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ABSTRACT 

 The key objective of this paper is to point out that a widely used constitutive relationship between the degrees of satu-
ration and capillary pressures for three-phasefluids over the past twenty five years has resulted in an undue constraint. To 
our knowledge, this constraint is neither physically justifiable nor is it theoretically supported. The discovery of the undue 
constraint leads this investigation to develop a viable parametric model to describe the constitutive relationship for a system 
of multiple fluids. Based on the physical consideration wherein fluid wettability follows a sequence, the proposed parametric 
model can be easily applied to any system of L arbitrary fluids. Three aspects are presented to confirm the plausibility and 
completeness of the model. First, the proposed closed-form expression of the saturation-capillary pressure head relationship 
is identical to van Genuchten’s renowned model for two-phasefluid systems. Second, a constraint appearing in the widely 
used model is alleviated in the proposed model. Third, seven hypothetical examples are used to demonstrate that there is no 
need to impose the constraint on the sequence of capillary pressures. The results show the plausibility and completeness of the 
model for systems of multiple fluids. The proposed parametric model is a feasible analytic model which provides a general-
ized saturation-capillary pressure head relationship for any system with regard to multiple fluids. Hopefully, this study will 
pave a way for others to conduct experiments to validate the model further or develop other better non-constrained models 
based on experimental evidence. 
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1. INTRODUCTION

In general, when the number of fluids for multiple-
phasefluid systems exceeds two, it becomes difficult to 
simultaneously measure the degrees of saturation and cap-
illary pressure heads between two contacting fluids. There-
fore, developing a plausible analytic model to describe the 
saturation-capillary pressure head relationship is necessary 
for systems of multiple-phasefluids. Numerous parametric 
models have been presented to describe the constitutive re-
lation of saturation and capillary pressure head in vadose 
zones (e.g., Brooks and Corey 1964; Campbell 1974; van 
Genuchten 1980). Among them, the renowned model by 
van Genuchten (1980) is one of the most popular models to 
describe the saturation-capillary pressure head relationship 
in unsaturated soil systems. Since the model was originally 

proposed for vadose zones (water-air systems), it is limit-
ed to the description of the relationship of two-phasefluid 
systems, such as water-air, water-non aqueous phase liquid 
(NAPL) and NAPL-air systems. Fundamental to all of these 
models is the hypothesis that the capillary pressure is a func-
tion of the degree of saturation of the wetting phase. 

However, extending the above hypothesis to multiple-
phasefluid systems is not straightforward. First, when there 
are more than two-phasefluids in a system, there are more 
than one independent degrees of saturation. For example, 
in a multiple-phasefluid system with L phases, there are 
L degrees of saturation, but only (L-1) of these degrees of 
saturation are independent because the total degree of satu-
ration is equal to one. Second, there are (L-1) interfaces, 
each between two contacting fluids; hence, there are (L-1) 
capillary pressures and each represents the pressure differ-
ence between two consecutive contacting fluids. In the most 
general case, each capillary pressure is a function of (L-1) 
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degrees of saturation. In this paper, a homogeneous formu-
lation of capillary pressure is hypothesized based upon a 
careful examination of Parker et al.’s model (1987) which 
is an extension of van Genuchten’s two-phasefluid model 
(1980) to the three-phasefluid system.

The extension of van Genuchten’s equation to three-
phasefluids by Parker et al. (1987) was developed based 
on the assumption that the fluid wettability follows the 
sequence: water " NAPL " air. Since the closed-form 
expression of the saturation-capillary pressure head rela-
tionship is quite simple, the model has been widely used to 
describe the relationships between the degrees of saturation 
and capillary pressure heads in two- and three-phasefluid 
systems (e.g., Parker and Lenhard 1987; Binning and Ce-
lia 1999; Suk and Yeh 2008; Khoei and Mohammadnejad 
2011). Based on a careful examination of this extension, it is 
found that an undue constraint exists in the extension model 
(Parker and Lenhard 1987) - that the product of scaling fac-
tor and capillary pressure head between water and NAPL 
must be greater than that between NAPL and air. From the 
viewpoint of physics, this constraint has not been supported 
experimentally or theoretically. To our knowledge, this un-
proven constraint has not been discussed in literature. 

