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The Chelungpu fault, Taiwan, produced a northward propagating rup-
ture on 21 September 1999 resulting in a Mw 7.6 earthquake with a ~90 km
long N-S trending fault scarp. The mineralogic and physical character of
the fault-related rocks within the Chelungpu fault zone, as measured at
9 sites along 70 km of the 1999 rupture trace, changes significantly along
strike and with depth. The northern section of the Chelungpu fault has a
10 - 30 m-wide primary damage zone that is characterized by increased
fracture density and alteration, but little microstructural damage to within
1 m from the main fault. The southern section of the Chelungpu fault has a
25 - 70 m wide primary damage zone that is characterized by increased
fracture density and alteration, the presence of intensely sheared rock, and
numerous secondary faults and gouge zones as far as 240 m from the main
fault. The complexity of the damage zone, geochemistry, and clay mineral-
ogy of the southern fault zone may reflect its relative maturity (~1 Ma)
compared to the northern fault zone (~46 - 100 Ka). The major down-dip
mineralogic variation is a transition from a significant amount of smectite
in exhumed fault cores to little or no smectite in the fault core at sampled
depths of 200 to 1000 m. This transition may be influenced by weathering
processes at the surface, however co-seismic fluid flow may have a role in
illite-smectite reactions. The composition of clays has important seismologic
implications as clays play a role in fault weakening.
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1. INTRODUCTION

1.1 Fault Zone Structure and Composition

The structure and composition of the near-surface portion of brittle fault zones can be
divided into three components: fault core, damage zone, and protolith (Chester and Logan 1986;
Chester et al. 1993, 2004; Evans and Chester 1995; Caine et al. 1996; Wilson et al. 2003). The
fault core is the portion of the fault zone that accommodates the most slip and reflects high
shear strain. It is typically characterized by geochemically altered and comminuted rocks such
as fault gouge and ranges from millimeters to meters thick (Chester et al. 1993; Caine et al.
1996). Clay fault gouge is a clay-rich dominated, low-temperature fault rock (Vrolijk and van
der Pluijm 1999) that develops due to brittle deformation such as cataclasis associated with
near-surface faulting (Scholz 1989; Sibson 1977) and alteration of the protolith (Goddard and
Evans 1995; Caine and Forester 1999; Vrolijk and van der Pluijm 1999; Solum et al. 2005).
Phyllosilicates in the fault core have been identified by many workers as an important mecha-
nism for fault weakening (Wu 1978; Chester et al. 1993; Evans and Chester 1995; Wintsch et al.
1995; Schleicher et al. 2006; Solum et al. 2006). Smectite has been documented as a major
constituent of fault gouge (Wu 1978; Chester and Logan 1986; Solum et al. 2003; Jacobs et al.
2006) as has illite (Vrolijk and van der Pluijm 1999; Solum et al. 2005) and other clays includ-
ing chlorite and kaolinite (Solum et al. 2003; this study).

The fault core is surrounded by a damage zone that is characterized by an increased den-
sity of subsidiary faults, fractures, veins, foliation, and folding relative to the host rock (Chester
and Logan 1986; Caine et al. 1996). The damage zone records deformation inherited from past
fault motion, presumably by repeated earthquakes (Chester and Logan 1986; Caine et al. 1996;
Schulz and Evans 1998). The damage zone can further be divided into the primary damage
zone (PDZ) and the secondary damage zone (SDZ; Jacobs et al. 2006). The primary damage
zone surrounds the fault core and can have a dense network of fractures and secondary faults
that may obscure the original rock structure. The primary damage zone can exhibit significant
chemical alteration as compared to the host rock, whereas the composition of the secondary
damage zone more closely approximates the host rock. The secondary damage zone surrounds
the fault core and primary damage zone and contains deformation associated with faulting, but
with less intensity than the primary damage zone. The host rock, or protolith, enclosing the
fault core and damage zone is basically undamaged by faulting, but may contain regional
structures and is an important control for background deformation structures and composition.

Evaluation of fault zone structures and composition provides insight into issues of fluid
flow, fault strength, and fault maturity or accumulated damage on a fault. Shale- and clay-rich
fault zones are not typically well preserved because they weather easily, and are therefore not
well studied at the microstructural and outcrop scale. The Chelungpu fault provides a valuable
opportunity to characterize shale- and clay-rich fault zones. Seismic models and earthquake
physics studies require data of the type provided by this study (Ide and Beroza 2001; Spudich
and Olsen 2001). Data presented in this study provides an important characterization of the
Chelungpu fault and can be used as a geologic basis for models of fluid flow properties of
shale- and clay-rich faults and energy distribution of faults.
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1.2 Study Area

The Chelungpu thrust fault (CLF) is part of the fold-and-thrust belt of the western Taiwan
orogen (Fig. 1; Chen and Kao 2000) that cuts shallow marine upper Miocene and Pliocene
siltstone, shale, and sandstone of the Kueichulin, Chinshui, and Cholan Formations (Covey
1984). Near the surface, the fault dips to the east 52° to 60° along the northern segment and
places siltstones of the Chinshui and Kueichulin Formations on Quaternary gravels and silt-
stones of the Chinshui or Kueichulin Formation (Lee et al. 2001; Heermance et al. 2003). The
Chelungpu fault flattens overall to approximately 25° - 35° E in the southern segment (Kao
and Chen 2000; Heermance et al. 2003; Wang et al. 2007) and places siltstones of the Chinshui
and Kueichulin Formations on Quaternary gravels and Pleistocene Toukoshan gravels
(Heermance 2002; Tanaka et al. 2002). An exception to this moderate dip in the fault is the
southern terminus of the Chelungpu fault, where the fault is steeply dipping. The northern
segment has an overall hanging wall flat on footwall flat geometry, whereas the southern seg-
ment has an overall hanging wall flat on footwall ramp geometry (Heermance et al. 2003).
Locally, the Chelungpu fault is observed to cut across bedding; thus, the fault does not strictly
have a hanging wall flat geometry.

The  21 September 1999 Mw 7.6 earthquake produced a northward propagating rupture
resulting in an ~90 km long north-south trending surface rupture on the Chelungpu fault (Ma et al.
2000; Chen et al. 2001). Co-seismic slip increased northward along the fault trace with an aver-
age throw of 2 m on the southern section of the fault as compared to a throw of 5 - 7 and 7 - 9 m
of horizontal displacement on the northern segment of the fault (Ma et al. 2000; Chen et al.
2001; Lin et al. 2001). Strong ground motion, including high frequency acceleration and rupture
velocity, decreased from south to north (Lin et al. 2001). The displacement was nearly pure
thrust slip near the epicenter in the southern portion of the fault, and changed to oblique thrust
with a strong left-lateral component in the north (Chen et al. 2001; Dalguer et al. 2001; Lin et al.
2001). To the north, the rupture occurred in the hanging wall of an older fault strand called the
Sanyi fault, whereas the rupture remained on the older established Chelungpu fault to the
south (Fig. 1; Ho and Chen 2000; Heermance et al. 2003). The new northern strand of the fault
has so little displacement that rocks in the footwall and hanging wall are in their original
stratigraphic order across the fault at depth.

We compare and examine portions of core intersecting the Chelungpu fault zone and
detailed transects and samples from 6 field sites (from 15 to 300 m long) to determine fault
structure and composition (Fig. 1). Host rock samples were collected from the TCDP core
primarily to provide a geochemical and mineralogical standard for comparison with samples
from the exhumed fault zone at field sites. The locations of field sites and drill sites are shown
on the in Fig.1 and referenced in the text using the TW67 coordinate system.

