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Imaging of 3D structural interfaces through reflected rays shooting
from common-shot gathers is presented in this paper. First, by fitting the
reflected arrivals picked from common-shot gathers, we calculate appar-
ent dips and the shortest distances between sources and reflectors along
two profiles. Then, based on the geometry of the profiles and a planar
reflector, a unit normal vector of the reflector is determined from the ap-
parent dips and the azimuths of two oblique profiles. A special case, when
apparent dips are zero along two parallel profiles, for determining the re-
flector normal is also investigated. We propose three criteria to ensure the
selected travel-times along two profiles resulting from the same planar
reflector. These are that firstly, the same shortest distance from sources to
the reflector is utilized; and secondly, we want to ensure the same normal
of the reflector, and finally, the same ray distance.

Prestack inverse-rays developed in this paper are applied to image the
bathymetry of the Hoping Basin in the southernmost Ryukyu subduction
zone and the fourth layer of the SEG/EAEG over-thrust model. Based on
common-shot gathers along seven oblique profiles in the Hoping Basin, most
of the reflection points are well imaged through inverse rays except when
variation of the interface depth exceeds 300 m across profiles with spacing
greater than about 20 km. Inverse-ray imaging of the over-thrust model
also provides good agreement to its fourth interface except that imaging
errors of about 1 km in depth are found near the thrust faults.

Inverse-ray imaging of 3D structures from 2D multi-channel seismic
profiles is demonstrated if a pseudo-3D structure (a planar reflector) exists
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between profiles or if at least two profiles are within a Fresnel zone. Al-
though this technique deals with a single-layered problem currently, it is
fundamentally important when we extend it to image inhomogeneous multi-
layered media.

(Key words: Apparent dip, Migration, Multi-channel seismic, Ray geometry,
Reflector, Travel time)

1. INTRODUCTION

Prestack depth migration has been widely used in the multi-channel seismic (MCS) data
processing to image 3D complex structures such as faults, salt domes and gas sags (Gray et al.
2001). However, the main drawbacks of the prestack depth migration are its computation time
for large data sets and the sensitivity of the data quality. Recently, ray-based techniques (Operto
et al. 2000; Hua and McMechan 2003) were incorporated into the prestack depth migration for
enhancing  computation speed, but its applications in migration velocity analysis (MVA) and
real-time monitoring are still limited (Donihoo et al. 2001).

On the other hand, geometrical migration, for which only travel times are considered, has
been developed since the pioneering work of poststack migration. By considering travel times
and their gradients from stacked sections along orthogonal profiles, Sattlegger (1969) and
Kleyn (1977) first proposed the “map migration” based on 3D inverse rays. A 3D inverse ray
in their study was traced from a receiver, with a shooting direction calculated from travel-time
gradients along orthogonal profiles, and traveled through the upper layers with one-way time
until it arrived at the image point. May and Covey (1981) used inverse reflected and diffracted
rays to image complex faults. They suggested that the error in inverse-ray imaging results
mainly from the travel-time gradient which may accumulate large errors in imaging lower
layers. Since model velocity is required before implementing inverse ray tracing, 3D inverse-
ray imaging was also emphasized for velocity determination (Gjoystdal and Ursin 1981; Maber
and Hadley 1986; Reilly 1991). Recently, Wang (2005a) developed a 3D inverse-ray imaging
technique based on common-midpoint (CMP) triangulation of oblique and sparse profiles and
incorporated MVA for enhancing the velocity determination.

Similar to the development from the poststack to the prestack depth migration, inverse
rays have been applied to prestack imaging in the past decade. Wang (2002) computed the
reflection points at a 2D irregular interface from the ray geometry and the elliptical envelope.
Ray geometry, involving a virtual source and a virtual receiver with respect to a planar reflector,
provides the shooting direction of an inverse ray whereas a tangent plane of elliptical enve-
lopes leads to a reflector. By considering the least-square travel-time fits, the method of ellip-
tical envelopes was also extended to determine the strike and the true dip of 3D reflectors
(Pivot 1997). In addition to the reflection tomography, a so-called stereo-tomography (Billette
and Lambare 1998; Billette et al. 2003) was proposed by including travel-time slopes of com-
mon-shot and common-receiver gathers to calculate the prestack inverse rays propagating in
2D multi-layered media. With the aid of the 2D prestack inverse rays and by assuming the
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fixed velocity of the upper layer, an exact velocity analysis of the lowest layer was also pre-
sented recently (Wang 2005b).