In this investigation, a parametric model is proposed 
to provide a plausible constitutive relation of saturation 
and capillary pressure head for a system of more than two-
phasefluids. The concept is based mainly on the physical 
consideration that (1) L-phasefluids follow the sequence 
of wettability, and (2) at the interface face of two fluids, 
all fluids on one side of the sequence are considered to be 
a relatively wetting phase and all fluids on the other side 
are considered to be a relatively non-wetting phase. With 
this concept, the saturation-capillary pressure relationships 
between two contacting phasefluids are postulated to be a 
unique function of a single variable of grouped degrees of 
saturation. An explicit function is proposed that is analo-
gous to van Genuchten’s model. Through mathematical and 
physical examinations, the undue constraint resulting from 
the model proposed by Parker et al. (1987) is alleviated. In 
addition, note that the proposed closed-form expression of 

the saturation-capillary pressure relationship is reduced to 
that of the model by van Genuchten (1980) for two-phase-
fluid systems in formality.

The remainder of this paper is organized as follows. In 
section 2, a fundamental postulation is posed for describing 
the capillary pressures as functions of degrees of saturation 
in systems of multiple-phasefluids. In section 3, two widely 
used parametric models (van Genuchten 1980; Parker et al. 
1987) are discussed, and potential problems are acknowl-
edged. In section 4, a generalized closed-form expression 
of the saturation-capillary pressure relationship for a system 
of L-phasefluids is proposed like that of van Genuchten’s 
model. In section 5, seven hypothetical examples are em-
ployed to demonstrate the plausibility and completeness of 
the proposed model. Conclusions are offered in section 6.

2. SATURATION-CAPILLARY PRESSURE FUNC-
TIONS

The Young-Laplace equation (Laplace 1806) is used to 
describe the capillary pressure sustained across the interface 
of two immiscible fluids, such as water and air, due to the 
phenomena of surface tension (Fig. 1). The equation can be 
derived based on the force balance on a surface element or 
on the concept of virtual work to extend the surface (Skjæve-
land 2006). The equation (Laplace 1806) is given as 
 

p r r r r rp r
1 1 2or whenc cc

c1 2
1 2v v= + = = =c m      (1)

where p p pc 2 1/ -  is the capillary pressure, with p1 being the 
pressure of wetting phase-fluid 1 and p2 being the pressure 
of non-wetting phase-fluid 2, M T L2^ h6 @; σ is the surface 
tension, M T2^ h6 @; r1 and r2 are the principal radii of curva-
ture, [L]; and rc is the radius of curvature, [L].

In hydrology communities dealing with the two-phase-
fluid system in subsurface porous media, the radius of cur-
vature is indexed by the pore size occupied by the wetting 
phasefluid, i.e., the radius of curvature is represented by 
the degree of saturation of the wetting phase. The degree 

Fig. 1. Capillary pressure, surface tension, and radius of curvature.
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of saturation of non-wetting phasefluid does not play a role 
because it is not an independent variable (the degree of satu-
ration of wetting phasefluid plus that of non-wetting phase-
fluid is equal to one). Thus, it has been postulated that the 
capillary pressure for two-phasefluids is a function of the 
degree of saturation:

p p p f Sc2 1 /- = ^ h        (2)

where S is the degree of saturation, and the capillary pres-
sure function f has the following properties: (1) domain of 
the function, S, varies from zero to one; (2) the range of 
the function, pc, varies from zero to infinity; and (3) pc = ∞ 
when S = 0 and pc = pb when S = 1. The saturation function 
is obtained by inverting Eq. (2) as

S f p pFc c
1= =- ^ ^h h        (3)

When there are more than two-phasefluids in a system, 
says L, there are L degrees of saturation and (L-1) capillary 
pressures, each being the pressure difference between the 
pressures of a pair of contacting fluids (Fig. 2). Among the 
L degrees of saturation, only (L-1) of these, says S1, S2,..., 
and SL-1, are independent because the summation of all L 
degrees of saturation is equal to one. In the most general 
cases, the capillary pressures between any two consecutive 
phasefluids would be a function of all (L-1) independent de-
grees of saturation. Before proceeding further, we define the 
accumulated degree of saturation as 

, , ..., ;S S L S S1 2 1 0for Note: andt t t
1

a= = = =b
b

a

=
L 0a /   (4)

where Stα is the total degree of saturation accumulated up to 
the α-th phase (Fig. 2). Note that the fluid phases are labeled 
consecutively starting from the most wetting phase to the 
most non-wetting phase.