1.3 Previous Work

This study incorporates physical, mineralogical and geochemical data from previous and
current studies of 3 drill holes; the Fengyuan, Nantou, and the Taiwan Chelungpu-fault Drill-
ing Project (TCDP). Background data for field sites and drill sites, including fault orientation
and offset, are listed in Table 1.
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1.3.1 Northern Drillsite: Fengyuan

At the northern drillsite, the largest fracture zone was located within the Kueichulin For-
mation from 285.40 to 327.6 m measured depth along the borehole (Heermance et al. 2003).

Fig. 1. Geologic map of the Chelungpu fault area and the extent of the 21 Sep-
tember 1999 rupture. Additional west vergent faults are shown. Map
modified from Chui (1971), Lin et al. (2001), and Heermance et al. (2003).
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The lower 1.5 m of this zone has the highest fracture density of the entire borehole. At the base
is a 7 mm-thick fault gouge, which is determined to be the primary slip surface of the 1999
rupture (Heermance 2002; Heermance et al. 2003). The Fengyuan core shows a normal strati-
graphic sequence across the Chelungpu fault; good evidence for a youthful fault in this area
(Heermance et al. 2003). Thin sections of samples from the Fengyuan drill core show little
foliation or other microstructures within 2 m of the main fault. Foliation is not well developed
in the fine-grained matrix of random fabric fault breccia surrounding the Chelungpu fault
(Heermance et al. 2003). Fault rocks consist of quartz, feldspar, and combinations of illite,
kaolinite, chlorite, and smectite clays in samples collected from secondary fault gouge and
surrounding wall rock at depths of ~222 - 330 m along the borehole (Liao 2003). While smectite
is detected in most samples, it is either absent from fault gouge samples or reduced relative to
the surrounding wall rock, having been replaced by illite and I-S (Liao 2003). The concentra-
tion of measured oxides is decreased in fault gouge relative to host rocks, with CaO being the
most depleted, and MgO and SiO2 also significantly depleted (Liao 2003).

1.3.2 Southern Drillsite: Nantou

At the southern drillsite, the widest fracture zone was located from 153.8 to 176.8 m depth
and is characterized by foliated fault breccia. The base of this fracture zone consists of 1.1 m

Table 1. Number of field and core samples used for optical microscopy and
analyzed by XRD, XRF, and/or ICP MS in this study.

* these samples were analyzed in previous studies by Liao 2003 and Lu 2004. Results are used for
this study
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of foliated fault gouge above a dark gray, fine-grained fragile material with angular grains and
a random fabric (Heermance 2002; Tanaka et al. 2002). In the 70 m of core above the foliated
gouge, there is less than 15 m of undeformed shale (Heermance 2002). Quantitative XRD
indicates that illite and kaolinite become increasingly enriched from host rock to damage zone
to fault gouge, and that smectite and chlorite become increasingly depleted from host rock to
fault gouge (Lu 2004). Smectite is absent in some secondary fault gouge samples (Lu 2004).
As determined by XRF, the concentrations of NaO, SiO2, and CaO are most depleted in fault
gouge relative to the host rock (Lu 2004).

1.3.3 Taiwan Chelungpu-Fault Drilling Project (TCDP): Taichung

At the TCDP drillsite, a fault zone at ~1111 m depth is interpreted as the 1999 slip surface
(for example, Hung and Ma 2006; Hung et al. 2007; Sone et al. 2005, 2007; Yeh et al. 2007).
This fault zone contains <1 m of light gray, wet, massive clay that grades into ~10 - 15 cm of
foliated fault gouge. At the base of the foliated clay gouge is a 12 cm section of black fault
gouge including several cm-thick layers of hard, brittle, black material (Hirono et al. 2006).
This material was split in the core when it came out of the casing, and slicken lines were
observed on the inside surface. Below the black material is ~10 - 15 cm of clay gouge and
drilling mud followed by a brecciated zone that is ~20 cm thick. Preliminary clay mineralogy
has identified illite, kaolinite, chlorite, smectite, and possibly R1 I-S in the fault gouge, (L. W.
Kuo and J. G. Solum, pers. comm.). With this exception of one sample, illite is more abundant
and smectite is less abundant in fault gouge relative to wall rocks (L. W. Kuo, pers. comm.).

1.3.4 Field Site 2: Tali River (222105 E, 2674552 N)

Heermance et al. (2002, 2003) describe a temporary outcrop exposed by excavation north
of Taichung city and 6 km south of the Fengyuan drillsite. The fault core consists of a 20-cm
thick clay gouge in sharp contact with the surrounding damage zone rocks. The primary dam-
age zone is ~30 m wide and is characterized by dense fractures and no relict bedding. Two
secondary faults were identified in the hanging wall with <1 m of throw. Microstructures
include thin parted surfaces which are proposed to be the slip surfaces within the foliated fault
gouge. Mineralogy results reported in previous work for all drill sites and Field site 2 were
obtained from bulk powder and clay separates analyses.

1.4 Field Methods

To determine the structure and composition of the fault zone, a transect sampling method
was employed for all outcrop sites in this study. Rock samples were collected for laboratory
analysis at a maximum spacing of 5 m throughout the exposed fault zone. Sample density was
smaller near the faults to increase data collection in areas of potential interest. Structural samples
of fault gouge were oriented and collected for petrographic analysis. Weathered rock was
cleared away before samples were taken. The width of the fault core is defined by the distance
from the fault plane to the edges of the fault gouge. Fault gouge is recognized in the field as a
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tacky, clay-rich material with nearly-ductile behavior when wet. It is often foliated and sheared,
and typically distinguishable from the surrounding wall rock by its appearance, feel, and often
color. The width of the primary damage zone is defined by the transect length from the outside
edge of the fault core to a significant decrease in density of macroscopic damage elements.
The change from primary damage zone to secondary damage zone is marked by any combina-
tion of: the appearance of bedding, a notable decrease in fracture density, color changes, de-
crease in alteration, decrease in the amount of subsidiary faults, fault gouge and shear zones,
and changes in the dominant type of deformation. Both the width of fault core and the width of
the primary damage zone are measured only for the hanging wall rocks. Footwall rocks of the
Chelungpu fault at the surface are typically gravel and show little recognizable damage be-
cause of their unconsolidated nature.

Field sites are described and numbered from north to south. Samples collected along a
transect line at field sites are designated in two parts: 1) the component of the fault zone to
which each sample belongs, including the main fault or fault core (FC), fault gouge in subsid-
iary faults (FG), primary damage zone (PDZ), and secondary damage zone (SDZ), and 2) the
numerical distance that each sample was collected from the main fault trace, which is set at a
value of zero. For example, FC 0 +0 is a sample collected from fault core of the main fault,
FG 0 +3 is fault gouge collected from a secondary fault located 3 m into the hanging wall of
the main fault trace, and PDZ 0 +5 is a sample taken from the primary damage zone 5 m into
the hanging wall along the line of transect. The number of samples used for laboratory analy-
ses for each study site is listed in Table 2.

Table 2. Background information for field and drill sites (Chen and Lin 1999;
Lin et al. 2005; this study).
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1.5 Laboratory Methods

Optical microscopy from standard thin sections was completed for samples from core and
outcrop of the Chelungpu fault. Bulk and clay X-ray Diffraction (XRD) was used to determine
sample mineralogy and clay composition and relative amounts for the Chelungpu fault zone. Un-
oriented (end-packed) hand-powdered bulk samples were analyzed over a range of 5° to 75° 2θ
using copper K-alpha radiation and a Cu target with voltage = 45 kV and current = 40 mA.
Bulk powder samples were used for evaluation of relative amounts of clay in samples (as
verified by oriented clay samples). A 1 ml slurry mixture of clay and distilled water was air-
dried on glass slides. Oriented clay samples were analyzed over a range of 3° to 33° 2θ  (Fig. 2).
Ethylene glycol was used to expand the clay samples and test for swelling clays. Heating
samples to 550°C helped distinguish kaolinite from chlorite, as the structure of kaolinite col-
lapses with heat. Geochemical analyses using X-ray fluorescence (XRF) and Inductively
Coupled Plasma (ICP) Mass Spectrometry (MS) LiBO2 fusion analysis were used to detect the
percent amounts of major, minor, and trace elements with a detection limit of 0.01% for major
and minor oxides and 10 ppm for trace elements (Fig. 3). Loss on ignition (LOI) of volatiles,
primarily H2O and CO2, was determined from baking the samples and recording the weight loss.

