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ABSTRACT

A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in

ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake.

However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane

but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those

out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can

resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and

can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson’s

ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three

degrees of freedom, strike, dip, and slip.
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1. INTRODUCTION

The shear slip model has played an important role in

earthquake source studies because historical earthquakes

present on-fault offsets of rock breaking. The final slip in the

fault plane has always been assumed to be the result of a

seismic source without nets of force, torque, and volume

change. The radiations of P and S waves for shear slip faults

are concluded with remarkably straight-forward formulas

(Aki and Richards 1980; Herrmann 1989; Pujol and

Herrmann 1990). In addition to shear faulting, a possible

expansive and/or compressive process in a direction nor-

mal to the fault plane during rupture has been reported and

proposed. The historical record of an M7 earthquake at

Chia-Yi, Taiwan, in 1792 tells of a ravine trail cracking and

suddenly opening. At which point a woodsman fell into it,

then the earth quickly shut again (Xie and Cai 1987). Haskell

(1964) found that P : S amplitude ratios at high frequencies

are usually larger than those expected for shear faulting, and

suggested that this indicates fault normal motion caused by

fault roughness. Miller et al. (1998) concluded that shallow

earthquakes unlike their planar idealizations have real fault

surfaces which are rough, so that shear slip must involve

some motion normal to fault segments. Scholz (1990) as-

sumed that volume dilatancy occurs within a fault zone as

slip occurs during nucleation prior to a macroscopic shear

crack. The fault zone dilatancy mechanism may be either

joint dilatancy, in which the fault walls must move apart to

accommodate slip, or dilatancy due to shear of granular

materials, such as gouge or breccia, within a fault zone. If

these expansive cracks twist into a compressive shear fault-

ing, the fault zone will finally undergo a closing of voids or

volume compaction. Julian et al. (1998) pointed out that

compressive stress tends to prevent voids from forming at

depth in the Earth, but high fluid pressure in volcanic and

geothermal areas can overcome this effect and allow open-

ing tensile failure to occur.

In seismological studies, the displacement field outside

the earthquake source region is simulated by that produced

in an unfaulted medium over the fault surface by a distribu-

tion of pairs of force couples. The force system is repre-

sented by a moment tensor (Gilbert 1970), which is divided

into isotropic and deviatoric parts. It is common in seismo-

logical research to decompose the deviatoric part further into

a linear combination of a double couple (DC) and a compen-

sated linear vector dipole (CLVD) (Knopoff and Randall

1970; Julian et al. 1998). The method used in the Harvard
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centroid moment tensor gives the largest possible DC that

has a CLVD remainder (Dziewonski et al. 1987). Well con-

strained non-DC earthquakes have been observed in many

environments, including volcanic and geothermal areas,

mines, and deep subduction zones (Frohlich 1994; Miller et

al. 1998; Templeton and Dreger 2006). Since the decompo-

sition of the deviatoric moment tensor is nonunique (Jost

and Herrmann 1989; Frohlich 1994), then decomposition for

the definition of deviatoric moment is more troublesome. On

the other hand, the isotropic part definitely explains the vol-

ume change of seismic source (Müller 2001). An ML 6.8

Hualien, Taiwan, earthquake occurred at a depth of 15 km

on 14 November 1986. Zheng et al. (1995) inverted P and

SH waveforms and yielded a moment tensor equivalent to a

reverse slip DC combined with an implosion. An M 4.6

earthquake on 10 February 1987 beneath the Kanto district,

Japan, had dilatational P wave polarities over most of the

focal sphere (Hurukawa and Imoto 1993). The polarities

are consistent with conic nodal surfaces with an apex angle

of about 78�, implying an implosive isotropic component.

Dreger et al. (2000) found that dilatational processes ac-

companied four earthquakes within a few days and a few

kilometers of one another in 1997 in the Long Valley Cal-

dera with isotropic moments of 27 - 42� of the deviatoric

moments. Panza and Sarao (2000) suggested the isotropic

components of moment tensors can be found in volcanic

and geothermal areas.

A symmetric moment tensor for an earthquake involv-

ing isotropic and deviatoric parts can be a combination of

opening and/or closing and shear faulting. The opening fa-

cilitates slippage and decreases the amount of heat generated

(Anooshehpoor and Brune 1992, 1994). It might resolve

some paradoxes about faulting, such as how faults can slip

under extremely low driving shear stresses (Zoback et al.