In terms of the total accumulated degrees of saturation, 
the most general capillary pressure function between any 
two consecutive phases can be posited as
 

p p p ,c1 1/- =a a a a+ +

t t tt , , , ..., , , ...,
, , ...,f S S S S L

k
1 2 1
1 2for1 1 k1

a

a

= -
=a a a a+ - a+ -^ h '       (5)

where pα+1 is the pressure of the (α+1)-th phase, M T L2^ h6 @
; pα is the pressure of the α-th phase, M T L2^ h6 @; pcα+1, α is 
the capillary pressure between the (α+1)-th and α-th phases, 
M T L2^ h6 @; fα is the capillary pressure function between the 

relative wetting phase α and the relative non-wetting phase 
α+1. We first hypothesize that (1) the capillary pressure 
function is homogeneous, i.e., fα is independent of α; and 
(2) the capillary pressure function fα is a function of Stα and 
Stα+1 only, i.e., the capillary pressure function fα is of degree 
1, aka (as known as) k = 1. Then we postulate that the capil-
lary pressure pcα+1, α is a unique function of a single variable 
defined as the ratio of the two total accumulated degrees of 
saturation as 
 

, , ...,p p p f L1 2 1for1,c1 / aH- = = -a a a a a+ + ^ h
; 1; 0in which andt/H H H= =

tS
S

L
1

0a
a

a

+
  (6)

where Θα is the ratio of the total accumulated degree of 
saturation of the relatively wetting phase to that of the rela-
tively non-wetting phase. Inverting Eq. (6), we obtain 

Fig. 2. Sketch of capillary pressures versus degrees of saturation for an L-phasefluids system.
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=;1 H 0;1 H =-, , ..., L1 2=,F a=f= p p, ,c c L
1

1 1 0Ha a a a a
-

+ +^ ^h h
     (7)

It is easily seen that Eqs. (6) and (7) are the generalizations 
of Eqs. (2) and (3), respectively. Clearly, for two-phase-flu-
ids, St1 = S and St2 = 1. Thus, under this case, Eqs. (6) and (7) 
are reduced to Eqs. (2) and (3), respectively. 

3. TWO WIDELY USED PARAMETRIC MODELS
3.1 van Genuchten’s Model for Two-Phasefluids 

Many explicit functions based on the postulation of Eq. 
(2) have been proposed to relate the degree of saturation to 
the capillary pressure (Charbeneau 2000) for two- phaseflu-
ids. For example, the renowned model by van Genuchten 
(1980) is given as 

S p S p p1 0 1 0for and for >c c
N M

c# a= = + -t^ h6 @      (8)

where at  is the scaling factor, N is the curve shape param-
eter, and .M N1 1= -  Written in terms of a capillary pres-
sure head, van Genuchten’s model (van Genuchten 1980) in 
Eq. (8) is expressed analytically as 
 

S h S h h1 0 1 0for and for >c c
N M

c# a= = + -^ h6 @      (9)

a  is the scaling factor of the capillary pressure head (Char-
benuar 2000). Note that van Genuchten’s model was origi-
nally proposed to describe the saturation-capillary pressure 
head relationship for two phase-fluids. For example, in a 
water-air system, both air and water are present in the sys-
tem when 0 < S < 1. Only water is present in the system 
when S = 1.0; and, only air is present in the system when 
S = 0.0. 