Fig. 2. Example plot of X-Ray Diffraction analysis on clay samples.



Isaacs et al. 191

2. CHARACTERIZATION OF CHULUNGPU FAULT ROCKS

2.1 Field Site 1: Tachia River (224823 E, 2686232 N)

The northernmost field site along the trace of the Chelungpu fault is located on the Tachia
River where the 1999 rupture created a waterfall and broke the Pifung Bridge (Fig. 4; Chen
and Lin 1999). Bedding throughout this outcrop is uniform and strikes 045° with dips ranging
between 34° and 56° SE (Heermance et al. 2003; this study). The primary damage zone is
characterized by an increased number and orientations of fractures until ~17 m into the hang-
ing wall (Fig. 5). No fault gouge is preserved in the outcrop, and the primary slip surface is
below the water level, so it is unknown whether gouge was associated with this fault or not. A
conjugate fracture set dominates the secondary damage zone with bearings of ~022° and ~070°.
Minor slip has occurred on some of the 022° joints, and these are more continuous than the
070° fracture set. There are a few secondary faults that are sub-parallel to the main fault and
bedding with very little offset (Fig. 4; Lee et al. 2002; this study).

Thin sections of samples collected from site 1 show intact rock with relatively little dam-
age except a few micro-fractures and no evidence of shear within 1 m of the fault. There are a
few quartz grains with intragranular fractures, but no foliation is developed in very fine-grained
clayey layers (PDZ 0 +1; Fig. 6a). Pteropod fossils that are originally circular in cross section
(Scholle 1978) show no sign of elongation within 1 m of the fault trace (PDZ 0 +1; Fig. 6b).
Quartz is the dominant mineral in thin section, with minor amounts of twinned feldspar, pyrite
and/or hematite, and lithic fragments. Calcite cement and fine-grained brown matrix are also
present. Fine-grained rocks along a secondary fault ~25 m into the hanging wall are not foli-
ated (SDZ 0 +25; Fig. 6c). Occasionally, clay is concentrated in very thin, opaque, dark bands,
but there is no evidence that these clays are related to or modified by faulting.

Fig. 3. Example graphs illustrating geochemical results from samples using
X-Ray Fluorescence techniques.
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X-ray diffraction analysis (XRD) identifies quartz, feldspar, calcite, and clay minerals
including kaolinite, illite, and chlorite ± smectite (montmorillonite) in all samples collected at
site 1. The relative abundance of the clay mineral smectite increases towards the fault trace,
and kaolinite + chlorite decrease toward the fault (Fig. 7). Clay XRD affirms the presence of
smectite in the primary damage zone rocks mixed with chlorite, illite, and kaolinite (PDZ 0 +0,
PDZ 0 +1, PDZ 0 +10). Mixed layer illite-smectite (I-S) is likely present in a sample collected
1 m from the main fault (PDZ 0+1) identified by decreased peak intensity at ~6° 2θ , 8° 2θ  and
17.7° 2θ  upon glycolation, and a peak shift from ~8° 2θ  to slightly higher values of 2θ  (Moore
and Reynolds 1997). There is also the possibility of a peak at ~3.4° 2θ  in sample PDZ 0 +1,
which indicates R1 (ordered) I-S. NewmodTM (Reynolds and Reynolds 1996) modeling also
indicates the presence of I-S in samples PDZ 0 +0 and PDZ 0 +1 (Fig. 8).

Whole-rock geochemical analysis shows that the oxides MgO, Al2O3, K2O, CaO, TiO2,
and FeO3, trace elements Sr, Y, Nb, Ba, Sc, and loss on ignition (LOI) of the primary damage
zone are depleted relative to the secondary damage zone, whereas SiO2, Na2O, and Zr are
enriched in the primary damage zone. The geochemical signature of the primary damage zone
is primarily depleted from that of the secondary damage zone.

Fig. 4. Field site 1. a) View to the north of the Tachia waterfall created in the 1999
rupture of the Chelungpu fault (photo taken in 2004). The red line indicates
the trace of the surface rupture, and blue lines indicate bedding.
b) Transect of site 1 (plan view) illustrating the orientation of the 1999 rupture,
fractures, bedding, and secondary faults. River flow is to the left (west).
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Fig. 5. Examples of the damage
zone at field site 1. a) Brec-
ciation zone ~70 cm from
1999 rupture trace. b) Intact
bedding within 3 m of the
1999 rupture trace. c) Bed-
ding and typical rounded
weathering and fracture
pattern of the Chinshui Shale
at ~32 m from the 1999 rup-
ture trace.
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Fig. 6. Photomicrographs of field
site 1 samples. a) Photomi-
crograph showing intact
host rock ~1 m from the
1999 rupture at field site 1,
Tachia River. Some inter-
granular microfractures are
present, but grains are un-
damaged, and fine-grained
layers show no shear fabric
(polarized light). b) Cross-
sections of pteropods show
no evidence of shear ~1 m
from the main fault (po-
larized light). c) Very fine-
grained layers of shale along
a secondary fault show no
development of shear fabric
~25 m into the hanging wall
(polarized light).
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Fig. 7. Plot of peak intensities from XRD patterns for major clay constituents of
the northern Chelunpgu fault rocks. Peak intensity is a function of the
amount of the mineral present in a sample, and can therefore be used as a
proxy for relative abundance. Each clay type can only be compared to
itself, not other types of clay using this method. Northern Chelungpu
fault: purple symbols = field site 1 samples, green symbols = field site 2.
Smecite is most abundant in the fault core and primary damage zone
rocks, and kaolinite + chlorite and possibly illite (field site 3) are least
abundant in the fault core. Southern Chelungpu fault: blue symbols =
field site 4 fault gouge, green symbols = field site 4 damage zone, red
symbols = field site 6 fault gouge, orange symbols = field site 6 damage
zone. There is not an easily distinguishable pattern of clay mineral
abundances, however smectite may be most abundant in the fault core
and other fault gouge. Error bars = + −/ 2  standard deviations.
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Fig. 8. Examples of NEWMODTM -generated patterns for I-S, illite, and smectite
clays. The poor match of the peaks at ~27° 2θ  is due to fine-grained
quartz present in the Chelungpu fault zone samples, as illite and quartz
have a common peak at this position.
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2.2 Field Site 2: Tali River (222105 E, 2674552 N)

Additional optical microscopy and clay XRD analysis were conducted for samples from
Field Site 2 (Fig. 9). Thin sections of the damage zone show little microstructural deformation
within 1 m of the main fault. At ~1 m into the hanging wall, fine-grained matrix material
shows no evidence for shear. A sample collected ~20 cm above the main fault has a fine-
grained matrix with very weak foliation, but foraminifera appear undeformed. Clay XRD iden-
tifies abundant smectite in the secondary damage zone (~50 m from the fault; Heermance et al.
2003, their Fig. 15) and to a lesser extent in the fault gouge and near-fault primary damage zone
rocks (CDR-1 — PDZ 0 +0.7, CDR-2 — FC 0 +0, CDR-4 — PDZ 0 +0.4, CDR-6 — FC 0 +0,
CDR-8 — FC 0 +0; Fig. 7). The clay XRD pattern of the fault core illustrates a shift in the
smectite peak, and also a small split upon glycolation (CDR-8 — FC 0 +0). This indicates that
the peak at ~6° 2θ  is a result of smectite, mixed with a lesser amount of chlorite or possibly
vermiculite. Sample CDR-9 collected ~2 m into the hanging wall contains the least amount of
smectite. Illite, kaolinite, and chlorite or vermiculite are also present in all components of the
fault zone (Heermance et al. 2003; this study). Geochemical analysis is not available for this site.

