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Yamada and Yomogida (1997) applied the discrete wavelet transform
(DWT) to group velocity measurements for the first time. Although their
study is one of the pioneering works in application of DWT to seismological
analysis, their method gives an inaccurate value as a group velocity in some
cases and requires modification. In this report, we point out the problem
and propose a modified DWT method for overcoming the problem. In our
method, DWT is carried out not for an analysed signal itself but for its
complex envelope (Farnbach 1975). A computation algorithm for DWT
coefficients for our method is given and shown to be almost the same as
that by Yamada and Ohkitani (1991). The influence of the difference be-
tween the conventional method and our method on identification of group
arrival times of a wave is also shown by a numerical experiment. If analysts
want to identify group arrival times using DWT, our method must be
adopted instead of the conventional method.

(Key words: Discrete wavelet transform, Complex envelope, Group arrival time)

1. INTRODUCTION

The discrete wavelet transform (DWT) and the continuous wavelet transform (CWT) are
methods for time-frequency analysis of time history data, and a squared DWT coefficient of
the data is supposed to represent energy in corresponding time and frequency range (e.g.,
Yamada and Ohkitani 1991), because some types of wavelet functions can form an orthonor-
mal basis for the function space L2(R), the set of square-integrable functions.
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Yamada and Yomogida (1997) applied the DWT to group velocity measurement of dis-
persed surface waves based on this idea. They measure group velocities, defining a time for
which an absolute value of a DWT coefficient for an observed or synthetic record has a relative
maximum as a group arrival time of a wave having the same frequency as each wavelet.

In the present report, however, we show that their method leads to an inaccurate value as
a group arrival time in some cases. No reports pointing to the same problem can be found thus
far. We first explain what wavelet coefficients represent and show that their method adopted
for the identification of the group arrival time should be modified theoretically. Next, we
propose a modified DWT method overcoming the problem, and introduce a computation algo-
rithm for DWT coefficients for our method. Finally, we make a numerical experiment, illus-
trating the influence of the difference between their method and our method on the identification
of group arrival times of a wave and that in some cases their method leads to an inaccurate value
as a group arrival time, whereas our method always gives a correct value.

2. A PROBLEM IN THE APPLICATION BY YAMADA AND YOMOGIDA (1997)

2.1 Comparison with the Work by Pyrak-Nolte and Nolte (1995)

In this section, we clarify the problem in the application of the conventional DWT by
Yamada and Yomogida (1997).

First, we compare their application with that by Pyrak-Nolte and Nolte (1995). The former
uses the DWT and the latter the CWT for the same purpose, identification of group arrival
times of dispersed surface waves. Except for the difference, the methods used in the two studies
seem to be the same, because in both studies a time for which an absolute value of a wavelet
coefficient for a dispersed wave has a relative maximum is interpreted as a group arrival time
of a wave having the same frequency as each wavelet. However, they are by no means the
same, although it is not important whether CWT is used or DWT is used. The decisive difference
between the two methods is the fact that the former uses a real-valued wavelet, and the latter a
complex-valued wavelet. The influence of this difference on wavelet coefficients is described
below.

2.2 What Do Wavelet Coefficients Represent?

When we calculate wavelet coefficients for a signal, there are four choices in general:

(A) CWT coefficients with a real-valued wavelet,
(B) CWT coefficients with a complex-valued wavelet,
(C) DWT coefficients with a real-valued wavelet, and
(D) DWT coefficients with a complex-valued wavelet.

Among them, (C) is adopted by Yamada and Yomogida (1997) and (B) by Pyrak-Nolte
and Nolte (1995). We explain the relation between the above four kinds of coefficients and
what they represent.
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(A) CWT Coefficients with A Real-Valued Wavelet

Consider the case (A). We assume that an analyzed signal f (t) is a real-valued function of
time throughout this paper. If ψ( )t  is a real-valued analyzing wavelet whose Fourier trans-
form Ψ( )ω  satisfies the admissibility condition:
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ω
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where ω  denotes the angular frequency, then the CWT coefficient of f is defined as:
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where * denotes the complex conjugate and a and b scale and shift factor, respectively. Note
that the equation (1) has the form of convolution, that ψ( )t  and ψa b t, ( )  defined as:

ψ ψa b t
a

t b

a, ( )  = −
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have a band-pass property because of the admissibility condition, and that T a bf , ( , )  ψ  is a
real-valued function of b for fixed a. Thus, the CWT coefficients with a real-valued wavelet
represent the bandpassed signal of f (t) by ψa b t, ( ) .