1987) and why friction does not produce large heat flow

anomalies near major faults (Lachenbruch and Sass 1980).

The opening is transient, with the fault surface closed both

before and after an earthquake. This phenomenon will not

contribute to moment tensors of temporal order zero, only

explicitly time-dependent or higher-order temporal mo-

ments can represent transient opening (Julian et al. 1998).

He et al. (2003) have extended this idea to include opening

tensile point sources from a point pure shear dislocation

source to examine surface static displacements.

Faults with shear slip as well as expansion and/or com-

pression will be called tensile faults in this article. An arbi-

trary jump of displacement on a tensile fault segment can be

equivalent to a distribution of linear dipoles and double cou-

ples having moments at the source (Burridge and Knopoff

1964; Aki and Richards 1980; Ben-Menahem and Singh

1981; Kennett 1983; Kostrov and Das 1988). In this study,

we will express and discuss the moment tensor, P and S wave

motions, and their radiation patterns in the case of tensile

faults. The pressure and tension axes, the tensile angle, and

the fault plane solution are also analyzed from its moment

tensor.

2. MOMENT TENSOR

Dislocation theory for an earthquake source assumes

that a jump in the displacement vector across an internal sur-

face � occurs inside the Earth. The displacement vector can

be tangential to the fault surface or normal to it. We define

the displacement vector �u as the movement of the hanging

wall surface �+ relative to the footwall surface �� and the

unit normal vector �n of the fault is directed from �� to �+.

Ground motions resulting from such a dislocation on a li-

mited fault segment can be simulated from a set of nine

couples in an unfaulted medium with forces and arms in any

of three mutually perpendicular directions. As it stands, a

tensile fault can correspond to many representations of nine

couples, so the choice of nine couples is not unique. Ground

motions radiated from any set of nine couples corresponding

to the same dislocation will be equal. The moments Mlm (t) of

nine couples with forces and arms in l and m directions for a

tensile fault segment normal to �n with a displacement vector

function �u(t) of time t in an isotropic medium are given by:

(1)

(Aki and Richards 1980). The summation convention over

repeated indices is used. A is the area of the fault segment. �

and � are the Lamé constants of the medium, where � is

shear modulus. �lm is the Kronecker delta, which is equal to

1 if l = m and 0 otherwise. For an example, Ml1 represents

the force couple with arm in the 1-direction. Projecting the

forces of the couple in the 1-direction, we get a linear di-

pole having a moment of M11. Two force projections in the

2- and 3-directions are two shear couples having moments

of M21 and M31. Nine elements of Mlm constitute a moment

tensor M for a tensile fault segment. The moment tensor M

is a symmetric matrix. The diagonal elements of M are mo-

ments of the linear dipoles along three mutually perpen-

dicular directions, which we choose. Each of the linear di-

poles has zero net force and zero net torque. The off-diago-

nal elements Mlm and Mml, l � m, are equal and express the

moments of a double couple, which also produce zero net

force and zero net torque.

Let the displacement vector function �u(t) of a tensile

fault segment be decomposed into a shear component tan-

gent to the fault and a tensile component normal to it

(Kostrov and Das 1988):

(2)

where �u(n)(t) and �u(f)(t) are the tensile function and the
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shear function of a fault segment; and �f is the unit slip vec-

tor in the fault plane. Then the moment tensor function

formed by a linear combination of �u(n)(t) and �u(f)(t) for a

tensile fault element is:

(3)

�u(n)(t) is positive when the fault segment expands and

negative when it compresses. The first term in the bracket

on the right hand side of Eq. (3) comes from a tensile mo-

tion, expansion and compression. The second term, which

is a double couple source, results from shear faulting. If

there is no net tensile motion at the end of faulting, the final

moment tensor of the fault segment will be:

(4)

where M0 defined as �Aud is the seismic moment of the

fault segment, ud is the final shear slip in the fault plane.

The seismic moment M0 is a static source parameter for

shear faulting.