Fig. 9. Photograph of outcrop at field site 2 near the Tali River showing the
locations of samples collected and used for thin sections and XRD
(Heermance 2002; Heermance et al. 2003; this study). Figure modified
from Heermance et al. (2003; Fig. 6).
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2.3 Field Site 3: Pu Tze River (223036 E, 2672882 N)

At the Pu Tze River, the Chelungpu fault is transitional from the characteristics of the
northern section to the southern section (Fig. 10a). Here, the fault core is 40 - 60 cm thick with
several bands of mm to cm thick black ultracataclasite. The 1999 rupture as seen in the offset
river terrace is just downstream of the main fault contact. The primary damage zone is ~10 m
wide and is characterized by increased fractures relative to the secondary damage zone, leached
yellow color, and no relict bedding for 1 - 2 m into the hanging wall (Fig. 10b). The secondary
damage zone, which extends for the remaining 100 m of the outcrop, is characterized by folded
bedding (Fig. 10c), fractures, a few secondary faults, and a weakly developed fault gouge at
~40 m into the hanging wall. Secondary faults in this outcrop truncate folds and therefore have
accommodated more movement than secondary faults at field site 1, but have little or no in-
crease in damage surrounding them and have no associated fault gouge, and therefore are
presumably small and relatively small offset structures.

Thin sections of samples collected from the main fault and wall rock show a coarse fault
gouge with thin, dark, ultracataclasite ribbons surrounded by intact wall rock (FC 0 +0; Fig. 11).
A thin zone (<0.5 mm) of broken grains forms a transition between the gouge and primary
damage zone rocks. The primary damage zone is fractured with zones of broken quartz grains,
but also contains areas of predominantly pristine quartz grains. Thin sections of the primary
damage zone located ~30 cm into the hanging wall of the fault display open fractures and
comminuted grains, bordered again by relatively intact rock. The mineralogy of the fault core
and primary damage zone observed in thin section is similar to that of field site 1, with quartz
being the dominant mineral, as well as some calcite and feldspar.

X-ray diffraction analysis identifies quartz as the most abundant mineral for all field site 3
samples, with minor feldspar and calcite. Clays consist of illite, kaolinite, smectite and/or chlo-
rite or vermicullite. Smectite is most abundant in the fault gouge, whereas kaolinite + chlorite
and illite increase through the primary damage zone and are most abundant in the secondary
damage zone samples (Fig. 7).

X-ray fluorescence and ICP analyses show that, with the exception of SiO2, Zr, and Sc,
oxides and trace elements are depleted in the fault core and primary damage zone with respect
to the secondary damage zone rocks. The fault core is enriched in SiO2, and notably depleted
in MgO, MnO, CaO, and LOI relative to the primary damage zone.

2.4 Field Site 4: Wu River (218125 E, 2656546 N)

Field site 4 along a northern branch of the Wu River belongs to the southern section of the
Chelungpu fault. The main fault lies within a gully (Fig. 12; Fig. 13a) and corresponds to dam-
aged buildings, a scarp in the road above, and the presence of clay gouge and altered rocks.
The fault gouge is 20 - 40 cm of saturated, tacky orange clay in contact with gravel in the
footwall and light gray clay in contact with siltstone in the hanging wall. The primary damage
zone is characterized by veins and leaching along a dense network of fractures and shear fabric
(0 - 5 m; Fig. 13b), no relict bedding, and is approximately 20 - 25 m wide. Figure 13a is a
stylized sketch of the exposure at field site 4 showing the main features of the outcrop. The
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Fig. 11. Photomicrograph of the Chelungpu fault and associated fault gouge col-
lected at field site 3 at ~10 cm from the contact with Quaternary gravel.
Brown fault gouge is on the right, bordered by relatively undeformed
primary damage zone (PDZ) rock on the left. The area surrounded by the
red line is a transitional area of decreased grain size (polarized light).

Fig. 12. Field site 4. View to the northwest of the 1999 rupture of the Chelungpu
fault. Siltstones of the Chinshui Shale have been thrust onto Quaternary
gravel. Although this contact appears suspect in places, it seems to be
continous with in-place siltstone down dip, and correlates to damaged
buldings and a fault scarp on the road above.
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secondary damage zone comprises the remaining outcrop and is characterized by folds that
increase in wavelength away from the main fault. Black clay gouge is distributed throughout
the secondary damage zone along secondary faults and in fold limbs between sandstone and
siltstone beds (Fig. 13a, Fig. 13d). A second 10-m wide major fracture and shear zone is
located at ~80 m into the hanging wall with numerous small offset faults at high angles to the
main fault (Fig. 13e). This fracture zone lacks relict bedding in several places.

Quartz is the dominant mineral in thin section. Thin sections display foliated fault gouge
(FG 0 +30) and massive clay (SDZ 0 +140) that may be primary clay or may be gouge over-
printed by weathering and subsequent mineral precipitation. Transitions between gouge and
host rock are abrupt. Evidence for multiple deformation events include displaced and rotated
porphyroclasts of gouge and quartz-rich wall rock (FG 0 +30), multiple generations of foliated
gouge at differing orientations that are either truncated by micro faults, or younger bands of
fault gouge (FG 0 +30, FG 0 +148; Fig. 14). Fine-grained, thin shear bands contain commi-
nuted quartz grains that are apparently sheared off of the wall of more intact rock (FG 0 +46).
Small-scale bedding and gouge strands are commonly truncated by microfaults. There is some
evidence for plastically deformed quartz grains (SDZ 0+140). Again, quartz dominates the mineral
phase observed in thin section, but some grains of chlorite, calcite, and feldspar are also present.

Fig. 14. Photomicrograph of fault gouge sample from field site 4 (FG 0 +30).
Microstructures show evidence for multiple deformation events includ-
ing multiple generations of foliated gouge at differing orientations that
are either truncated by micro-faults or younger bands of fault gouge
(polarized light with 530 nm plate).
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Bulk XRD patterns for samples collected at field site 4 show that the dominant mineral is
quartz, with lesser amounts of feldspar, calcite, and clays including kaolinite, illite, chlorite
and/or smectite. Within the near-fault primary damage zone, Chlorite/smectite increases to-
wards the fault core, whereas illite roughly decreases towards the main fault. No trend for
kaolinite was determined (Fig. 7). Quartz also increases towards the fault core. Clay XRD
reveals that smectite is present in the secondary damage zone rocks (SDZ 0+133, SDZ 0+155,
SDZ 0 +190), as well as in primary damage zone rocks (PDZ 0 +0, PDZ 0 +5). A significant
amount of smectite is present in the primary fault gouge; however; fault gouge in secondary
faults range from having significant smectite (FG 0 +39.8) to being smectite-poor (FG 0 +53).
Sample FG 0 +39.8 has I-S, illite, and smectite clays (Fig. 8). Secondary fault gouge with
variable mineralogy makes the trends in Fig. 7 much more complex.