The aim of this study is to fully use the existing 2D MCS profiles for constructing 3D
structures since a 3D seismic survey is expensive. In this paper, we develop a prestack inverse-
ray imaging of a 3D homogeneous layer based on inverse rays propagating along MCS profiles.
Although the target for prestack imaging of a 3D homogeneous layer is similar to Pivot’s work
(1997), this technique is more efficient for handling MCS data recorded along oblique profiles.
Furthermore, by considering the travel-time gradients of MCS data, this method can be ex-
tended for imaging 3D inhomogeneous multi-layered media.

In the following, we determine the side effect of inverse rays perpendicular to the profiles
from at least two common-shot gathers recorded along oblique profiles. Based on the ray
geometry of apparent dips along oblique profiles, a unit normal vector of a planar reflector and
the reflection points are obtained (Chang 2004). We further propose three criteria for selecting
the proper travel-time sets from all common-shot gathers. Finally, the prestack inverse rays
are applied to image the bathymetry of a forearc basin, in the southernmost Ryukyu subduc-
tion zone where MCS lines are dense, and a complex model of SEG/EAEG over-thrust.

2. THEORY

Inverse rays propagating in 3D can be determined based on the ray geometry from at least
two non-parallel profiles. By considering the least-square travel-time fitting of a common-
shot gather along a profile, Wang (2002) derived the velocity (V) of a homogeneous layer, the
apparent dip (α πi − /2) of a planar reflector, and the shortest distance (hi) between the source
( Si) and the reflector (Fig. 1). Therefore, a unit normal vector of a 3D planar reflector can be
calculated from apparent dips of the reflector based on two common-shot gathers along two
oblique profiles (Appendix A). However, the question arises as to how we can properly select
two common-shot gathers in order to calculate an accurate normal of a planar reflector. In this
paper, we present three criteria for selection of two common-shot gathers to determine the
reflector normal and the reflection points.

2.1 Criteria for Incorporating Travel-Time Sets

For determining a reflector normal, travel-time sets of two common-shot gathers along
two profiles are selected from reflected arrivals of all 2D MCS profiles. We propose the fol-
lowing criteria to ensure the selected travel-times result from the same planar reflector.

2.1.1 The Shortest Distance between the Source and the Reflector

Let the travel-time sets be selected from two common-shot gathers along oblique profiles (or
the apparent dips are zero along parallel profiles) for which the shortest distances (hi or h j) be-
tween the sources ( Si or S j) and the reflector can be determined from fitting of the travel-time
sets along profiles (Wang 2002). In particular, a reflection point (S j

*) of a ray emitting from
the source ( S j) and reflected back to the same source (Fig. 1) can be written as:
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S S h N S h N h Nj jx j x jy j y j z
* : ( , , )+ +  . (1)

If the travel-time sets are associated with the same reflector, then projection of the vec-
tor S Si j

*  onto the reflector normal should be equal to the shortest distance hi, i.e.,

h S Si i j= ⋅* N̂ . (2)

To substitute equation (1) into equation (2), we derive the first criterion

h h S Si j i j− = ⋅ N̂ , (3)

of properly incorporating the travel-time sets for which the shortest distances (hi and h j )
between the sources ( Si and S j) and the unit normal ( N̂) can be determined.

Fig. 1. Geometry of reflected rays shooting from sources (Si and S j) at the
surface (XY plane), reflecting at a planar reflector ( Si

* , Aik , S j
* , and

A jk ), and arriving at receivers ( Rik  and Rjk) along two oblique profiles
( Xi and X j). hiand h j  are the shortest distances from sources Si and S j

to the reflector, respectively. Direction angles of S Si i
*  (or S Sj j

* ) with
respect to the profile and Z axis are denoted by α i  (or α j ) and φ ,
respectively. Projection of S Si i

*  (or S Sj j
* ) onto the surface, S Si i

"  (or S Sj j
" ),

is along the dip line of the reflector.
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2.1.2 The normal Vector of the Reflector

If an apparent dip along a profile is not zero (or α πi ≠ /2 in Figs. 2a, b), then, by consid-
ering the side effect perpendicular to the profile, the reflector is a tangent plane of a circular
cone rotated about the profile and with a vertex:

B S
h

S
h

i ix
i

i
i iy

i

i
i: (

cos
cos ,

cos
sin , )* *+ +

α
θ

α
θ 0 , (4)

at the surface (Fig. 2a, b). The vectorB Si i
* and S Si j

* *  lie on the reflector and  can be written as:

B S h
h

Xi i i
i

i
i

* = −ˆ
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 and S S S S h hi j i j j i
* * ( ) ˆ= + − N , (5)

with the aid of equations (1) and (4). Therefore, the cross product of two vector B Si i
*  and S Si j

* *

should be checked to see whether it is parallel to the reflector normal (N̂).
Alternatively, if an apparent dip along a profile is zero (or α πj = /2), then the reflector is

a tangent plane of a circular cylinder rotated about the profile and with a radius of h j  (Figs. 2b, c).
In this case, the vector X̂ j  along the profile lies also at the reflector. Therefore, the cross prod-
uct of vectors X̂ j  and S Si j

* *  should be parallel to the reflector normal. Special cases of the
apparent dips about zero along two parallel profiles (Fig. A2) and along two oblique profiles
(Fig. 2c) should also be investigated. According to equations (A4) and (A7), the true dip of the
reflector for the later case is zero whereas the reflector of the former case is not necessarily
horizontal. It can be also readily shown that the criteria introduced in Section 2.1 apply for
both special cases.

2.2 Computation of Reflection Points

If a unit normal vector of a reflector ( N̂), computed from equation (A4) or (A7) by con-
sidering two common-shot gathers along two profiles satisfies the criteria introduced in Sec-
tion 2.1, we can determine the reflection points on the planar reflector. Let reflected rays be
shot from a common source ( Si), be reflected at reflection points ( Aij), and arrive at multi-
channel receivers ( Rij ). According to the ray geometry in Fig. 3, the shortest distances be-
tween the receivers and the reflector are:

H h S R h S Rij i i ij i i i ij i= + − = −sin( ) cosα
π

α
2

. (6)
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Fig. 2. Planar reflectors imaged from tangent planes of (a) two circularly coni-
cal envelopes when α α πi j, / ≠ 2, (b) a circularly conical envelope when
α πi ≠ /2 and a circularly cylindrical envelope when α πj = /2, and (c)
two circularly cylindrical envelopes when α α πi j, / = 2 along oblique
profiles Xi and X j . Bi  and Bj  are vertices of circularly conical enve-
lopes along profiles Xi and X j , respectively. Vectors S Si j

* , B Si i
* , B Sj j

* ,
X̂i

, and X̂ j  lie on the planar reflectors.
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Fig. 3. Reflection point ( Aij ) determined from a ray shooting at a source (Si)
and arriving at a receiver ( Rij ). hi and Hij  are the shortest distances,
respectively, from the source and from the receiver to the reflector.

Since ∆S S Ai i ij
*  and ∆R R Aij ij ij

*  are similar triangles, the reflection points are obtained.

A S
h

h H
R S k x y zijk ik

i

i ij
ijk ik= +

+
− =* * *( ), , ,   , (7)

where projection of the source ( Si) and the receivers ( Rij ) along the reflector normal and onto

the reflector are:

S S h N R R H N k x y zik ik i k ijk ijk ij k
* *, , , ,= + = + =    . (8)

Finally, we can also check whether the ray distance and the layer velocity are consistent
with the reflected travel-times:

T
S A R A

Vij
i ij ij ij

i

=
+

 . (9)



TAO, Vol. 16, No. 3, August 2005554

3. RESULTS

3.1 Hoping Basin

A forearc basin, Hoping Basin, is located near the Ryukyu Arc, Luzon Arc and Yaeyama
Accretionary Prism in the southernmost Ryukyu subduction zone where the plate motion and
earthquakes are active (Fig. 4). Subduction and arc-continent collision in the Ryukyu forearc
region have resulted in an old Suao Basin beneath the Hoping Basin (Lallemand et al. 1997)
and warping of the arc basement east of the Hoping Basin (Wang et al. 2004). Furthermore, on
31 March 2002, an earthquake with a magnitude of 6.8 and a focal depth of 9.6 km beneath the
Hoping Basin resulted in strong damage in Taipei at an epicentral distance of about 100 km.
Based on  migration velocity analysis and horizon picks over MCS stacked sections, four
major sedimentary layers of the Hoping Basin are imaged through 3D inverse reflected rays
(Wang 2005a). In this paper, we use reflected arrivals of the common-shot gathers along seven
MCS profiles in the Hoping Basin and apply the inverse rays to image the bathymetry of the
basin.