Let us consider the moment tensor in three mutually per-

pendicular directions, the first is along the slip vector �f , the

second along the fault normal vector �n, and the third along
� �f n� . In case of shear faulting, �u(n)(t) = 0, only the elements

M12(t) and M21(t) will be nonzero. The moment tensor func-

tion of a shear component is:

(5)

The shear faulting is equivalent to a double couple, having

a moment function of �A�u(f)(t), in the plane containing �f

and �n. In case of tensile motion, �u(f)(t) = 0, the non-diago-

nal elements of tensor vanish. The moment tensor function

of a tensile component can be expressed by:

(6)

The tensile motion is equivalent to a combination of an iso-

tropic source having a moment function of �A�u(n)(t) and a

linear dipole having a moment function of 2�A�u(n)(t)

along �n. It is clear that the moment tensor of a tensile mo-

tion includes a function of volume change. The trace of

moment tensor gives the volume change A�u(n)(t), which

is tr[M(t)] / (3� + 2�) (Müller 2001).

For a tensile fault segment we define fault parameters as

shown in Fig. 1. The strike �s of a fault is the angle measured

clockwise from north such that the fault plane dips down to

the right when looking in the direction of strike. The dip � is

the angle of the fault plane measured from the horizontal in a

downward direction. The slip �s is the angle of motion of the

hanging wall relative to the footwall measured in the fault

plane from the direction of strike in a counterclockwise

sense. In Cartesian coordinates of north (x1), east (x2), and

down (x3), the unit slip vector �f and the unit fault normal �n

expressed by fault parameters (�s, �, �s) are:

(7)

(8)

(Aki and Richards 1980), where �x
1
, �x

2
, and �x

3
are unit vec-

tors towards north, east, and down. Expressed by fault pa-

rameters, the moment tensor function M(t) of Eq. (3) for a

tensile fault segment in terms of the three directions of

north, east, and down is:

(9)

For a limited fault segment, strike �s, dip �, and slip �s

can be assumed to be constants. The tensile function

�u(n)(t) and the shear function �u(f)(t) are two compo-

nents of the displacement vector function �u(t) of dislo-

cation for a tensile fault segment. The Lamé constants, �

and �, are two medium parameters near the fault seg-

ment. The ratio of � to � in Eq. (9) can be expressed by

Poisson’s ratio � as:
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(10)

In case of �u(n)(t) = 0, Eq. (9) will be the same as Eq. (18) of

Jost and Herrmann (1989), who assumed only the shear slip

in the fault plane.

3. P AND S WAVES IN HOMOGENEOUS MEDIA

The energy is released partially as elastic waves out of a

tensile fault segment when a jump of displacement occurs.

The strengths of elastic waves radiating in a direction de-

pend on the source couple with arm in the radiate direction.

The forces of the couple may be oblique to its arm. Let the

forces of the couple be decomposed into two components,

the longitudinal component is a linear dipole with forces

along the radiate direction and the transverse component is a

shear couple with forces in the plane normal to the radiate di-

rection. Such a linear dipole will contribute P waves carry-

ing the same strength and traveling in two opposite direc-

tions with a velocity of �, whereas the shear couple con-

tributes S waves with a velocity of �. The displacements of

P and S waves are proportional to the time derivatives of

moment functions (Aki and Richards 1980; Pujol and

Herrmann 1990) of the linear dipole and the shear couple,

both are with arm in the radiate direction at the source.

Applying the tensor transformation, we know the source

couple with arm in a radiate direction �r is Mr�, where M is the

moment tensor function of the tensile fault segment and �r is

a unit column vector. The P displacement, obtained by pro-

jecting Mr� in �r at the source, in a homogeneous medium is:

(11)

where � is density, r is radial distance, the super index T in-

dicates a matrix transpose, the dot over M indicates deriva-

tive with respect to time. The S displacement, obtained by

subtracting the longitudinal component ( � � �r Mr r
T ) from Mr�

at the source, in a homogeneous medium is given by:

(12)

The u
s is orthogonal to �r. Decomposing u

s into SV and SH

displacements is easily achieved by introducing three or-

thogonal unit vectors, �r, , and � in spherical coordinates (r,

�, �) along a seismic ray radiated from the source shown in

Fig. 1. � is the incident angle measured from the downward

vertical. � is the azimuthal angle of the ray. � and � are both

transverse directions. The SV and SH displacements, ob-

tained by projecting Mr� in � and � at the source, in a homo-

geneous medium are given by:

(13)

(14)

where �r, �, and � are three unit column vectors. In Carte-

sian coordinates of north, east, and down

(15)

(16)

(17)

u
P, u

S, u
SV, and u

SH are the same as those expressions de-

rived by Pujol and Herrmann (1990) for a generous body

force representing a seismic source as a linear combination

of couples. These are also presented for an arbitrary orien-

tation of a double couple (Aki and Richards 1980). The ele-

ments of �M(t) are the time derivatives of Mlm(t) in Eq. (9),

where the tensile function �u(n)(t) and the shear function

�u(f)(t) have taken account of time derivatives.