(B) CWT Coefficients with A Complex-Valued Wavelet

Next, consider the case (B). The CWT coefficient with complex-valued wavelet ψc t( ),
which is an analytic function satisfying :

ψ ψ ψc Ht t i t( ) ( ) ( )= −     ,   (2)

where ψ( )t  is a real-valued analyzing wavelet and ψ H t( )  is the Hilbert transform of ψ( )t
given by:
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and is a complex-valued function of b for fixed a. As shown in Appendix A, it follows that the
equality:
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T a b T a bc
f f c, ,( , ) ( , )    ψ ψ=    ,   (3)

where T a bc
f , ( , )  ψ  is the complex envelope of T a bf , ( , )  ψ , holds for all a and b. As described

in (A), T a bf , ( , )  ψ  is the bandpassed signal. Thus the CWT coefficient with a complex-valued
wavelet is the complex envelope of the bandpassed signal.

(C) DWT Coefficients with A Real-Valued Wavelet

Now consider the case (C). The DWT coefficient of f with real-valued wavelet is defined
as:
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where j and k denote scale and shift factor, respectively. It is clear that the DWT coefficient is
connected with the CWT coefficient of f as:
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which implies that the DWT coefficient with a real-valued wavelet is the sampled signal after
being bandpassed.

(D) DWT Coefficients with A Complex-Valued Wavelet

Finally consider the case (D). The DWT coefficient of f with complex-valued analytic
wavelet ψc t( ) satisfying (2) is given by:
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From (3) and (4), d j k
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Thus the DWT coefficient with a complex-valued wavelet is the sampled complex envelope of
the signal after being bandpassed.
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2.3 A Problem in the Application by Yamada and Yomogida (1997)

To identify group arrival times of a surface wave, we have to make use of an amplitude of
a complex envelope of a bandpassed signal (Dziewonski et al. 1969), corresponding to (B) or
(D) in the section 2.2. Hence we conclude that Yamada and Yomogida (1997)’s method, in
which DWT coefficients with a real-valued (Meyer-Yamada) wavelet are used [case (C)],
must be modified, unlike the work by Pyrak-Nolte and Nolte (1995) who make use of CWT
coefficients with a complex-valued analytic (Morlet) wavelet [case (B)].

3. A MODIFIED DWT METHOD

As described in section 2, we have to use a complex-valued analytic wavelet to identify
group arrival times of a wave. However, even a real-valued wavelet such as a Meyer wavelet
can be used for this purpose if an analysed signal f is converted into its complex envelope fc ,
because the equality:

T a b T a bf fc c, ,( , ) ( , )    ψ ψ=    ,   (5)

holds as shown in Appendix A and substituting a = 1 / 2 j and b = k / 2 j into (5) yields:
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Therefore, we modify Yamada and Yomogida (1997)’s DWT method as follows: We

compute DWT coefficients for a complex envelope of an original signal with a real-valued

orthonormal wavelet, prepare a plot of their amplitude   
 d j k

fc
,

, ψ
, and identify a time for which

the amplitude has a relative maximum as a group arrival time. Note that DWT coefficients are
not computed for an original signal with a complex-valued wavelet, and that the wavelet still
has the orthonormality. And it should also be noted that Yamada and Ohkitani (1991)’s com-
putation algorithm for DWT coefficients for Meyer wavelet is available only if an analysed
signal is a real-valued function. However, as shown in Appendix B, if the analysed signal is an
analytic function, the DWT coefficient for Meyer wavelet can be calculated as follows:

If a fundamental period part of a discrete data sequence { ( / )} , , ...,f rT N r N= −0 1 1    obtained
by sampling a real and T-periodic function f(t) with a sampling interval of T/N, where N = 2n

and n N∈ , are given and if we expand the complex envelope fc (t) of f as:
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where ψ( )t  is a Meyer wavelet and:
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where FS is the N-point discrete Fourier transform of the data sequence: { ( / )} , , ...,f rT N r N= −0 1 1   
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Note that eq. (6) is almost the same as eq. (20) in Yamada and Ohkitani (1991), and
therefore d j k

fc
,

,
 

 ψ can be computed within the conventional computation scheme.

4. NUMERICAL EXPERIMENTS

In this section, we make a comparison between DWT coefficients obtained from the con-
ventional method and our method proposed in section 3 by some numerical experiments.

Figure 1 shows horizontal two component broadband velocity seismograms from 2004
great Sumatra-Andaman Earthquake, observed at F-net NMR (Nemuro), north Japan. The
zero time corresponds to 005240 UT 26 December 2004.

We apply both our DWT and conventional DWT method to these seismograms. The wavelet
used here is a Meyer-Yamada wavelet (Yamada and Ohkitani 1991), the same as used in Yamada
and Yomogida (1997). Figures 2 and 3 show absolute values of DWT coefficients for j = 8
using conventional DWT and our DWT method, respectively. The DWT coefficients are cal-
culated for five different zero times, corresponding to 00:52:20, 00:52:30, 00:52:40, 00:52:50,
and 00:53:00, respectively. Note that the level  j = 8 in the DWT analysis corresponds to the
period range of 96 to 384 sec.