X-ray fluorescence and ICP results for field site 4 are more complex than those from
sites 1 and 3. The ICP values show that fault gouge (FC 0+0, FG 0+39.8, FG 0+41, FG 0+53.2)
and primary damage zone samples (PDZ 0 +0, PDZ 0+5, PDZ 0+10, PDZ 0 +20) are depleted
in MgO, CaO, MnO, and LOI relative to the secondary damage zone (SDZ 0 +170, SDZ 0+185).
The fault core is enriched Al2O3, and the fault core and primary damage zone are enriched in
SiO2 relative to the secondary damage zone rocks. In general, and with the exception of CaO,
fault gouge is enriched in oxides and trace elements with respect to the primary damage zone,
and depleted in oxides relative to the secondary damage zone.

2.5 Field Site 5: Dong Pu Ruey River (219604 E, 2631775 N)

Field site 5, part of the southern section of the Chelungpu fault, is an excavation site along
the Dong Pu Ruey River. A throw of 1.5 m was recorded at this site where the uplift dammed
the river for a time (Chen and Lin 1999). The outcrop is located completely within the hanging
wall of the Chelungpu fault, so only fault gouge from secondary faults was sampled. We infer
that the outcrop represents part of the primary damage zone due to the high concentration of
slip surfaces, shear bands and clay gouge, and the projected trend of the scarp that dammed the
river. Yellow leached bands of siltstone follow fractures and gouge strands throughout the
outcrop. The siltstone is also leached yellow at the base of the overlying terrace gravels due to
groundwater flow along the contact of the two lithologies.

Quartz is the dominant mineral in thin section, with abundant clay and some feldspar and
calcite. Thin sections from field site 5 show several generations of faulting marked by the
texture and orientation of different phases of gouge. Brecciated and comminuted quartz grains
are common. Gouge is folded and truncated by younger micro faults and strands of foliated
fault gouge, and porphyroclasts show rotation and shear tails (Fig. 15).

Bulk XRD analysis identifies quartz, kaolinite, illite, and smectite/chlorite in secondary
fault gouge and primary damage zone rocks. Clay XRD patterns show that smectite is present
in most samples, but there is no obvious trend. Illite and kaolinite are major constituents of the
fault rocks. The ICP and XRF results yield no definitive trend from fault gouge to primary
damage zone rocks. This is most likely due to the difficulty in finding samples within the
extent of the outcrop that did not contain shear bands and fault gouge. Only 2 primary damage
zone samples were collected, and one of these is sandstone that does not provide a good com-
parison to the sheared siltstones.
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2.6 Field Site 6: Chin-Sui River (214402 E, 2616438 N)

Field site 6 is located near the southern terminus of the 1999 rupture trace, and is the final
field site of the southern section of the Chelungpu fault. The 1999 rupture broke the Tungtou
Bridge. Lin et al. (2005) report that cataclasites and gouge of the main fault are distributed
along a 3 - 5 m wide zone, but determine that coseismic slip was likely localized within a <50-cm
zone. The trace of the 1999 rupture has subsequently been destroyed by construction of a new
bridge.

The outcrop is characterized by a very wide primary damage zone (~65 m) and an exten-
sive secondary damage zone (>200 m) that is the remainder of the outcrop (Fig. 16a). The
primary damage zone is dominated by sheared and foliated siltstone with thin sandstone beds.
It has innumerable secondary faults and anastomosing gouge, all of which are very steeply
dipping. The gouge is black, extremely tacky, and is often located at contacts between silt-
stone or mudstone and fine-grained graywacke. One particularly interesting fault gouge is
located at ~64 m into the hanging wall (Fig. 16b). The gouge is ~20 cm thick, and black with
a gold-green luster not observed in other gouges. Curved slicken lines were present on at least
one fault plane at ~41 m from the main fault. Slicken lines were observed on fault planes in
very fragile clay films at ~41 and 55 m from the main fault (Fig. 16c), suggesting that many

Fig. 15. Photomicrograph of fault gouge from field site 5 (T5-2). Foliated fault
gouge, comminuted quartz grains, and microfaults are common
microstructures. A rotated porphyroclast of wall rock with associated
shear tails is present at the center of the photo (polarized light with 530 nm
plate).
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surfaces were activated in the recent rupture, as these slicken lines could not be long-lived in
this tropical setting. Other features of the primary damage zone include siltstone and sand-
stone fault breccia zones located at 4 - 9 and 31 m along the line of transect, intense fracturing,
and disrupted and discontinuous bedding. Relict bedding can, in some places, be defined by
strands of gouge separating siltstone from sandstone, but these contacts are very irregular,
disrupted, and difficult to trace. In many areas of the primary damage zone, where shear fabric
and fault gouge dominates, there is no relict bedding.

Within the secondary damage zone, bedding is apparent, however still disrupted, and
commonly folded. Numerous secondary faults are present, however there is less fault gouge
present in the secondary damage zone than in the primary damage zone. There are several
significant faults in the secondary damage zone, including a fault ~250 m into the hanging wall
(fault 50) that offsets Quaternary terrace gravels capping the outcrop. Large round boulders are
present in the footwall of this fault that are not present in the hanging wall (Heermance et al.
2003; this study). There is also a ~3 m high scarp at the surface. Fault gouge associated with
this fault is 20 - 30 cm thick, contains brecciated clasts, and is foliated, zoned, and well
developed. This evidence indicates that there has probably been a significant amount of offset
on this fault (Heermance et al. 2003; this study). We do not know if this fault was activated in
the 1999 rupture.

Thin sections of fault gouge from field site 6 show the fault core consists of very fine-
grained material with well developed foliation and a high intensity of deformation microstruc-
tures (FG 0 +40, FG 0 +64, FG 0 +240; Fig. 17). Multiple deformation events are clearly re-
corded by cross-cutting relationships of veins, multiple generations of foliated fault gouge,
fractures, and microfaults (FG 0 +64, FG 0 +40; Figs. 17a, b). Many fractures are simply due
to the drying of clays, but some fractures are filled with microbreccia or vein fill (FG 0 +64).
Small, broken, floating quartz grains or pockets of wall rock are incorporated into gouge
(FG 0 +45/112-7, FG 0 +240), and primary damage zone rocks that border gouge have fairly
intact quartz grains, but show evidence for increased porosity and deformed matrix (FG 0 +30,
FG 0 +240; Fig. 17c). Foliated fault gouge with shear fabric is common and well-defined
(FG 0 +40, FG 0+64, FG 0 +41.5, FG 0 +58, FG 0 +45/112-7, FG 0+10; Fig. 17d). Microfaults
that offset foliated fault gouge are filled with calcite, and imply syn-tectonic fluid flow
(FG 0+64).

X-ray diffraction analysis identifies quartz, feldspar, calcite, and clay minerals including
kaolinite, illite, chlorite, and smectite in most samples collected at this site. Clay is more
abundant in fault gouge samples than in surrounding siltstone samples of the primary damage
zone (Fig. 7). Samples from the odd lustrous gouge (FG 0 +64) are almost entirely
montmorillonite. Samples from the primary damage zone and other clay gouge zones are com-
posed of a mixture of chlorite, smectite, illite, and kaolinite (FG 0 +10, FG 0 +40, FG 0 +41.5,
FG 0 +58, FG 0 +64, FG 0 +250, PDZ 0 +31, PDZ 0 +55). Illite and kaolinite are major con-
stituents of secondary fault gouge, and again we find that smectite is present in some second-
ary fault gouge samples, (FG 0 +58, FG 0 +64, FG 0 +250) and is barely detectable or absent in
other gouge samples (FG 0 +10, FG 0 +40, FG 0 +41.5). Primary damage zone samples con-
tain a significant amount of smectite, illite, and kaolinite, as well as some chlorite (PDZ 0 +31,
PDZ 0 +55).
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Fig. 17. Photomicrographs of field site 6 samples clearly demonstrate multiple
deformation events based on cross-cutting relationships. a) Foliated fault
gouge (FG 0 +64). b) Microfaults filled with calcite offset foliated clay
gouge - evidence for multiple deformation events and syn-tectonic fluid
flow (FG 0 +64). c) More massive fault gouge in contact with primary
damage zone (FG 0 +10). d) Fault gouge with well defined foliation
(FG 0 +40). a = plain light; b, c, d = polarized light with 530 nm plate.
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Although samples from this site are compositionally complex, XRF and ICP values indi-
cate that the percent amounts of oxides and trace elements are less in fault gouge (FG 0 +10,
FG 0 +33, FG 0 +64, FG 0 +250) than in the primary damage zone (PDZ 0 +21, PDZ 0 +27,
PDZ 0 +40, PDZ 0 +55), with the exception of SiO2 and Zr, which are enriched with respect to
the primary damage zone. The lustrous gouge sample (FG 0 +64) has a unique geochemical
signature that includes a very low K2O, consistent with the XRD determination that this sample
is rich in smectite. In addition, it has the highest value for LOI probably due to interlayer water
trapped in the smectite. Sample FC 0 +64 follows the trends of other secondary fault gouge
samples for Al2O3, CaO, TiO2, Y, and Zr.

