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1. IntroductIon

The nature of the spatial-temporal phenomenon of 
earthquake occurrences is a complicated one. It is easier as 
well as more important for seismologists to understand the 
correlation among earthquakes over a long period of time 
than to just study an individual isolated earthquake. Despite 
the complexity of the phenomenon, clues arising from stud-
ies must be examined in detail to better understand earth-
quake occurrence. Firstly, the relationship between time 
and earthquakes according to Omori’s Law (Omori 1895) is 
such that the frequency of aftershocks decreases with time 
after a main shock, thereby precisely indicating the exis-
tence of a power law. Similarly, when we look at the rela-
tionship between earthquake occurrences from the point of 
view of time and space, the appearance of a power law can 
be deduced from the Gutenberg-Richter law (Gutenberg and 
Richter 1944). Accordingly, the frequency of earthquake 

occurrence changes with the magnitude threshold of the 
earthquakes occurring in a certain area. These two power-
law relationships between the waiting time and magnitude 
of earthquakes can be considered as a form of scale invari-
ance in time and energy. This scale invariance is also shown 
in the spatial distribution of earthquakes. Hence, several 
seismologists (Okubo et al. 1987; Kagan and Jackson 1994; 
Marsan et al. 2000) consider spatial distributions of the epi-
centers of earthquakes to be fractal, though at times earth-
quakes may show significant deviation from this pattern.

Although earthquakes display complex spatial-tem-
poral behavior, statistical evidence shows that several self-
similarity properties can be found. Bak et al. (2002) and 
Christensen et al. (2002) pioneered an innovative model, 
called the BCDS model, to interpret the spatiotemporal dis-
tribution of earthquakes by merging: (1) Omori’s Law, (2) 
the Gutenberg-Richter law, and (3) the geometrical fractal 
distribution of epicenters; thereby creating a unified scaling 
law. In brief, only a critical phenomenon exhibits a power 
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law; that is, the hypothesis notes that earthquake occurrenc-
es can be considered self-organized critical (SOC) (Bak et 
al. 1988) phenomena. 

The ingenious result of Bak et al. (2002) has raised oth-
er discussions and further research (Corral 2004a, b; Corral 
2005; Lindman et al. 2005). Some scientists redefined the 
procedure of BCDS to investigate earthquakes in their own 
areas. In this way, we too introduce this theory to analyze 
and better understand earthquakes in Taiwan in the hope of 
getting closer to verifying the following issues: (1) how in-
trinsic characteristic seismicity in Taiwan is regulated by 
this scaling law; (2) how feasible is it to use this model in 
studying main and after shocks separately; and (3) this scal-
ing law appropriate applied to Taiwan’s complicated geo-
logical and tectonic structure. 

2. thEory

A two point spatial and temporal analysis was adopted 
to analyze seismicity. This analysis was carried out by split-
ting the study region into cells of size L × L, and by calculat-
ing the waiting time probability, PM, L(T), if an earthquake 
occurs in a given cell at T0, while the next earthquake occurs 
at a time T + T0. 

Following Cristensen et al. (2002), we set Tcorr as the 
value of an alternative time of the scaling law by:

T TL Scorr
df b= -          (1)

where T is the waiting time; L is the cell size in degree of 
the grid; S is the value of S ~ log10M, meaning the size of the 
rupture area (Utsu 1970); df is the correlation dimension; 
and b is the b-value of the Gutenberg-Richter law.

According to the BCDS model (Christensen et al. 
2002), a relationship of a waiting time T, a waiting time 
probability PM, L, and a new variable, Pcorr, is created:

( ) ( )P T T P T,corr corr M L corr= a         (2)

The following discussions use earthquake data from Taiwan 
to investigate the relationship between PM, L(T) and T, and 
Pcorr and Tcorr of Eq. (2) for various situations.

The following parameters for seismicity were obtained 
before using the BCDS model [Eqs. (1) and (2)]. The expo-
nent of Omori’s law, α; the critical exponent characteristic 
of earthquakes of the Gutenberg-Richter law, b; and the dis-
tribution of fractal dimensions of epicenters, df. The param-
eters α and b of each cell were re-calculated and derived by 
Z-map (Wiemer 2001) and b-value contour lines of Taiwan 
(Wang 1988) respectively, 1.0 and 0.95 were adopted for 
the average α and b.

3. dAtA

Earthquakes with a magnitude greater than 2 were se-
lected from the catalogue of the Central Weather Bureau 
of Taiwan, which had records for earthquakes in the region 
21.5° - 25.5°N and 119.5° - 122.5°E from 1973 to 2002. The 
analysis was conducted for varying cell sizes, L (degree), 
and varying cutoff magnitudes, Mc, using only earthquakes 
with magnitude greater than Mc. Earthquake distribution at 
different depths (0 ~ 30 km) along this latitude is depicted 
in Fig. 1.

