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ABSTRACT

A long-term low nitrogen to phosphorus (N:P) ratio in the Tampa Bay, Florida, estuary system suggests that nitrogen 
is more limiting than phosphorus. However, south Florida suffered from a drought around 2007, and the reduction in runoff 
flowing into the bay affected local ecosystem dynamics. This study presents a remote sensing study to retrieve spatiotemporal 
patterns of total nitrogen (TN) concentrations in Tampa Bay under drought impacts through the integration of Moderate Reso-
lution Imaging Spectroradiometer (MODIS) images and a genetic programming (GP) model. Research findings show that the 
drought impact on TN in Tampa Bay is both a seasonal and yearly phenomenon. Without the presence of ocean water intru-
sion, the whole bay would show a relatively uniform TN distribution during the drought period until the flow input from rivers 
returned to normal. Based on yearly comparisons, temperature could be the limiting factor on the plankton growth in Tampa 
Bay. To further substantiate the credibility of a nutrient estimation algorithm, a k-means clustering analysis was conducted 
to demonstrate sea-bay-land interactions among ebbs, tides, and river discharges. The seasonal cluster distribution in 2007 is 
generally consistent with the conventional segments division of Tampa Bay. 
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1. INTRODUCTION

Urbanized regions are more vulnerable to the impacts 
of climate change. Urban sprawl has led to an increase in 
impervious surface areas as well as a decrease in the vegeta-
tion cover which has weakened urban infiltration and flood 
control capacity. Recently, analyses exploring extreme cli-
matic events in urban regions have received wide attention 
due to a possible increase in the regularity and magnitude of 
hurricane and drought events and an increase in deaths and 
economic losses due to these events (Karl and Easterling 
1999). Recent occurrences of extreme drought events in the 
east and southeast regions of the United States were seen 
in Maryland and the Chesapeake Bay area in 2001 - 2002, 
the Peace River and Lake Okeechobee in south Florida in 
2006, and Lake Lanier in Atlanta, Georgia, in 2007, lead-
ing to studies on their impact, mostly on water availability 

or water shortages with regard to public needs and ecosys-
tem conservation (Haase 2009). Drought stresses regional 
ecosystems by increasing the amount of highly concentrated 
and warmer polluted runoff in the receiving water catch-
ment basins resulting in increased eutrophication of surface 
waters. 

Eutrophication is a major challenge to the ecological 
health of coastal waters that has received wide-spread atten-
tion in both industrialized as well as developing countries 
around the world (Seitzinger et al. 2002, 2005; Conley et 
al. 2009). About 65% of estuaries in the United States were 
impaired as reported by the National Estuarine Eutrophica-
tion Assessment (Bricker et al. 1999). Most eutrophication 
in US estuaries occurs along the Gulf of Mexico (NOAA 
2011). Eutrophication in estuaries is generally triggered by 
overloading nutrients, including nitrogen and phosphorus, 
resulting in algal blooms and hypoxia, which pose a threat 
to both marine life and human health. Eutrophication also 
elevates turbidity levels, which reduces light penetration, 
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causes loss of submerged aquatic vegetation (SAV), and 
further adversely affect the ecosystem balance of coastal re-
gions. Hence, there is an urgent need to find an approach to 
support a continuous, long-term and full-scale monitoring 
of nutrients in coastal regions.

Nutrient concentrations are normally associated with 
chlorophyll a (Chl-a) concentrations which is the primary 
indicator of estuarine health. Because Chl-a is strongly cor-
related with dissolved nitrogen and phosphorus (Brandini 
et al. 2000; Muslim and Jones 2003), it is the most-used 
indicator to estimate nutrient levels in water (Muslim and 
Jones 2003; Pacciaroni and Crispi 2007). Varying with the 
distribution of phytoplankton, the Chl-a concentrations can 
change the absorbance of natural radiation, thereby provid-
ing a tool for water quality monitoring using remote sensing 
(Bagheri and Dios 1990; Lavery et al. 1993; Thiemann and 
Kaufmann 2000; Volpe et al. 2007). 