2.7 Taiwan Chelungpu-Fault Drilling Project (TCDP): Taichung

For this study, two host rock samples were collected from each of the formations in the
TCDP drill hole. The Cholan Formation was sampled at 512 and 796 m depth, the Chinshui
Shale at 1016.5 and 1030.9 m depth (Fig. 18a), and Kueichulin Formation at 1300 m (Fig. 18b)
and 1304.7 m depth (Song et al. 2007). Quartz is the dominant mineral in thin section. Bulk
XRD analysis identifies quartz, feldspar, calcite, and smectite, illite, kaolinite, and chlorite
clays. Smectite is a dominant clay in protolith samples. These samples, especially those from
the Chinshui Shale and Kueichulin Formation, are used to determine the geochemical alter-
ation of exhumed Chelungpu fault zone rocks. They provide the initial composition of un-
weathered Chinshui Shale and Kueichulin Formation rocks.

3. MINERALOGICAL AND GEOCHEMICAL ANALYSES

3.1 Geochemical Changes in Fault Zone Rocks

The geochemical alteration of fault rocks at field sites 1, 3, 4, and 6 were determined
using the values of oxides in Chinshui and Kueichulin host rock samples from the TCDP core
(TCDP 1030 and 1300) and averaged values of Fengyuan and TCDP host rock as a reference
(Fig. 19). Geochemical studies indicate that Ti, Mn, P, and to a lesser extent Mg are immobile
elements (Goddard and Evans 1995; references therein). Using the method described by Goddard
and Evans (1995), we determine the percent changes of exhumed fault rocks from host rock.
The value of TiO2 was used as the immobile oxide.

The values of Fe2O3, P2O5, Cr2O3, Al2O3 and K2O lie fairly close to the immobile TiO2 axis
for all sites. One exception is the pattern of FG 0 +64 at field site 6; the lustrous, smectite gouge.
The absence of illite accounts for the depletion of K2O. In addition, the high LOI value is
consistent with interlayer water trapped in the smectite, and enrichment of Fe and Mg may
also be due to an Fe-Mg montmorillonite composition. The Kueichulin Formation (TCDP 1300)
is used for the host rock for site 3 based on work by Heermance et al. (2003), and may be host
rock for site 6, but using the Chinshui Shale as the reference results in the same pattern. The
value of SiO2 is enriched in the fault core and primary damage zone relative to the host rock at
each site. With the exception of some damage zone rocks at field site 3 (PDZ 0+3, SDZ 0 +15)
and sample FC 0 +64 from site 6, the values of MnO, CaO, LOI, and often MgO are notably
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Fig. 18. Generalized lithology of the
Taiwan Chelungpu-fault Drill-
ing Project and locations of
faults. Formation boundaries
are based on nannofossil as-
semblages (Lin et al. 2007,
Wu et al. 2005, 2007). Loca-
tions of samples used in this
study are indicated by red stars.
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depleted in all components of the fault relative to the host rock, and are increasingly depleted
toward the main fault at each site. The extreme depletion of CaO (~60 - 90%) in fault gouge
and primary damage zone rocks indicates the transport of this mobile oxide out of the fault
core and surrounding damage zone. The SiO2 enrichment trend indicates transport and pre-
cipitation of SiO2 in the fault core and primary damage zone rocks. Fault gouge and damage
zone rocks from the Fengyuan and Nantou drilled cores are significantly depleted in CaO,
MnO, Na2O, and SiO2. The geochemical changes indicate significant fluid-rock interaction.
Of the values of MnO reported for host rocks (Lu 2004; Liao 2003; this study), 4 of 15 samples
had high values of MnO; an average of 0.4 percentage points higher than the other 11 host rock
samples. This is very significant considering the average of the other samples is 0.07 ± 0.01%.
This variation in the amount of MnO explains the difference between host rock and fault zone
samples shown in Fig. 19.

3.2 Patterns in Clay Mineralogy

Some general patterns can be determined from the clay mineralogy of the Chelungpu
fault rocks. Figure 7 shows that smectite is most abundant in the fault core and decreases away
from the fault in the northern section of the Chelungpu fault. Conversely, kaolinite and chlorite,
and possibly illite are least abundant in the fault core and increase away from the main fault. It
is much harder to distinguish trends for the southern Chelungpu fault; however, smectite seems
to be most abundant in the fault core and in some secondary fault gouge. We have shown that
smectite is present in the fault core of the exhumed fault zone and absent or depleted in the
fault core at shallow depths. Weathering has been proposed as the agent that forms smectite in
exhumed fault gouge (Solum et al. 2003). If, however, weathering is responsible for the smectite,
the primary damage zone should presumably be most affected. The primary damage zone is
heavily fractured, and likely provides a good conduit for fluid flow. The primary damage zone
rocks can be as (if not more) chemically altered as fault core rocks (Fig. 19). Also, the yellow
color and vein systems of some primary damage zone rocks at field sites 3, 4, and 5 indicates
leaching and fluid flow. The geochemical data suggest that translocation of SiO2 and CaO, and

Fig. 19. Geochemical analyses of fault rock samples.
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thus the presence of reaction-driving fluids, is significant in the primary damage zone rocks.
Weathering alone does not seem to explain all chemistry and observations of the fault rocks.

4. DISCUSSION

The data presented above document the mineralogical, geochemical, textural, and micro-
and macro-scale structural characteristics at 6 sites along-strike and 3 sites down-dip of the
Chelungpu fault along ~70 km of the fault. The meso-scale structures, microstructures, and
geochemical signature of the Chelungpu fault zone change along strike, and appear to corre-
late with variations in fault geometry, ground motion, and total fault displacement. This work
allows us to discuss the along-strike and down-dip variations in these aspects of the fault,
evaluate fault zone structure, and discuss these results in light of earthquake processes. The
variation in the characteristics of the Chelungpu fault at each study site is summarized in Fig. 20.