Reflected rays are traced on the high-resolution bathymetry of the Hoping Basin (Fig. 5a).
For inverse-ray imaging along seven MCS profiles, there are 450 shots with a shot interval of
1.25 km and a receiver interval of 0.5 km that are less dense than the real data set. According
to the smoothness and continuity of the travel-time curves resulting from the same planar
reflector, any two travel-time sets of common-shot gathers along oblique profiles are selected
for determining the reflector normal from equation (A4). Criteria of the shortest distance be-
tween the source and the reflector, the reflector normal and the ray distance introduced in
Sections 2.1 and 2.2 are considered to delete the improper selection of the travel-time sets.

Since the basin bathymetry (width, length and depth are about 67 km, 78 km and 5 km as
shown in Fig. 5) is relatively flat, the out-of-plane reflections are limited. This implies that 2D
inverse rays along MCS profiles are sufficient to image most of the bathymetry below the
profiles. However, due to the sparse spacing of 10 - 35 km, proper inverse-ray imaging cannot
be achieved when the variation of the bathymetry exceeds 300 m between neighboring pro-
files (elliptical areas in Fig. 5b).

3.2 SEG/EAEG Over-Thrust Model

In quest of oil and gas embedded in the complex faults and folds, a 3D over-thrust model
with eleven layers developed by SEG and EAEG has been intensively investigated for seismic
modeling and inversion. In this study, we only image the fourth layer of the over-thrust model
from the top (Fig. 6) since the complex faults exist in the central region of the layer. Reflected
rays on the fourth layer of SEG/EAEG over-thrust model are traced along orthogonal profiles
with profile spacing of 1 km and 4 km, respectively, in the complex and flat regions (black
dots in Fig. 7c). Along a profile, the shot interval, near offset, receiver interval and channel
number are set to 1.25 km, 0.21 km, 0.1 km and 48, respectively. A lot of reflection points in
the central region of the thrust faults are not located along profiles since out-of-plane reflec-
tions are occurred due to the complexity of SEG/EAEG over-thrust model.
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Fig. 4. Seismic lines and bathymetry (Liu et al. 1998) in the southernmost Ryukyu
subduction zone. White frame indicates the study area of the Hoping
Basin.

Fig. 5. (a) Tracing of reflected rays based on seven MCS profiles in the Hoping
Basin and (b) inverse-ray imaging of the basin bathymetry. Insufficient
inverse-rays are shown inside the elliptical areas of (b).
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Reflected interfaces of the over-thrust model (Fig. 7a) are imaged by incorporating travel-
time sets across profiles. However, due to incorrect selection of travel-time sets across profiles
in the complex structure of the over-thrust model, the depth errors of inverse-ray imaging are
greater than 0.2 km in the central fault zone (red crosses and circles in Fig. 7b). These large
errors can be readily identified and thus can be disregarded when the imaging density is less
than 200 points km 2−  (Fig. 7c) and/or the uncertainty of the imaging depth is greater than
0.2 km (Fig. 7d). Although inverse-ray imaging based on a 2D acquisition is insufficient to
determine the whole interface of the model, it provides a general trend of the interface depth
for which 3D imaging from other techniques is difficult based on the 2D data set. If the profile
spacing is a few times denser than the current spacing, the full coverage and the accurate depth
of the imaging interfaces can be expected.

4. CONCLUSION

Inverse-ray imaging of a planar reflector is presented based on reflected travel-times of
common-shot gathers along two oblique profiles. We first assume all travel-times resulting
from the same planar reflector, and then use any two travel-time sets along two profiles to
determine the reflector normal. Several criteria based on the shortest distance between the
source and the reflector, the same normal vector of the reflector, and the same ray distance are
subsequently considered to delete incorrect results.

Applications of this method to a relatively flat basin and a complex over-thrust demon-
strate the capability of inverse rays for imaging pseudo-3D reflectors between sparse profiles.
Once travel times have been recorded along at least two profiles within a Fresnel zone, this
method can resolve the structural interfaces for which 3D imaging from other techniques is
difficult based on 2D data sets. Therefore, the inverse-ray method developed in this paper can
image a pseudo-3D structure even when profile spacing (> 1 km) is far beyond the grid spac-