In Figs. 2 and 3, fundamental (R1 and R2) and higher-mode (X1 to X3) Rayleigh waves
and fundamental mode Love waves (G1 and G2) can be found and their theoretical group
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arrival times for PREM are indicated. Note that the absolute value of the DWT coefficient in
Fig. 3 always has a relative maximum for the theoretical group arrival times. On the other
hand, in Fig. 2, the DWT coefficient has a significantly different value for a slightly different
zero time, and its absolute value does not always have a relative maximum for the theoretical
group arrival times.

We try to measure the group velocity of the Rayleigh waves using the group arrival times
for additional two frequency bands ( j = 7 and j = 9) by the conventional method and our
method, and show the results in Fig. 4. Figures 4a and b show the estimated group velocities of
fundamental mode Rayleigh waves using Yamada and Yomogida (1997)’s method and our
method, respectively. The group velocities, denoted by red stars, are measured for five different
zero times, which are the same as in Fig. 3. While our method always gives correct values as
group velocities, the conventional method gives inaccurate values in some cases. This figure
clearly shows that the conventional method may lead to an inaccurate result in the determination
of a group arrival time of a dispersed surface wave and our DWT method has to be adopted.

We performed the same analysis for other two events. Figure 5 shows a transverse com-
ponent broadband velocity seismogram recorded at F-net TTO (Takato) station, central Japan,
for Macquarie Island Earthquake of 23 December 2004. The zero time is 145930 UT 23
December 2004, which corresponds to the centroid time.

Figures 6 and 7 show absolute values of DWT coefficients for  j = 8 using conventional
DWT and our DWT method, respectively. The DWT coefficients are calculated for five

Fig. 1. The radial (above) and transverse (bottom) component broadband velocity
seismograms observed at F-net NMR (Nemuro), north Japan from the
2004 great Sumatra-Andaman earthquake. The time is measured from
005300 UT 26 December 2004.
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Fig. 2. The absolute values of DWT coefficients (bars) for  j = 8 for the (a) radial
and (b) transverse component seismograms shown in Fig. 1, calculated
by Yamada and Yomogida (1997)’s method. The coefficients are calcu-
lated for five different zero times. Vertical lines indicate the theoretical
group arrival times for fundamental (R1 and R2) and higher-mode (X1
to X3) Rayleigh waves and fundamental mode Love waves (G1 and G2)
in PREM. The DWT coefficient has a significantly different value for a
slightly different zero time, and its peaks do not always correspond to the
theoretical group arrival times.
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Fig. 3. The absolute values of DWT coefficients (bars) for  j = 8 for the (a) radial
and (b) transverse component seismograms shown in Fig. 1, calculated
by our method. The coefficients are calculated for five different zero
times. Vertical lines are the same as in Fig. 2. All peaks of the DWT
coefficients correspond to the theoretical group arrival times.
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Fig. 4. Estimated group velocities of fundamental mode Rayleigh waves using
(a) Yamada and Yomogida (1997)’s method and (b) our method. The
group velocities (red stars) are measured for five different zero times,
which are the same as in Fig. 3. Red curve denotes theoretical group
velocity for fundamental mode Rayleigh wave in PREM. While our
method (b) always gives correct values as group velocities, the conven-
tional method (a) gives inaccurate values in some cases.
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Fig. 5. The transverse component broadband velocity seismogram observed at
F-net TTO (Takato), central Japan from the Macquarie Island earthquake.
The time is measured from 145930 UT 23 December 2004.

Fig. 6. The absolute values of DWT coefficients (bars) for  j = 8 for the trans-
verse component seismograms shown in Fig. 4, calculated by Yamada
and Yomogida (1997)’s method. The coefficients are calculated for five
different zero times. Vertical lines indicate the theoretical group arrival
times for fundamental mode Love waves (G1 and G2) in PREM. The
DWT coefficient has a significantly different value for a slightly different
zero time, and its peaks do not always correspond to the theoretical group
arrival times.
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different zero times, corresponding to 14:59:10, 14:59:20, 14:59:30, 14:59:40, and 14:59:50,
respectively. In Figs. 6 and 7, fundamental mode Love waves (G1 and G2) can be found and
their theoretical group arrival times for PREM are indicated. Note that the absolute value of
the DWT coefficient in Fig. 7 always has a relative maximum for the theoretical group arrival
times. On the other hand, in Fig. 6, the DWT coefficient has a significantly different value for
a slightly different zero time, and its absolute value does not always have a relative maximum
for the theoretical group arrival times.