An amplification is necessary before we describe a 
model for three-phasefluids in the following subsection. 
Mathematically, when the capillary pressure head hc = ha - hw  
(where ha is the pressure head of non-wetting phase, air; 
and hw is the pressure head of the wetting phase, water) is 
equal to zero in van Genuchten’s model, the degree of satu-
ration for the wetting phase is equal to one and that for the 
non-wetting phase is equal to zero. Physically, this means 
the non-wetting phasefluid, air, dissolves into the wetting 
phasefluid, water. In other words, the entrance capillary 
pressure in the water-air system is implicitly assumed to 
be zero in van Genechten’s model. If the entrance capil-
lary pressure is not approximately zero, other models may 
be used. For example, Brooks and Corey’s model provides 
such an alternative (Brooks and Corey 1964). 

 
1 ,S h h S h

h h hfor for >c b
c

b
c b#= =

m

c m     (10)

where hb is the bubble pressure or air entry pressure of the 
non-wetting phasefluid into wetting phasefluid, [L]; and λ is 
the pore size distribution index. 

3.2 Parker et al.’s Model for Three-Phasefluids

Based on the assumption that fluid wettability follows 
the sequence water " NAPL " air, Parker et al. (1987) ex-
tended the saturation-capillary pressure head relationship in 
the model by van Genuchten (1980) from two-phasefluids 
to three-phasefluids. In their work (Parker et al. 1987), the 
three-phasefluids are water, NAPL and air, respectively. For 
consistence, the subscript 1 denotes water phasefluid, sub-
script 2 denotes NAPL phasefluid, and subscript 3 denotes 
air phasefluid following the wetting sequence. Thus, the de-
grees of saturation of water, NAPL and air are denoted as S1, 
S2, and S3, respectively. In addition, two accumulated total 
saturations denoted by St1 and St2, relating to S1 and S2, are 
given as follows

S S S S Sandt t1 1 2 1 2= = +       (11)

With the definition of the accumulated liquid saturation, a 
naive extension of van Genuchten’s model of two-phaseflu-
ids to three-phasefluids results in the following saturation-
capillary pressure head relationship (Parker et al. 1987). 

 
S S h S S h1 0 1for andt c t c

N M
1 1 21 1 1 21 21/ /# a= = + -^ h6 @

;h 0for >c21

S S h S S h1 0 1for andt t c t t c
N M

32 32 32/ /# a= = + -
2 2 ^ h6 @

;h 0for >c32

; 1S S S S Sandt t t2 1 3= - = -2 2       (12)

It is noted that a α+1, α is the scaling factor of capillary pres-
sure head between the (α+1)-th and α-th phases, 1 L6 @; and 
hcα+1, α / hα+1 - hα is the capillary pressure head between the 
(α+1)-th and α-th phases, [L]; in which hα+1 is the pressure 
head of the (α+1)-th phase, [L]; and hα is the pressure head 
of the α-th phase, [L]. For example, hc32 and 32a  are the 
capillary pressure head and the scaling factor between the 
3rd and 2nd phases, respectively. Similarly, hc21 and 21a  are, 
respectively, the capillary pressure head and the scaling fac-
tor between the 2nd and 1st phases. According to the defini-
tion of the total liquid saturation, St2 is greater than or equal 
to St1 as follows 

S St t1$2         (13)

Substituting Eq. (12) to Eq. (13), we have

 
h h1 1c

N M
c

N M
32 32 21 21$a a+ +- -^ ^h h6 6@ @      (14)
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which implies 

h hc c32 32 21 21#a a^ ^h h      (15)

Obviously, Parker et al.’s model implies that the closed-
form expression in Eq. (12) is workable only if the products 
of the scaling factor and capillary pressure head, hc32 32a^ h 
and hc21 21a^ h, satisfy the constraint in Eq. (15). This con-
straint seems to have little physical relevance. In other 
words, some feasible distributions of a pressure head among 
phasefluids (that do not satisfy the constraint) are excluded. 
To our knowledge, there has been no literature to point out 
this undue phenomenon in three-phasefluids. 