Fig. 6. The fourth layer of the SEG/EAEG over-thrust model.
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Fig. 7. (a) Average depth, (b) average depth error, (c) imaging density, and (d)
depth uncertainty of the fourth layer of the SEG/EAEG over-thrust model
imaged by inverse reflected rays. Grid interval of color images in (a)-(d)
is 0.1 km. Red crosses and circles in (b) denote the imaging points with a
depth more than 0.2 km shallower and deeper than the true depth,
respectively. Black dots in (c) are reflection points of inverse rays.
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ing required in the classical approaches such as migration and tomography.
Although the prestack inverse rays presented in this paper are less practical due to their

limitations in determining of a homogeneous layer, they will be extended to image 3D inho-
mogeneous multi-layered media. For example, sedimentary and crustal structures can be in-
vestigated based on common-shot gathers from MCS acquisition and the common-receiver
gathers from ocean-bottom seismometers (OBS) survey. The existing MCS/OBS profiles off
eastern Taiwan provide good data sets for imaging seismogenic structures and for evaluating
earthquake hazard in the southernmost Ryukyu subduction zone.
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APPENDIX A. Unit Normal Vector of a Reflector

Let the shooting direction of a MCS profile be set as Xi axis and the shortest distance
between a source ( Si) and a planar reflector is hi (Fig. 1). Then a vector ( S Si i

* ) along the
shortest distance ( hi) is parallel to the unit normal vector ( N̂) of the reflector, for which:

ˆ sin cos ˆ sin sin ˆ cos ˆN = + +φ θ φ θ φ   X Y Z

    = + +sin cos ˆ sin sin ˆ cos ˆφ θ φ θ φi i i i iX Y Z   , (A1)

where φ  is the true dip, θ  and θi  is angles of the dip line ( S Si i"  in Fig. A1) of the reflector with
respect to the X and Xi axes, respectively. However, neither the true dip nor the dip line in
equation (A1) is known except that the direction cosine of N̂  with respect to the Xi axis
(Levin 1971)

cos sin cosα φ θi i= , (A2)

can be determined from the least-square travel-time fitting of a common-shot gather along a
profile (Wang 2002).

Two direction cosines ( cosα1 and cosα2) along two profiles ( X1 and X2  axes) can be
used for determining the true dip and the dip line of the reflector in the following. Since the
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angles of the dip line (θ  and θi) with respect to the X and Xi axes are related to each other by
considering the profile azimuth (θi

*) as shown in Fig. A1, we observe that:

θ θ θi i= − *
, i = 1, 2. (A3)

To substitute the equation (A3) into equation (A2), we obtain

sin cos

sin sin sin( )

sin sin

cos cos* *

* *

* *

φ θ

φ θ θ θ

θ θ

θ θ












=

−

−

−













1

2 1

2 1

2 1

 
cos

cos

α

α
1

2












. (A4)

The denominator in equation (A4) should not be zero except when α α π1 2 2= = / .
Therefore, two profiles used for determining the reflector normal should not be parallel to
each other. Equations (A1) and (A4) also indicate that X and Y components of the unit normal
vector of the reflector can be determined from equation (A4) whereas the Z component of N̂
can be calculated from N N Nz x y= − −1 2 2 .

The only exception of using parallel profiles [sin( )* *θ θ2 1 0− = ] is when their apparent dips
are zero (α πi = /2) so that equation (A4) is no longer applicable. For determining the unit
normal vector of a reflector in this special case (Fig. A2), a unit vector perpendicular to the
profiles is set:

ˆ sin ˆ cos ˆ* *X e ei x i y⊥ = −θ θ , (A5)

which is along the direction of the dip line of the reflector. By considering the right triangle
∆S EFi  as shown in Fig. A2, the true dip (φ ) of the reflector can be determined from:

sin
ˆ

φ =
−

⋅ ⊥

h h

S S X

i j

i j
. (A6)

Therefore, when the apparent dips along two parallel profiles are zero, the unit normal
vector of the reflector is:

ˆ sin ˆ cos ˆN = +⊥φ φ  X ez . (A7)
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Fig. A2. A planar reflector imaged from a tangent plane of two circularly cylin-
drical envelopes when α α πi j, / = 2 along two parallel profiles. X̂⊥

 is a
unit vector perpendicular to the profiles.

Fig. A1. Two oblique profiles ( Xi and X j) and the dip line of a planar reflector
projected onto the surface. Azimuths of the profile Xi (or X j) and the
dip line are denoted by θi

*  (or θ j
*) and θ , respectively. θi  (or θ j

) is the
angle between the dip line and the profile Xi (or X j).