Our modified DWT method also works for regional data with higher frequency contents.
Figure 8 shows a transverse component broadband velocity seismogram recorded at F-net FUJ
(Fujigawa) station, located on the mountainside of Mt. Fuji, central Japan, for the Noto Peninsula
Earthquake of 25 March 2007. The zero time is 004200 UT 25 March 2007, which corresponds
to the hypocentral time. The epicentral distance is about 270 km and the focal depth is 11 km.
In Fig. 8, a prominent phase with a dominant period of 6 - 7 sec can be found around 90 sec.
Since group velocity of a Love wave with this period range in this region is known to be about
2.8 - 3.2 km sec -1, the phase can be considered to be a Love wave, whose energy is trapped
within the crust.

Fig. 7. The absolute values of DWT coefficients (bars) for  j = 8 for transverse
component seismograms shown in Fig. 4, calculated by our method. The
coefficients are calculated for five different zero times. Vertical lines are
the same as in Fig. 5. All peaks of the DWT coefficients correspond to
the theoretical group arrival times.
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Fig. 8. The transverse component broadband velocity seismogram observed at
F-net FUJ (Fujigawa), central Japan from the Noto Peninsula earthquake.
The time is measured from 004200 UT 25 March 2007.

Figures 9 and 10 show absolute values of DWT coefficients for  j = 13 using conventional
DWT and our DWT method, respectively. The DWT coefficients are calculated for five
different zero times, corresponding to 00:42:00, 00:42:01, 00:42:02, 00:42:03, and 00:42:04,
respectively. The level  j = 13 in the DWT analysis corresponds to the period range of 3 to 12
sec. Note that the difference of the zero times is only 1 sec. In Figs. 9 and 10, we give a
theoretical group arrival time for the Love wave, with a group velocity of 3.2 km sec -1. Again
we find that the absolute value of the DWT coefficient in Fig. 10 always has a relative maximum
for the theoretical group arrival time, whereas that in Fig. 9 has a significantly different value
for a slightly different zero time and does not always have a relative maximum for the theoretical
group arrival time.

5. SUMMARY

In this report, first we have clarified what wavelet coefficients represent theoretically and
pointed out a problem in Yamada and Yomogida (1997)’s application by comparison with
Pyrak-Nolte and Nolte (1995)’s work.

Next, to overcome the problem, we have modified their DWT method and given a compu-
tation algorithm for the DWT coefficients for our method. In our method, DWT coefficients
are computed for a complex envelope of an original signal with a conventional real-valued
orthonormal wavelet. Note that DWT coefficients are not computed for an original signal with
a complex-valued wavelet, and that the wavelet still has orthonormality. The computation
algorithm for our method is almost the same as the conventional one.

Finally, we have illustrated the influence of the difference between the conventional method
and our method on the determination of group arrival times of a wave by some numerical
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Fig. 9. The absolute values of DWT coefficients (bars) for  j = 13 for the trans-
verse component seismograms shown in Fig. 7, calculated by Yamada
and Yomogida (1997)’s method. The coefficients are calculated for five
different zero times. The red vertical line indicates the theoretical group
arrival time for a Love wave with a group velocity of 3.2 km sec -1. The
DWT coefficient has a significantly different value for a slightly different
zero time, and its peak does not always correspond to the theoretical
group arrival time.

experiments. Our DWT method always gives a correct value as a group arrival time of a
surface wave, while the conventional DWT analysis results in inaccurate values in some cases.

Although Yamada and Yomogida (1997)’s pioneering work is of great importance in
application of DWT to seismological analysis, modification is required as described in this
paper. If analysts want to identify group arrival times using DWT, our method must be adopted
instead of the conventional method.
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APPENDIX A: PROOF OF (3) AND (5)

There are two keys to the proof. One is the Parseval’s relation:
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where A( )ω  and B( )ω  are the Fourier transform of a(t) and b(t). The other is the fact that
generally a real-valued function g(t) is connected with its complex envelope gc(t) as:

G U Gc ( ) ( ) ( )ω ω ω= 2     ,

(Katukura et al. 1989) where G( )ω  and Gc ( )ω  respectively denote the Fourier transform of g(t)
and gc(t), and U( )ω  is the unit step function defined as:
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APPENDIX B: PROOF OF (6)

Since f (t) is assumed to be a real and T-periodic function, its Hilbert transform fH (t) is also
a real and T-periodic function, and for their discrete Fourier transforms, we have:
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calculate d j k

fc
,

,
 

 ψ  as follows (for simplicity, T = 1 is assumed):
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Even if T ≠1, we can similarly prove that:
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