4. PROPOSED PARAMETRIC MODELS FOR MUL-
TIPLE- PHASEFLUIDS 

For a system of multiple-phasefluids, the degree of sat-
uration function F in Eq. (7) is explicitly proposed in anal-
ogy to van Genuchten’s model (van Genuchten 1980) as

 

S
S
t

t

1

/ H =
a

a
a

+

h 0for #
, , , ..., ;

h h
L

1
1

1 2 1
for

,

, , ,

c

c c
N M

c

1

1 1 1a
a

+
= -

a a

a a a a a a

+

+ +
-

+ 0>^ h6 @)

;1LH =       
00H =          (16)

Equation (7) could serve as a foundation to generalize other 
explicit functions for the degree of saturation in two-phase-
fluids to those in multiple-phasefluids. For example, Brooks 
and Corey’s model can be extended to multiple-phasefluids 
as

, , , ..., ;
h
h h h L

1
1 2 1for >

, ,

,

,
, ,

c b

c

b
c b

1 1

1

1
1 1

aH = = -a

a a a a

a a

a a
m

a a a a

+ +

+

+
+ +

h hfor #

c m*
 

1;LH =
00H =         (17)

where hbα+1, α is the bubble pressure head of the (α+1)-th 
non-wetting phasefluid into the α-th wetting phasefluid. 
For a system of two-phasefluids, Eq. (16) is simplified to

 
h h h1 0 1 0for and for >c c

N M
c# aH H= = + -^ h6 @    (18)

Although Eq. (18) is identical to Eq. (9) as written, it has 
a very different physical interpretation. While in Eq. (9), S 
represents the degree of saturation of the wetting phase, Θ 
in Eq. (18) represents the grouped degree of saturation. The 
denominator for this grouped degree of saturation is equal to 
one, which renders the physical interpretation superficially 

identical. For any system with more than two-phasefluids, 
the denominator of the grouped degree of saturation is not 
necessarily equal to one, which makes the physical interpre-
tation obviously different for a system of three-phasefluids.

For a system with three-phasefluids, the explicit func-
tion for the degree of saturation is straightforwardly ob-
tained from Eq. (17) as 

1 0S
S h S

S h1for and
t

t
c

t

t
c

N M
1

1
21 1

1
21 21/ /# aH H= = + -

2 2

^ h6 @
;h 0for >c21

1 0S
S h S

S h1for and
t

t
c

t

t
c

N M
2 32 2 32 32/ /# aH H= = + -

3

2

3

2 ^ h6 @
0;hfor >c32

; 1S S S S Sandt t2 1 3= - = -2 2      (19)

Examining Eq. (19), we see that both the numerator and de-
nominator in the second line of Eq. (19) are greater than or 
equal to those in the first line of Eq. (19), respectively. Thus, 
it is not necessary that Θ2 is greater than or equal to Θ1. 
Hence, it is not necessary that hc32 32a^ h must be less than or 
equal to hc21 21a^ h, which is in contrast to the consequence 
of that in Parker et al.’s model. The undue constraint on 
capillary pressures is therefore alleviated. Note that, based 
on Eq. (19), we obtain the following constraints

S S S Sandt t t t1 "# #2 2 3

,h h0 0and respectivelyc c21 21 32 32$ $a a^ ^h h    (20)

Unlike the constraint in Eq. (15) that does not have physical 
relevance, both constraints 0hc21 21 $a^ h  and 0hc32 32 $a^ h
in Eq. (20) conform to the physics that the pressure of the 
relatively non-wetting phasefluid is greater than or equal to 
that in the relatively wetting phasefluid. Otherwise, the fluid 
of the non-wetting phase dissolves into the wetting phase; 
or equivalently, the pressure of the dissolved non-wetting 
phase-fluid must be smaller than that of the wetting phase-
fluid to prevent its bubbling into a non-wetting phase. 

The relationship between the degrees of saturation and 
unsaturated hydraulic conductivity for multiphase flow sys-
tem proposed by Parker et al. (1987) is given as

k S S1 1r
m
m

1
2
1 1 2

= - -t t1 1
` j8 B       (21)

k S S S S1 1r t t
m
m

m
m

2 1 2
1 1 1 2

= - - - -
t t12 2^ ` `h j j8 B     (22)

k S S1 1r t
m

m

3 2
1 1 2

= - - t2 2^ `h j       (23)

where kr1, kr2, and kr3 individually represent the relative per-
meability of water, NAPL and air phases.
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5. RESULTS AND DISSCUSSION

Seven examples are illustrated to test the plausibility 
and completeness of the proposed model that is analogous 
to van Genuchten’s renowned parametric model. The hypo-
thetical scaling factors and curve shape parameters for all 
examples are given in Table 1. In addition, Table 2 exhibits 
the given pressure head of each phase-fluid in each example. 
Note that Examples 1 - 3 are the systems with three-phase-
fluids, while Examples 4 - 7 are with four-phasefluids.