4. RADIATION PATTERNS

To investigate radiation patterns of P and S waves for a

tensile fault segment dislocated in a direction, the displace-

ment vector function is written as:
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Fig. 1. Definition of a tensile fault segment and a seismic ray out of it in

Cartesian coordinates of north (N), east (E), and down (D). The fault

segment is defined by strike �s and dip �. An arbitrary displacement

vector of the movement of the hanging wall relative to the footwall is

�u. �f is the unit slip vector in the fault plane. �n is the unit fault normal.

�s is the slip angle of �f measured from the direction of strike. 	 is the

tensile angle measured from �f toward �n. �r is the unit radial vector of the

seismic ray. r is radial distance. � and � are the incident angle and the

azimuth of the ray.



(18)

where �u(t) is the magnitude of dislocation and 	 shown in

Fig. 1 is the tensile angle measured from the slip vector �f in

the positive sense as toward the fault normal �n. 	 is positive

if the fault segment expands, negative if it compresses. The

P, SV, and SH displacements for a tensile fault segment dis-

located in a direction are written as:

(19)

(20)

(21)

where the symmetric S is called the source dislocation ten-

sor for a tensile fault segment dislocated in a direction. The

elements of S in terms of the three directions of north, east,

and down are:

(22)

The source dislocation tensor for a tensile fault segment

has five degrees of freedom of strike �s, dip �, slip �s,

tensile angle 	, and Poisson’s ratio �. Radiation pat-

terns, which depend on the radiate direction �r (�, �), of

P and S waves for a tensile fault segment (�s, �, �s, 	, �)

are:

(23)

(24)

For an expansive fault segment shown in Fig. 2 with

strike 0�, dip 90�, slip 0�, and Poisson’s ratio 0.25, the ra-

diation patterns of the P wave for tensile angles 	 of (a) 0�,

(b) 10�, (c) 20�, and (d) 30� are shown in Fig. 3. The T and P

axes indicate the directions in which the maximum compres-

sion and dilatation waves are radiated. They are located on

the plane containing the slip vector �f and the fault normal �n.

The T axis will move toward �n and the P axis is away from �n

as the tensile angle increases. Both T and P rotate about the

axis of � �f n� at the source through a half tensile angle, � / 2,

in the direction as a right-handed screw from those in the

case of the shear faulting if Poisson’s ratio is 0.25. Ampli-

tudes in the directions of T, P, and their vertical have 1, -1,

and 0 for the shear faulting in Fig. 3a to become 2, 0, and 0.5

for a tensile angle of 30� in Fig. 3d, where positive is for

compression and negative for dilatation. The radiation pat-

tern of the P wave rotates about � �f n� at the source through

an angle of 	 / 2 for tensile faults. In the meanwhile, the

amplitudes of the P wave radiated on the plane normal to
� �f n� superimpose an amount of 2sin 	. However, the am-

plitude in the direction of � �f n� superimposes only an

amount of sin�. Therefore, two nodal surfaces which se-

parate the regions of compression and dilatation waves are
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0�, and a tensile angle of 	. �u is the displacement vector. �f is the unit

slip vector. �n is the unit fault normal.



no longer flat planes if the fault segment dislocates with a

nonzero tensile angle. As a result, the compression region

expands about the T axis, whereas the dilatation regions

shrink toward the P axis for expansive faults. The span angle

of each of the nodal surfaces is cos�1 (2sin � � �) in the plane

normal to � �f n� . Figures 3b and c indicate that the nodal sur-

faces represented by solid lines are two cone-like surfaces,

which are symmetric about the P axis, one is open to north-

west and another is to southeast. The two cone-like surfaces

shrink to the P axis and dilatation waves radiate nowhere as

the tensile angle goes up to 30� in Fig. 3d. In case of nega-

tive tensile angles, compressive faults, the P axis will move

toward �n as the T axis is away from �n. Two cone-like nodal

surfaces will shrink toward the T axis when the dilatation re-

gion expands about the P axis. The radiation patterns of the S

wave for different positive tensile angles are shown in Fig. 4.