Moreover, marine systems are generally considered ni-
trogen limited (Smith 1984; Nixon et al. 1996; Howarth and 
Marino 2006). Nitrogen is a more limiting factor than phos-
phorus in Tampa Bay, a finding supported by the results 
of nutrient addition bioassays. Therefore, an expression de-
rived from Chl-a is required to discover the highly nonlinear 
relationship between total nitrogen (TN) and Chl-a. Hydro-
logic conditions might be the mediating influences in the re-
lationship between TN and Chl-a; the hydrologic conditions 
in southwest Florida are highly seasonal, and south Florida 
suffered from a drought around 2007. The variation of the 
runoffs flowing into the bay can affect the ecosystem dy-
namics in the bay resulting in differing absorbance and re-
flection of natural radiation on the surface of the water. As a 
consequence, this change can be monitored by space-borne 
sensors, including but not limited to, the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) (Shutler et al. 
2007), Sea-viewing Wide Field-of-View Sensor (SeaWiFS) 
(Erkkila and Kalliola 2004), Coastal Zone Color Scanner 
(CZCS) (Gordon et al. 1988), Medium-spectral Resolution 
Imaging Spectrometer (MERIS) (Bricaud et al. 1999) and 
Ocean Color Temperature Scanner (OCTS) (Kawamura and 
the OCTS Team 1998). 

This study aims to determine the spatiotemporal pat-
terns of nutrients in Tampa Bay with the aid of MODIS 
reflectance bands and genetic programming (GP) models. 
We investigated the following questions: (1) Can TN con-
centrations be estimated using machine learning models 
(GP models) with MODIS reflectance bands and associ-
ated water quality parameters? (2) Which MODIS reflec-
tance bands are most influential on TN concentrations? (3) 
How do nitrogen concentrations change during a drought 
year? (4) Will nitrogen concentrations remain stable after a 
drought? (5) What comparable computational intelligence 
approaches might perform a spatiotemporal assessment of 
nitrogen concentrations in Tampa Bay, Florida when expe-
riencing a drought?

2. METHODS AND MATERIALS
2.1 Background

Tampa Bay, Florida, the largest open-water estuary in 
Florida with an area of approximately 1031 km2, receives 
the outfall from terrestrial wastewater treatment plants, ur-
ban stormwater, and agricultural runoffs from four main riv-
ers: the Hillsborough River, Alafia River, Manatee River, 
and Little Manatee River. The Tampa Bay estuary is com-
posed of four bay segments, Old Tampa Bay, Hillsborough 
Bay, Middle Tampa Bay, and Lower Tampa Bay. The estu-
ary spans an area of about 1000 km2 and has an average 
depth of 3.7 m (Fig. 1). Old Tampa Bay receives runoff 
from Lake Tarpon; Hillsborough Bay receives river water 
from Hillsborough River and the Alafia River; and Little 
Manatee and Manatee rivers drain into Middle Tampa Bay 
and Lower Tampa Bay, respectively. Nitrogen sources in 
this region include point sources, nonpoint sources, mate-
rial losses, atmospheric deposition, septic tank leachate, and 
contribution from groundwater and springs. Annual clima-
tological summaries from Station “ST PETERSBURG AP” 
(27.75°N, 82.61°W) (http://gis.ncdc.noaa.gov/map/acs/#) 
represent the hydrologic conditions in Tampa Bay from 
2002 to 2010 (Fig. 2). Years 2007 and 2008 were known 
as typical drought years with higher temperature and lower 
precipitation. Year 2007 had the peak temperature and the 
third lowest precipitation. Because of insufficient data at the 
mouth of the Manatee River basin, the average flow rates of 
three of the four major rivers basins - Hillsborough River, 
Alafia River, and Little Manatee River - were collected on 
a monthly basis by the United States Geological Survey 
(USGS) National Water Information System (Fig. 3). Three 
rivers had a similar pattern of flow rate: higher flow rate in 
summer and fall, and lower flow rate in winter and spring. A 
gradually increasing trend of flow rate was observed for all 
three rivers. Note that the negative flow rate for Alafia River 
in winter 2007 indicates that the bay water flowed backward 
into Alafia River, which had low levels due to the synergy 
of high evaporation and low precipitation. 

2.2 Data Collection, Analysis, and Synthesis

Evolutionary computation (EC) was developed by 
Gagne et al. (2004) by combining three existing approaches: 
genetic algorithms (GA), first developed by Holland (1975); 
evolution strategies (ES) (Rechenberg 1965; Bäck et al. 
1997); and evolutionary programming (EP) developed by 
Fogel (1966). We used the Discipulus® software package, 
developed by Francone (1998), to perform the GP modeling 
analysis (Makkeasorn et al. 2006).