A correlation dimension, df, proposed by Grassberger 
and Procaccia (1983) was calculated for all of Taiwan using 
earthquakes with focal depth less than 30 km and is shown 
in Fig. 2. In general, the higher value of df is located in east-
ern Taiwan, where most earthquakes occur, and the lower 
value of df corresponds to the northwestern parts because 
it is a region of less earthquake occurrence. An averaged 
value of df = 1.37 is used here.

4. rESuLtS

Figures. 3a, b, and c show the relationship between  
PM, L(T) and waiting time, T, for cut-off magnitude, Mc = 
2, 3, and 4, respectively. Different marks in those figures 
represent different cell sizes. The measure of PM, L(T) is es-
timated by counting the number of earthquakes at each cell 
for each waiting time and then dividing by the total number 
of earthquakes. These charts all show two power-law re-
gimes with different scaling exponents, one from T = ~40 
to 105 seconds and the other with T > 105 seconds. It should 
be noted that, given a fixed cell size L, the later range of the 
power- law regime increases as the cut-off magnitude Mc in-
creases, which is clearly shown in Figs. 3a to c for different 
Mc. On the other hand, this regime did not vary significantly 
with cell size. 

The behavior of these sets of power-law regime charts 
reflects the concept of the BCDS model. Next, we analyze 
the relationship of Pcorr and Tcorr from Eq. (2) with Mc F  2 
for varying cell sizes, as illustrated in Fig. 4. The results 
show that Pcorr is almost constant (the slope is flat) when 
Tcorr < 1 (marked by a black vector roughly), but it decreases 
dramatically with increasing Tcorr when Tcorr > 1. According 
to Bak et al. (2002), the conclusion can be drawn that the 
aftershocks generated after a main shock contribute to the 
constant part of the scaling relationship, and the fast decay 
parts are the result of uncorrelated earthquakes. The con-
stant probability density function for a short waiting time 
can be described by a single power law with exponent zero. 
It has been rigorously proved by Jonsdottir et al. (2006) with 
Omori’s law. To verify the above conclusion, the data are 
declustered to remove aftershocks using Z-map (Wiemer 
2001) where the declustering procedure is based on Omori’s 
law at a confidence level of 0.95 for observing the next 
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event in the sequence with a 10-day maximum look-ahead 
time (Reasenberg 1985) for clustered events. Figure 5 is the 
result of removing the aftershocks with the same analysis 

as in Fig. 4. Comparing Figs. 5 and 4, it is found that the 
flat part no longer exists (the slope has changed), but the 
part showing fast decay remains at the same slope rate as in  
Fig. 5. It is worth noting that Pcorr is directly proportion to 
Tcorr when Tcorr < 1 (Fig. 4). This change seems to suggest 
that the factor representing the effect of the aftershock oc-
curring, T-α (α = 0.95), as shown in Eq. (2) has diminished. 
This phenomenon was originally observed by Bak et al. 
(2002); however, it seems to indicate that although the af-
tershocks are closely related to their main shocks, they are 
fundamentally different types of phenomena owing to their 

Fig. 1. The distribution of earthquakes at different depths along profile 
AB. Earthquakes with focal depth less than 30 km are used to estimate 
the fractal dimensions. 

Fig. 2. The distribution of the fractal dimensions of the epicenters of 
Taiwan. The bold lines separate Taiwan into four areas based on geo-
logical boundaries (Wang 1988; Wang and Lee 1996). 

Fig. 3. The log-log plots between PM, L(T) versus T (waiting time) of 
different cell sizes for cut-off magnitudes: (a) Mc = 2.0, (b) Mc = 3.0, 
and (c) Mc = 4.0.

(a)

(b)

(c)
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different mechanisms. To further investigate earthquake dis-
tribution, a homogeneous Poisson sequence of earthquakes 
of cell size 0.5̊ at the same time interval (1973 ~ 2002) is 
generated with the same total number of declustered earth-
quakes. The analysis shows that a Poisson distribution (star 
marks) fits declustered earthquake sequences well when  
Tcorr > 1. The fitness is not perfect when Tcorr < 1, which could 
have been caused by defective declustering; however, they 
tend to have the same trend. This comparison suggests that 
the uncorrelated (possibly main shock) sequences are more 
likely to distribute according to a Poisson distribution.

To verify whether or not the geological complexity 
of Taiwan influences the scaling relationship of the BCDS 
model, an analysis is conducted using earthquakes in differ-
ent geological regions of Taiwan. Four geological regions 
in Taiwan marked as A, B, C, and D as shown in Fig. 2. 
This division is not arbitrary; rather it is based on geological 
boundaries (Wang 1988; Wang and Lee 1996). The number 
of earthquakes in each region is: 45646 in A; 50164 in B; 
21015 in C, and 27327 in D. 

Similar analyses with L = 0.5̊, Mc = 2 without remov-
ing aftershocks are conducted for these four sub-regions 
with the corresponding parameters (α, b, df) for each region. 
The results are shown in Fig. 6 (including those for all of 
Taiwan). By closely examining Fig. 6, it is found that the 
lines representing the sub-regions A (Northeast), B (South-
east), and D (Southwest) are very close to the line represent-
ing the entire area of Taiwan (black solid squares), but for 
the less earthquake prone region, the sub-region C (North-
west), the curve trends slightly away. The time shift of the 
kink (marked by a white vector in Fig. 6) for the sub-region 
C might be caused by there being less earthquakes (longer 
waiting time) where the fractal dimension (1.31) is low. 
And according to Corral and Christensen (2006), it might be 
caused by a low seismic rate of the sub-region C. Although 
there are differences between the four sub-regions, they all 
show a similar pattern in the scaling relationship. 