The T and P are nodal axes, which will rotate about the axis

of � �f n� at the source as the tensile angle increases, whereas

the other nodal axis of � �f n� remains unchanged. The parti-

cle motions of the S wave are generally away from the P axis

and toward the T axis. The radiation pattern of the S wave on

the plane containing the two nodal axes of T and P is in-

variant with tensile angle, but rotates about � �f n� at the

source through an angle of 	 / 2 in the sense of a right-handed

screw. The amplitudes of the S wave radiated on the plane

containing the two nodal axes of T and � �f n� will scale a fac-

tor of 1 + sin	 for tensile faults, whereas a factor of 1 � sin	

on the plane containing the two nodal axes of P and � �f n� .

Therefore, more expansive faults will present stronger S

waves around the T axis, and weaker S waves around the P

axis. On the other hand, more compressive faults have stron-

ger S waves around the P axis, and weaker S waves around

the T axis.

5. FOCAL MECHANISM

To analyze the focal mechanism for a tensile fault seg-

ment(�s, �, �s, 	, �) dislocated in a direction, e.g., the dislo-
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Fig. 3. Radiation patterns of the P wave for an expansive fault segment in Fig. 2 with tensile angles of: (a) 0�, (b) 10�, (c) 20�, and (d) 30�. A lower fo-

cal hemisphere of the equal area projection is used. The primary and auxiliary fault planes are shown as dotted lines. The polarity and amplitudes are

indicated by the scaled plus and minus signs. The nodal lines which indicate zero amplitude are plotted by sold lines. T and P are the tension and pres-

sure axes.

(a) (b)

(c) (d)



cation for a focus at the origin time, we assume the displace-

ment vector function �u(t) of a step function: �uU(t � t0). �u

is the magnitude of dislocation. The unit step function U(t �

t0) is equal to 1 when t � t0 and 0 otherwise. This means that

dislocation occurs for an instant in time at t0. Then, the dis-

placements of u
P and u

S at a radial distance r will be propor-

tional to two Dirac delta functions: � (t � t0 � r / �) and � (t �

t0 � r / �). The moment tensor of such a tensile fault segment

is: �A�uS, where S is the source dislocation tensor. A scalar

of �A�u can be ignored when we investigate the focal me-

chanism. The S is then thought of the moment tensor in

which �A�u is equal to 1.

The source dislocation tensor S of a tensile fault seg-

ment is real and symmetric, giving three eigenvalues and

three orthogonal eigenvectors. In other words, any tensile

fault segment can be equivalent to three orthogonal principal

linear dipoles such that shear couples vanish. The maximum

eigenvalue of the source dislocation tensor is the maximum

tension of source to the external field. The direction of its

corresponding eigenvector is called the tension axis in

which the maximum compression wave is radiated. The

minimum eigenvalue and the corresponding eigenvector in-

dicate the maximum pressure and the pressure axis in which

the maximum dilatation wave is radiated. The theory of the

sum of eigenvalues gives the result that the trace of S:

(25)

which is invariant for any choice of three orthogonal coor-

dinates and will be equal to the sum of three eigenvalues.

The trace of S is always zero for a shear faulting, positive

when a fault segment expands, and negative when it com-

presses.

If the source dislocation tensor S expressed in three di-

rections of north, east, and down for a tensile fault segment

has been inverted from the radiation pattern of P or S wave,

then the focal mechanism can be analyzed, and the fault

plane solution will be solved. First, the eigenvectors corre-

sponding to the maximum and minimum eigenvalues of S
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Fig. 4. Radiation patterns of the S wave corresponding to the expansive faults in Fig. 3. The polarity and amplitudes are indicated by the scaled arrows

which are projected in polarized planes tangent to the focal sphere.

(a) (b)

(c) (d)



are the tension and pressure axes. The tensile angle 	 of the

fault segment can be found from the trace of S expressed by

Eq. (25) if Poisson’s ratio � is known. Then we form a source

dislocation tensor B in terms of the three directions of the

slip �f , the fault normal �n, and the � �f n� for the tensile fault

segment. Summing up the source dislocate tensors in Eqs.