For Examples 1 through 3, the Parker et al.’s model 
and the present model are both employed to obtain the de-
grees of saturation given the pressure heads. For Examples 
4 through 7, only the present model is used to simulate the 
degrees of saturation given the pressure heads since Parker 
et al.’s model does not include the systems of more than 
three-phasefluids. The simulated degrees of saturation are 
given in Table 3. 

Discussion and results are presented with example 
problems below.

Example 1: The results obtained with Parker et al.’s model 
are obviously unreasonable that a negative degree of satura-
tion exists in the NAPL phasefluid (note that in the model 
Fluid 1 is water, Fluid 2 is NAPL, and Fluid 3 is air). The 
reason is that the products of the scaling factor and capillary 
pressure head do not satisfy the constraint in Eq. (15). The 
detail of calculation and assessment is shown as follows. 

<&. .h h h h2 0448 2 1651andc c c c21 21 32 32 21 21 32 32a a a a= = ^ ^h h  
(24)

which does not satisfy the constraint in Eq. (15) resulted from 
Parker et al.’s model. This implies that such pressure head 
distributions are not considered feasible using the Parker et 
al.’s model. On the other hand, the results obtained with the 
proposed model are in the range of feasible solutions.

Example 2: In this example, the difference between hc21 21a^ h  
and hc32 32a^ h is further increased in contrast to that in Ex-
ample 1 as 

<<. .h2 0448 4 0596and &==h h hc c c c21 21 32 32 21 21 32 32a a a a^ ^h h  
(25)

Compared Example 2 with Example 1, as the difference 
between hc21 21a^ h and hc32 32a^ h is increased, the degree of 
saturation for NAPL fluid in Table 3 becomes more nega-
tive (-0.2008 for Example 2 versus -0.0210 for Example 1) 
and hence more unreasonable. In contrast, the results with 
the proposed model are considered more reasonable. Fur-
thermore, the difference in the degree of saturation between 
Fluids 3 and 2 for this example is greater than that for Ex-
ample 1, as expected. 

Table 1. Scaling factors and curve shape parameters for all seven ex-
amples.

Table 2. The given pressure head of each phase-fluid for all seven 
examples.

Table 3. Calculated degrees of saturation of each phase for all seven 
examples.

Example 21a  (cm-1) 32a  (cm-1) 43a  (cm-1) N

1 0.11 0.099 NA 2.2

2 0.11 0.099 NA 2.2

3 0.11 0.099 NA 2.2

4 0.11 0.12 0.099 2.2

5 0.11 0.12 0.099 2.2

6 0.11 0.12 0.099 2.2

7 0.11 0.12 0.099 2.2

Example h1 (cm) h2 (cm) h3 (cm) h4 (cm)

1 979.91 998.50 1020.37 NA

2 979.91 998.50 1039.50 NA

3 977.31 998.09 1020.37 NA

4 978.13 998.09 1005.33 1020.37

5 979.91 998.50 998.50 1020.37

6 979.91 979.91 979.91 1020.37

7 978.13 998.09 1020.37 1020.37

Example S1 S2 S3 S4 Remark

1-1 0.3825 -0.0210 0.6389 NA Parker et al.’s Model

1-2 0.1381 0.2230 0.6389 NA Present Model

2-1 0.3825 -0.2008 0.6389 NA Parker et al.’s Model

2-2 0.0695 0.1122 0.8184 NA Present Model

3-1 0.3417 0.0127 0.6456 NA Parker et al.’s Model

3-2 0.1211 0.2333 0.6456 NA Present Model

4 0.1353 0.2446 0.1332 0.4869 Present Model

5 0.1381 0.2230 0.0000 0.6389 Present Model

6 0.1845 0.0000 0.0000 0.8155 Present Model

7 0.1031 0.1864 0.7105 0.0000 Present Model

Example 3: In this system of three-phasefluids, the prod-
ucts of the scaling factor and capillary pressure head for  