4.1 Along-Strike Variations

Based on the observations of this study, the primary damage zone of the Chelungpu fault
is 10 - 30 m wide in the northern section and 25 - 70 m wide and is more intensely damaged in
the southern section. Exposures of the primary damage zone along the northern fault are char-
acterized by increased fracture density relative to the secondary damage zone, whereas the
primary damage zone of the southern Chelungpu fault is characterized by intense fracturing as
well as the presence of sheared siltstone, abundant fault gouge, and multiple deformation events
as recognized by cross-cutting relationships observed in outcrops and thin sections. These
differences are mirrored in the Fengyuan and Nantou drill cores. A 7 mm thick fault gouge is
surrounded by a primary damage zone with increased fracture density at Fengyuan, while 1.1 m
of foliated fault gouge is associated with 70 m of sheared shale in the hanging wall at Nantou
(Heermance 2002; Tanaka et al. 2002). Optical microscopy of samples across the northern
Chelungpu fault shows relatively undamaged wall rock surrounding coarse fault gouge.
Conversely, thin sections of fault zone samples from the southern Chelungpu fault reveal
several generations of relatively fine-grained, foliated fault gouge that is folded and truncated
by microfaults and veins. Secondary fault gouge with this character is found at some distance
from the main fault (240 + m). The geochemical data of the northern Chelungpu fault have
systematic changes through fault zone components with increasing distance from the fault,
whereas the geochemical and mineralogical variations throughout the southern fault zone are
more enigmatic with respect to location along the transect line. The complexity of the geochemi-
cal signature of the southern fault is in part due to the gouge-bearing secondary faults present
throughout the primary damage zone and secondary damage that perturb the geochemical
signature relative to distance from the main fault. As a result, geochemistry and mineralogy of
the primary damage zone are more variable in the southern Chelungpu fault than the northern
Chelungpu fault. Secondary fault gouge of the southern Chelungpu fault can be illite-rich,
mixed clays, or smectite-rich.

Lin et al. (2001) report coseismic flexural-slip folding structures sub-parallel to the 1999
rupture of the Chelungpu fault and oriented E-W to NW-SE where there are jogs in the fault.
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Fig. 20. Differences between study sites showing depth and along-strike varia-
tions in offset, fault component size, damage, clay mineralogy, and
geochemical signature relative to host rock. The amounts of total clays
are qualitative estimates based on optical microscopy of gouge, semi-
quantitative XRD, and gravity settling. Ratios of illite to smectite are
based on NEWMODTM  -generated patterns (Reynolds and Reynolds
1996) and peak intensities. The intensity of damage is a relative mea-
surement based on the type and density of damage recorded in transect
of the primary damage zone and secondary damage zone.
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Hanging wall folds are also common at field sites 3 and 4, and fault gouge along folded bed-
ding planes at field site 4 indicates slip. Additionally, the axes of folds at field site 3 and field
site 4 trend east-west to northeast-southwest. One model for the Chelungpu fault involves
southward-propogating lateral ramps at the extreme northern end of the Chelungpu fault where
the fault makes a 90° turn to the east (Johnson et al. 2001; Johnson and Segall 2004). As the
lateral ramps (Sanyi, Houli, and Chelungpu) propagated south, the northern section of the
Chelungpu fault also progressively steps to the east into the hanging wall. The Sanyi and Houli
faults are projected to converge with the southern section of the Chelungpu fault near Wufeng
where the 1999 rupture trace has a right-stepping jog (Fig. 1) and near field sites 3 and 4. The
eastward-propagation of the Chelungpu fault seems to hinge near Wufeng, and may influence
the orientations of the complex suite of folds at field sites 3 and 4. Field site 3 represents a
transition between northern and southern sections; indeed we see that field site 3 has more
accumulated damage, manifested in folding and ultracataclasites within fault gouge, than
sites 1 and 2.

The northern Chelungpu fault is a relatively new structure in the hanging wall of the old
Chelungpu fault/Sanyi fault (Ho and Chen 2000; Heermance 2002) and total displacement
along the fault is much less (500 m - 1.5 km; Heermance 2002; references therein) than along
the southern portion (8 - 15 km; Heermance 2002; references therein). We propose that the
intense damage, and complex texture, mineralogy, and geochemistry of the southern Chelungpu
fault zone is due to the greater maturity of this section of the fault relative to the northern
section. The southern Chelungpu fault has accumulated more damage and alteration, and has
numerous secondary faults with fault gouge. The variations in the Chelungpu fault from north
to south may illustrate the evolution of a fault through time. Field sites 3 and 4 have complex
folding as a result of the transition between the northern and southern Chelungpu fault. The
northern segment has been active since at least ~46 ka, but does not appear to have been active
for more than ~100 ka (Heermance 2002) and illustrates the microstructures and more ordered
mineralogy and geochemical signature of a young fault. The southern section, which has 8 - 15 km
of total displacement, and has been active since ~1 Ma (Hung and Wilschko 1993), provides a
comparison to the northern Chelungpu fault and gives insights into the evolution of the
Chelungpu fault to its current, more mature state.

Several other factors may influence the along-strike variations in the Chelungpu fault. In
the southern section of the Chelungpu fault, siltstones are thrust over the Toukoshan Con-
glomerate in a hanging wall ramp, whereas in the north, the thrust is bed-parallel and lies
within siltstones. The additional frictional resistance due to the conglomerate in the footwall
as well as the added stress of the footwall wall ramp geometry may cause the southern section
of the Chelungpu fault to have more near-surface damage than the northern Chelungpu fault
(Heermance 2002). In addition, the terminus of the 1999 rupture, including field site 6, had a
significant strike-slip component.

Along-strike variations in the number and character of slip surfaces, including fluid-rock
interactions and mineralogy of fault cores, may influence the rupture style along faults (Evans
and Chester 1995), and may play a role in the variable rupture pattern along the Chelungpu
fault. Further investigation into the variation of composition, amount, and texture of clay present
in fault cores along the Chelungpu fault trace may provide additional insight into the variable
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rupture style of the fault. Co-seismic slip increased northward along the fault trace, however,
strong ground motion including high-frequency ground acceleration and fast rupture velocity
decreased from south to north (Lin et al. 2001). The wide damage zone and multiple slip
surfaces in the southern fault zone indicate that seismic energy is dispersed across a wider
zone, and may account for the decrease in slip along this section of the fault (Heermance et al.
2003). Also the more complex and variable composition of fault gouge of secondary faults
may play a role in fault rupture. Illite-rich clays in secondary fault gouge may somewhat
impede fault propagation to the free surface relative to fault core in the north with a smectite
component.

4.2 Variations with Depth

Comparison of geochemistry and mineralogy of core samples from the Chelungpu fault
zone and host rock at shallow depths indicates that smectite “consumption” takes place locally
in fault gouge and to a lesser extent in damaged rock. Smectite is a dominant clay mineral in
host rocks of the Chelungpu fault, especially the Chinshui Shale (Kuan 1964), and is partially
or completely replaced by illite in fault gouge samples at shallow depths (Liao 2003; Lu 2004).

The drilled core samples examined were not at sufficient depths to drive the smectite to
illite reaction by burial temperature alone. The smectite to illite reaction requires temperatures
of 100° - 150°C (Freed and Peacor 1989; Hyndman 2004). A simple calculation using a geo-
thermal gradient of ~20°C km-1 (Lin 2000) and an average surface temperature of 22°C yields
a burial temperature of only ~50°C for the deepest core samples used in this study (around
1200 m for damage zone rocks). Temperatures recorded at the base of the Fengyuan and Nantou
bore holes were ~28°C at 460 m along the borehole (352.4 m TVD) and ~25°C at 180 m depth,
respectively (Tanaka et al. 2002). These temperatures are well below the temperature require-
ment for the smectite to illite reaction, despite the findings regarding clay composition by Liao
(2003) and Lu (2004).

We propose that seismic energy and fluids may play a role in initiating the smectite-illite
reaction at shallow depths in the fault core (Jacobs et al. 2006; Vrolijk and van der Pluijm
1999). Preliminary results from TCDP core show the same mineralogical trends in the foot-
wall as in the hanging wall (L. W. Kuo, pers. comm.; Song et al. 2007), so the illite-rich rocks
are probably not a result of simply being carried from depth and greater temperatures. The
exhumed fault zone has a mineralogical, and, to some extent (SiO2), a geochemical trend that
are seemingly reversed from the fault at shallow depths. Smectite is more abundant in the
exhumed fault core than in the exhumed damage zone rocks (Fig. 7), whereas smectite is often
absent in the fault core at shallow depths. Host rocks from drilled core and exhumed secondary
damage zone rocks also commonly have significant amounts of smectite. Primary damage
zone samples and fault gouge from secondary faults are rich in illite, and often have the least
smectite. These observations indicate that some of the exhumed portions of the fault zone have
undergone a retrograde reaction from illite to smectite.