(5) and (6) for the shear and tensile components of the dis-

placement vector function in Eq. (18) and replacing � / �

with a function of �, Eq. (10), we obtain:

(26)

where B11, B22, and B33 indicate intensities of the linear di-

poles along �f , �n, and � �f n� , B12 and B21 are intensities of the

double couples in the plane containing �f and �n. B and S

have the same eigenvalues. The eigenvectors of B corre-

sponding to the maximum and minimum eigenvalues ex-

press the tension and pressure axes in the coordinate sys-

tem of �f , �n, and � �f n� . The transformation of an eigenvector

bi of B to an eigenvector si of S corresponding to the same

eigenvalue �i is:

(27)

where X is an orthogonal matrix having the �f , �n, and � �f n�

as the first, second, and third column vectors expressed in

the coordinates of north, east, and down. If we form three

eigenvectors of B and S in two matrices, VB and VS, then

Eq. (27) becomes:

(28)

where column vectors of VB and VS must be arranged in an

order such that the same ordered ones correspond to the

same eigenvalue. Let VB be an orthogonal matrix, then X

can be solved as:

(29)

There are eight solutions for X if we have three ei-

genvectors of B in two reverse directions and eigenvectors

of S in fixed directions. Actually only four of X are inde-

pendent. Two of independent X in which column vectors

are right-handed provide the primary and auxiliary fault

plane solutions. The first column vector of X indicates the

slip direction �f in the fault plane. The second one is the

fault normal �n which indicates a possible fault plane.

Eigenvalues of the source dislocation tensor S for any

tensile fault segment are �1 = 1 + 2sin 	, �2 = sin 	, and �3 =

�1 + 2sin 	 if Poisson’s ratio is 0.25, and the tensile angle

	 is sin�1[tr (S) / 5]. The corresponding eigenvectors for the

source dislocation tensor of the example in Fig. 2 in the

coordinates of north, east, and down are:

(30)

The tension and pressure axes are T and P in Fig. 3. Both

axes are always orthogonal. They are located at the sym-

metric axes of compression and dilatation regions, and

agree with directions of the maximum compression and di-

latation waves radiated. Two dotted lines indicate the pri-

mary and auxiliary fault planes. The heavy one is consis-

tent with the fault plane assumed in the example. The poles

of the primary and auxiliary fault planes are located in the

plane containing the T and P axes. In the cases of tensile

fault, the primary and auxiliary fault planes are no longer

mutually perpendicular, and not consistent with the nodal

surfaces of the P wave. The span angle 
 of the nodal sur-

face in the plane containing the T and P axes depends on the

tensile angle �. The � � � is equal to sin�1(0.5cos
). 	 is posi-

tive if the compression region expands about the T axis and

negative if the dilatation region expands about the P axis.

The primary and auxiliary fault planes deviate at an angle

of 45� + 	 / 2 from the T axis and an angle of 45� � 	 / 2 from

the P axis, and have the nodal surfaces of the P wave

equally in between them. Both planes intersect with angles

of 90� 	 	 for tensile faults. Shown in Fig. 4, the particle

motions of the S wave are generally perpendicular to the

primary and auxiliary fault planes at the source.

6. DISCUSSION

The seismic radiation from a tensile fault segment is a

linear combination of those from the shear faulting and the

tensile motion. The two components might have quite dif-

ferent types of functions in time. The shear faulting always

goes forward in a direction then stops. It is usually repre-

sented by a ramp function characterized by a final slip. The

tensile motion would move fault walls compactly, or move

them apart then back together. If the tensile motion shapes

like a ramp function, it will keep the spectral shape of seis-

mic waves unchanged and affect only the spectral level. If

the tensile function shapes like a pulse and ends without net

displacement, the ground at far field due to the tensile mo-

tion will oscillate like a sinusoidal cycle such that the spec-

trum of ground displacement peaks at a certain frequency

and decays with frequency on either side of the peak. There-

fore, tensile faults ending without net volume change will

enhance seismic waves at some frequencies, but not the seis-

mic moment.
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To understand the phenomenon of volume dilatancy

within and nearby a fault zone prior to a tremendous earth-

quake, the crust deformations observed on the Earth surface

have been investigated. We can evidence the volume di-

latancy by calculating the magnitude of compression on the

fault from the radiation pattern of first arrivals of a tre-

mendous earthquake. The compression reflects how far the

fault walls have been moved apart to accommodate the slip

of the earthquake. On the other hand, if we obtain the mag-

nitude of compression during a foreshock, the dilatancy

nearby can be inferred. This provides a new possibility for

earthquake prediction. Besides the radiation pattern of first

arrivals, the full waveforms from seismic stations could pro-

vide us with a window into the tensile function of a fault seg-

ment during its dislocation. By learning how expansion and

compression influence the whole fault plane, we will better

understand the tensile effect’s impact on inducing and af-

fecting the development of an earthquake.
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