hc21 21a^ h and  hc32 32a^ h satisfy the constraint of Eq. (15). Be- 
cause of this, Parker et al.’s model also yields plausible sim-
ulations. Naturally, the present model also yields plausible 
simulations. As to which model would give more reason-
able results, only extensive calibrations and validations can 
resolve the question, which is beyond the scope of this paper 
and, of course, is not the objective of this paper.
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Example 4: The simulated degrees of saturation for this 
system of four-phasefluids are: S1 = 0.1353, S2 = 0.2446, 
S3 = 0.1332, and S4 = 0.4869. These results seem plausible. 
The present model generates positive degrees of saturation 
because the physically mandated constraint of pcα+1, α ≥ 0 
is satisfied. The mandate requires that the pressure head of 
relatively non-wetting phasefluid is greater than or equal to 
that of a relatively wetting phasefluid.

Example 5: In this example, the pressure heads of Fluid 
2 and Fluid 3 are identical as shown in Table 2. Thus the 
capillary pressure head hc32 is equal to zero. This implies 
that Fluid 3 should vanish in such pressure head distribu-
tions. Indeed, it is seen that the simulated degree of satura-
tion for Fluid 3 is zero (Table 3), and Fluid 3 disappears as 
expected. 

Example 6: In this example, the pressure heads for Fluids 
1 through 3 are identical as shown in Table 2. Thus, the 
number of zero capillary pressure head for this system of 
four-phasefluids is increased to two, hc21 = h2 - h1 = 0 and hc31 
= h3 - h2 = 0. Physically, this system of four-phasefluids is 
reduced to a system of two-phasefluids. The solutions of the 
degree of saturations are S1 = 0.1845, S2 = 0, S3 = 0, and S4 
= 0.8155 (Table 3). The degrees of saturation in two fluids 
are equal to zero, implying that the system is reduced to two 
fluids from four fluids, as expected. 

Example 7: Different from Examples 5 and 6, the zero cap-
illary pressure head occurs between Fluids 3 and 4 in this 
example because the pressure heads in these two fluids are 
identical (Table 2). Simulations with the proposed model, 
Eq. (16), are listed in the last row of Table 3. It is seen that 
the degree of saturation of Fluid 4 vanishes in this example. 
As a result, the relatively non-wetting phase, Fluid 4, dis-
appears because of S4 = 0. Whenever, the pressure heads 
between two contacting fluids are identical, the relatively 
non-wetting phase disappears. This is so because the non-
wetting fluid dissolves into the wetting phase fluid.

6. CONCLUSION

Simultaneous measurements of the degree of satura-
tion and capillary pressure heads in multiple-phasefluids 
have been a challenge. Therefore, it is necessary to develop 
plausible analytic models describing the constitutive rela-
tion of saturation and capillary pressure head for systems of 
multiple-phasefluids. 

In this paper, a postulation is made that the capillary 
pressure between two contacting fluids in a multiple phase-
fluid system is a unique function of a single variable of 
grouped degrees of saturation. This single variable is the ra-
tio of the accumulated degree of saturation up to the wetting 
phase to that up to the corresponding non-wetting phase. 

Based on this fundamental postulation, a closed-form ex-
pression of the saturation-capillary pressure relationship for 
a system of L-phasefluids is proposed analogously to that 
of van Genuchten’s renowned model. For a two-phasefluids 
system, the model is reduced to that of van Genuchten’s 
model in formality, but it has quite a different physical inter-
pretation. Through both physical arguments and mathemati-
cal manipulations, the undue constraint of the currently pop-
ular three phase-fluid model is alleviated with the proposed 
model. Seven examples are employed to demonstrate the 
plausibility and completeness of the model. Through these 
examples, the model is demonstrated to pose no limitations 
on the distributions of pressure in all phases except for the 
physical requirement that pressure in the non-wetting phase 
must be greater or equal to that in the wetting phase. The 
model provides a feasible generalized saturation-capillary 
pressure relationship for systems of arbitrary number of 
phasefluids.
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