5. dIScuSSIon

The BCDS model uses a unified scaling law to deter-
mine the occurrence of earthquakes from a spatial-temporal 
perspective. Following the basic principles of this model, 
we conducted some experiments in order to further prove 
that this model is truly feasible. As a result, the scaling law 
reveals two different slopes (Fig. 4), which are widely ob-
served in real and synthetic data (Jonsdottir et al. 2006). 
When we compare declustering (Fig. 5) with clustering ex-
periments for earthquakes in Taiwan (Fig. 4), it is evident 
that the constant part (Tcorr < 1), which represents the effects 
of aftershocks, is significantly different; however, for the 
fast decaying part (Tcorr > 1), probably representing the effect 
of main shocks, the same slope remains. Comparison with 
synthetic data has shown that the declustered data (Fig. 5)  

Fig 4. The log-log plots between Pcorr versus Tcorr based on the BCDS 
model using earthquakes in Taiwan with a cut-off magnitude Mc = 2.0 
for three values of L, 0.5°, 0.8°, and 1.0°. The black vector marks the 
location of the kink at Tcorr ~ 1.

Fig. 5. The log-log plots between Pcorr (removing aftershocks) versus 
Tcorr based on the BCDS model with a cut-off magnitude Mc = 2.0 for 
three values of L. The star marks, representing the synthetic Poisson 
sequence, are plotted for comparison. The black vector marks the loca-
tion of the kink at Tcorr ~ 1.

Fig. 6. The log-log plots between Pcorr versus Tcorr based on the BCDS 
model with cell size L = 0.5°, and cut-off magnitude Mc = 2. The black 
vector marks the location of the kink for sub-regions A, B, and D, 
while the white vector is for sub-region C. 
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follows a Poisson distribution, though procedural issues 
leading to imperfect declustering may result in some devia-
tion in fit. Do uncorrected earthquakes really follow Pois-
son distributions? Random sequences could any of several 
distributions; such as: Poisson, Gamma, Weibull, and Beta 
distributions etc. However, our results seem to indicate a 
tendency toward the Poisson distribution. In addition, in or-
der to investigate the debate between Lindman et al. (2005) 
and Corral (2006) about whether or not the distinction of 
correlated earthquakes (aftershocks) and uncorrelated earth-
quakes (main shocks) causes a kink at Tcorr = 1 in the scaling 
law, we utilized real earthquake data rather than synthetic 
earthquake data created by simple mathematic modeling, 
making the exercise both more meaningful and practical.

Expanding the nature of the BCDS model, we prove 
the existence and validity of a unified scaling law by com-
paring results between four sub-regions of Taiwan; those 
being so designated: the Northeast (A), the Northwest (C), 
Southwest (D), and the Southeast (B). The outcome for sub-
region, C (the Northwest), is slightly different to that of the 
remaining regions. These results show that the BCDS model 
is more sensitive to the number of earthquakes and spatial-
temporal parameters (α, b, df, seismic rate). In summary, the 
best way to understand and further interpret self-organized 
criticality is to choose correct variables and parameters 
which will allow for complicated occurrences in earthquake 
spatial-temporal data to collapse into a unified scaling law. 
Data collapse, a concept widely used in thermal physics by 
finding a proper parameter [Eqs. (1) and (2)] to change a 
distribution pattern, clearly verifies the unified scaling law 
of the BCDS model, and further proves the authenticity of 
this model that was once assumed to be oversimplified. 
However, these findings all lead to a bigger challenge; and 
that is understanding the physics behind the model.

6. concLuSIonS

Two results were achieved in this paper: (1) Regardless 
of the size of the cells and the cut-off magnitude, a distinct 
and unified scaling law is always obtained from the spatial-
temporal occurrence of earthquakes in Taiwan. This result 
once again proves the two key elements of SOC supported 
by Bak (1988). First, the spatial distribution of events is frac-
tal; second, the size of the avalanche occurs in a power-law 
relationship. (2) The experiment of comparing declustered 
and clustered experiments further verifies that earthquakes 
give two distinct patterns in the BCDS model. A Poisson 
distribution tends to be a better description for fast decay 
part result of earthquake sequences. In addition, under real 
world conditions in a complicated geological region, the 
existence of a unified scaling law was proven through com-
parison between four sub-regions of Taiwan. Under appro-
priate statistical conditions, it was shown that the scaling 
law representing each region has the same trend. 

The findings of this study further increase the reliabil-
ity and accuracy of the BCDS model. In addition, insights 
garnered from the use of this model in this paper provide 
advanced understanding of the spatial-temporal occurrence 
of earthquakes.
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