One explanation for the “reversed” mineralogical signature of the exhumed fault zone is
that it is due entirely to surficial weathering processes (Solum et al. 2005). However, weather-
ing can not alone account for the geochemical signature. We propose that in addition to
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weathering, the seismic cycle plays an active role in the composition of clay gouge at the
surface. If smectite is converted to illite in the fault core by seismic energy as proposed by
Vrolijk and van der Pluijm (1999), then one byproduct of the reaction is aqueous silica
(Abercrombie et al. 1994). Silica may be translated along the fault during seismic dilatancy
(Goddard and Evans 1995) and fault-valve action with dehydration water from the smectite to
illite reaction (Moore and Reynolds 1997). Fluids charged with silica accompanied by seismic
energy may help to drive a retrograde reaction of illite to smectite by freeing Al3+ and K+ and
fluxing the system with aqueous Si4+. Chlorite in fault gouge of drilled core samples and mi-
crostructural observations of this study indicate the presence of fluids when the smectite to
illite reaction occurred (Whitney 1990). Retrograde diagenesis of illite to I-S and smectite in
sedimentary rocks induced by hydrothermal fluids has been documented (Zhao et al. 1999;
referenced therein). Liao (2003) finds illite-rich gouge in a shallow fault zone at 223.45 m
(171.17 m TVD) in the Fengyuan borehole, and Lu (2004) finds illite-rich gouge as shallow as
123.08 m depth along the Nantou borehole. The retrograde reaction might be constrained to
very shallow depths, or it is possible that the I-S in the fault gouge at shallow depths is a step
in the retrograde reaction of I to I-S to smectite. This retrograde reaction may serve to weaken
the fault at very shallow depths, and allow the rupture to reach the free surface more easily.

The hypocenter of the September 21, 1999 earthquake was between 7 and 10 km deep
(Ma et al. 2000; Ogelsby and Day 2001), which corresponds to ambient temperatures of 140 -
200°C; this depth has sufficient temperatures to initiate the smectite to illite reaction. Data
from other earthquakes in western Taiwan with magnitudes ≥ M5 indicate that most seismicity
occurs at depths ≥ 5 km (Shin and Teng 2001). As shown earlier, smectite is absent or reduced
in the fault core at much shallower depths (~200 - 1000 m) than the seismogenic zone. Hyndman
(2004) proposes that the transition from the upper aseismic to lower seismic zone in subduc-
tion thrust systems corresponds to temperatures of ~100°C - 150°C, coincident with the initia-
tion temperature of the smectite to illite transition. The upper smectite-bearing portion of the
fault core does not radiate seismic energy, but is instead passively “pushed along” (Scholz
2003). Samples used for this study were not from seismogenic depths, but they provide an
illustration of the transition from seismic illite and illite-rich I-S to aseismic smectite-rich I-S
and smectite. The hypocenter of the 21 September 1999 earthquake was within Hyndman’s
temperature range for the seismogenic portion of a fault zone.

Our compositional characterization of minerals down-dip along the Chelungpu fault pro-
vides useful constraints on the role of mineralogy in fault movement at the near surface. The
mineralogy and proposed reactions documented in this study indicate that the smectite-illite
reaction may take place up-dip of the seismic-aseismic transition, and may suggest that
Hyndman’s model is oversimplified. Clay reactions may be driven by fluids and seismic en-
ergy all along the fault, and thus the effects of clay on fault weakening are complex. Friction
experiments support the idea that illite is seismic and smectite is aseismic (for example, Brace
and Byerlee 1966), but the amount of clay needed for this case to be true is unknown (Hyndman
2004; references therein). Quartz is a dominant mineral in fault cores of the shallow Chelungpu
fault, and may control the frictional strength of the fault gouge material. If this is the case,
clays may help to weaken the frictional strength of the fault, but other factors such as high
pore-fluid pressures and dynamic rupture effects (examples in Lockner and Beeler 2002) may
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be needed to completely explain the seismic to upper aseismic transition and weak nature of
natural faults.

In addition to the unanswered questions briefly discussed above, the frictional properties
of interlayer I-S are unknown. This study indicates that there are significant variations in clay
mineralogy down-dip along the Chelungpu fault, and these changes probably culminate in
significant smectite to illite reactions at seismogenic depths. Results of frictional tests con-
ducted on montmorillonite and illite indicate that montmorillonite is much weaker than illite
(Moore and Lockner 2004; Morrow et al. 1992). Additionally, the frictional strength of physi-
cal mixtures of smectite and illite was tested by Morrow et al. (1992). They found that mix-
tures had frictional strengths intermediate to typical values for montmorillonite and illite. The
frictional properties of natural mixed layer I-S have not been tested, however, and may prove
to be different than a physical mixture of the two clays. The mixed layer I-S documented in
this study, by Solum et al. (2005) and Vrolijk and van-der Pluijm (1999) suggest that further
experimental work should be conducted to address the properties of this clay type.

5. CONCLUSIONS

We examine and compare core data and field samples from nine study sites along the
Chelungpu fault, Taiwan. We show that the northern section of the Chelungpu fault that rup-
tured in the hanging wall of the old Chelungpu fault/Sanyi fault has less intense damage sur-
rounding the fault core, a systematic geochemical and mineralogical trend across fault
components, and most slip localized to a single slip surface. The southern Chelungpu fault is
more intensely damaged with more complex geochemistry and mineralogy, and numerous
faults that have developed a fault core and have probably accommodated slip over a dispersed
area.

We show that, although smectite is absent or reduced abundance in the fault core at shal-
low depths of 200 to 1200 + m, it is abundant in the fault core and present in some secondary
fault gouge of the exhumed portion of the Chelungpu fault. The fault core has undergone a
retrograde reaction of illite to smectite at the near surface and surface portions of the fault.
This reaction is facilitated by surficial weathering processes, but possibly also by seismic
energy and fluid flux in the fault core while the fault is seismically active. The mineralogical
variations are important to document because they have significant implications on how the
fault reaches the earth’s surface. Major conclusions of this study are:

(1) The northern section of the Chelungpu fault may be a proxy for a young thrust fault
(~45 - 100 Ka old), whereas the southern Chelungpu fault shows the progression into a
more mature fault zone (~1 Ma old).

(2) An increase in damage along the southern Chelungpu fault relative to the northern Chelungpu
fault correlates with decreased co-seismic slip and increasing strong ground motion in
1999. The wide damage zone (up to 70 m) and multiple slip surfaces in the southern
Chelungpu fault zone indicate that seismic energy is dispersed across a wider zone, and
may account for the decrease in slip along this section of the fault (Heermance et al. 2003).
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(3) Smectite in fault gouge at the surface is not due entirely to surficial weathering, but may
also influenced by fault-related processes.

(4) Clay reactions may a complex role in how a fault reaches the free surface. Models assum-
ing that smectite to illite reaction take place due to burial temperatures alone are over-
simplified.

(5) Mixed layer illite-smectite clay needs to be tested for frictional strength, as it may not have
the same properties as a physical mixture of the two clays.

The Chelungpu fault provides a valuable opportunity to study shale and clay-rich fault
zones. Data presented in this work provide an important characterization of the along-strike
and down-dip variations of the near surface and exhumed portions of the Chelungpu fault.
These types of data are essential for the understanding of fluid flow properties and energy
distribution of shale and clay-rich faults zones.
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