDM and analytical solu-
tion for the case of h = 1500 m ( ∆xIm = 3087 m, ∆x  = 2086 m). (a)γ  = 0.0,
α  = 0.0 (Imamura et al. 1988); (b)γ  = 0.0, α  = 1/6 (Cho 1995); (c)γ  = -0.099,
α  = 1/6 (present).
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where r x x y y =  (  -  )  +  (  -  )2 2
0 0

 is the distance from the center of the submerged circular
shoal.

Along x = 0, the initial water surface displacement in the form of a solitary wave is pre-
scribed as:

ζ ( ) ( / )x e x =  2 7500 2−    . (30)

Four wave gages are installed to measure the free surface profile. Wave gages  and 
are positioned at the front and back slopes of the shoal, respectively, where the water depth is
1000 m. Gage  is located at the center of the shoal where the water depth is 500 m. Gage 
is placed behind the shoal. Sponge layers are placed along both ends of the computational
domain to absorb the energy of outgoing waves.

Since no analytical solution is known for this case, numerical solutions using the present
dispersion-correction finite difference model are compared with those of the linearized Nwogu’s
Boussinesq equations (1993) implemented in the FUNWAVE code (Wei and Kirby 1995;
Kirby et al. 1998). FUNWAVE is a fully nonlinear Boussinesq wave model with improved
dispersion relationships for short waves. The accuracy of FUNWAVE has been verified for
various coastal problems such as shoaling, refraction, diffraction and breaking of waves. The
numerical simulation using FUNWAVE is performed with a uniform grid size of 500 m, the
finest grid allowable on the personal computer employed in this study, to minimize the nu-
merical dispersion. An additional computation using FUNWAVE is also conducted with 2000-m
grid size to test the sensitivity of the grid resolution. On the other hand, the numerical simula-

Fig. 9. Schematic diagram of a submerged circular shoal, wave gages and initial
condition.
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tion employing the present dispersion-correction model is made with a uniform grid size of
2000 m. The time step ∆t  is determined from the stability criteria for each wave model. The
algorithms to compute various physical processes, such as nonlinear advection, nonlinear dis-
persion and wave dissipation due to bottom friction and breaking, are eliminated from the
source code of the FUNWAVE model. Thus, the computational time for the FUNWAVE
model to calculate only the propagation step of small-amplitude waves can be measured for
fair comparison with that of the present model.

The numerical simulation is conducted for 9000 sec after the initial water surface dis-
placement imposed along x = 0 is released. The computational time elapsed for different mod-
els is presented in Table 1. The FUNWAVE model employing a predictor-corrector scheme
consumes a long computational time, while the present fully explicit model takes only 1/10 of
the computational time required for FUNWAVE in the case of using the same grid size, i.e.,
∆x  = 2000 m. The computational efficiency of the present model can be realized even more
dramatically if the computational time is compared with that of FUNWAVE using finer grid size
of ∆x  = 500 m. The present model is approximately 2200 times faster than the FUNWAVE
model. If the accuracy of the present model is comparable to that of FUNWAVE, it can be
concluded that the present model is highly efficient for practical problems.

Figures 10 and 11 are snapshots of the free surface calculated by FUNWAVE and the
present FDM, respectively. These figures show clearly that the initial solitary wave evolves
into a group of waves due to dispersion of waves as the waves travel a long distance, and also
show that the waves are focused behind the shoal due to refraction. Although the grid size for
the present model is much larger than that of the FUNWAVE model, the free surface profiles
calculated by two different numerical models are almost identical. As shown in Fig. 11a, the
present model, however, leaves tiny wiggles on the top of the shoal after the main waves have
passed. These wiggles are so called 2∆x  waves, which appear as a result of strong numerical
dispersion caused by the coarse grid employed in the present model. These wiggles can be
suppressed if a numerical filter as implemented in FUNWAVE is used.

Table 1. Comparison of computational time for each simulation.
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Figure 12 presents the comparison of the free surface time history at various gage loca-
tions computed by FUNWAVE and the present FDM. Figure 12a shows the free surface time
series recorded at the wave gage  located on the front slope of the shoal. This figure shows
that the initial solitary wave evolves into a group of waves due to dispersion of waves. Figure 12b

Fig. 10. Snapshots of the free surface computed by FUNWAVE ( ∆x  = 500 m).
(a) t = 7200 sec; (b) t = 8000 sec.

Fig. 11. Snapshots of the free surface computed by present FDM ( ∆x  = 2000 m).
(a) t = 7200 sec; (b) t = 8000 sec.
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presents the time series at the location  on the top of the shoal. The free surface calculated by the
present model shows a good agreement with that of FUNWAVE with a fine grid of ∆x  = 500 m.
The results calculated using FUNWAVE with 2000-m grid size, however, show a consider-
able phase lag in the tail of the wave train. This phase lag is caused by the accumulation of
numerical dispersion errors due to poor resolution of computational grid near the top of the
shoal. Although the same grid size of 2000 m is employed, the present model still gives more
accurate results. This implies that the present model is capable of minimizing the numerical
dispersion efficiently through the dispersion-correction algorithm. Figure 12c shows the time

Fig. 12. Comparison of time series computed by FUNWAVE and the present
FDM. (a) Time series at location  (h = 1000 m); (b) Time series at the
location  (h = 500 m); (c) Time series at location  (h = 1000 m); (d)
Time series at location   (h = 1500 m).
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series at location  on the back slope of the shoal. Two trains of waves arrive here. The first
train of waves propagating around the shoulders of the shoal meets at this location at  t = 6000
sec. The second train of waves traveling over the top of the shoal arrives here at t = 6300 sec.
A good agreement between the results calculated using the present model and the FUNWAVE
model with fine grids is achieved. The results calculated using FUNWAVE with coarse grids,
however, surfers from numerical dispersion. Figure 12d shows the time series at location 
behind the shoal where the water depth h is 1500 m. The agreements between the numerical
solutions are reasonable.

In summary, the present FDM is proven to be sufficiently accurate in comparison with the
FUNWAVE model, which can deal with a full coverage of dispersion effects for a varying
water depth region. On top of this the present model is shown to be highly efficient. Thus, the

Fig. 12. (Continued)
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present model can be used as a practical numerical model to simulate the propagation of tran-
soceanic tsunamis over slowly varying topography.

5. CONCLUSIONS

An explicit dispersion-correction finite difference model is developed for the simulation
of far-field tsunami propagation. The present model employs a linear Boussinesq-type wave
equation. The present model can suppress the numerical dispersion arising from the explicit
scheme and take into account the physical dispersion of waves. The dispersion-correction
scheme was tested for the case of the propagation of Gaussian hump over various constant
water depths. Comparisons of the results with the analytical solution of the linear Boussinesq
equations are made. Even though the simulations are performed using a fixed grid size over
various constant water depths, the results using the proposed dispersion-correction scheme
agree well with the analytical solution. In order to test the present numerical model for varying
water depth a simulation of the solitary wave of Gaussian shape propagating over a submerged
circular shoal was conducted and the results were compared with the numerical solutions of
the linearized Nwogu’s Boussinesq equations implemented in the FUNWAVE model. The
numerical results show that the present model gives a sufficiently accurate solution compa-
rable to the result obtained by the models employing Boussinesq equations. Moreover, the
present model is shown to be highly efficient. Thus, the present model can be used as a prac-
tical alternative to the numerical models based on the full Boussinesq equations to simulate
the propagation of distant tsunamis over slowly varying topography. The present model,
however, has some limitations, i.e., the grid size has to be equal in both horizontal directions
and the slope of the bottom should be slowly varying.
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