The goal of this study was to develop the relationships 
between in situ TN concentrations in the Tampa bay area 
and corresponding satellite-derived estimates. SeaWiFS 
Data Analysis System (SeaDAS) has the MODIS Aqua data 
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Fig. 1. Tampa Bay, FL, and its four bay segments. 

Fig. 2. Hydrologic conditions at the Station “ST PETERSBURG AP” (27.75°N, 82.61°W), 2002 - 2010.

with bandwidth between 405 and 683 nm (Table 1). Other 
secondary products such as Colored Dissolved Organic Mat-
ter (CDOM) and Chl-a are derived from bands with differ-
ent wavelengths, which could co-exist and co-vary; thus, we 
only used primary bands related to coastal water detection 

to investigate the relationships between them and TN con-
centrations by using a GP model. Finally, Bands 8, 9, 10, 11, 
12, and 14 were selected to use in GP modeling after further 
removing some bands for land use. All the raw data were 
processed by the SeaDAS software package and exported  
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as ASCII files. To increase the credibility of MODIS data, 
cloud-cleaning images were screened out among the down-
loaded data from 2007 to 2009. 

The synchronous, ground-truth total nitrogen (TN) 
data were downloaded from a dedicated online web da-
tabase (http://www.tampabay.wateratlas.usf.edu/) of the 
Tampa Bay Water Atlas. The workflow of MODIS Aqua 
image processing and machine learning was as follows: (1) 
arrange the sampling locations (Fig. 4) and dates of the in 
situ data points; (2) import both ground truth measurements 
and MODIS images into ArcGIS; (3) join the data from 
both ground truth measurements and satellite observations 
and extract transformed MODIS image pixel values that are 
temporally and spatially synchronous to in situ data; (4) ex-
port the combined data into a GP modeling platform; and (5) 
perform GP nonlinear regression analysis. The distribution 
dates of both MODIS images and ground-truth data used to 
calibrate and validate GP models were recorded (Table 2).

When the GP computational process was complete, the 
top 30 models with the highest level of fitness based only on 
the training data fitness were saved and listed in the report. 
Among the top 30 models, the best models may frequently 
have poor fitness based on the applied data, a condition re-
ferred to as “over-fitting.” Therefore, only the GP model 
with both training data and applied data fitness high enough 
to be among the top 30 models would eventually be chosen 
as a candidate. Once the GP nonlinear regression analysis 
was complete (i.e., when the relationship between point-
measured TN data and pixel values were determined), the 
entire MODIS image was transformed inversely based on 
the derived equations. Finally, TN maps were processed and 
exported from ArcGIS.

2.3 K-Means Clustering Analysis 

To estimate the inter-zonal transfer among bay seg-

Fig. 3. The average flow rates of three of the four major river basins.

Table 1. MODIS bandwidths and their key use in SeaDAS. 

Band Name Bandwidth Band Number Key Use

nLw_412 405 - 420 8 Chlorophyll

nLw_443 438 - 448 9 Chlorophyll

nLw_469 459 - 479 3 Soil/Vegetation Differences

nLw_488 483 - 493 10 Chlorophyll

nLw_531 526 - 536 11 Chlorophyll

nLw_547 546 - 556 12 Sediments

nLw_555 545 - 565 4 Green Vegetation

nLw_645 620 - 670 1 Absolute Land Cover Transformation, Vegetation Chlorophyll

nLw_667 662 - 672 13 Atmosphere, Sediments

nLw_678 673 - 683 14 Chlorophyll Fluorescence
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by several researchers across several disciplines (Lloyd 
1982 and MacQueen 1967). The k-means function is com-
posed of a two-step iterative process: step 1 is to assign each 
data point to its closest centroid, and step 2 is to relocate the 
cluster centroid until the distance between the centroid and 
the data points no longer changes. The k-means clustering 
algorithm is superior than the traditional numerical simula-
tion model in terms of its relatively simple implementation, 
ability to partition data into subsets based on non-linear re-
lationships between characteristics of the ecosystem, and 
its ability to work with relatively noisy or incomplete input 
data. Clustering analysis has been used for nutrient control 
management in different regions (Niederhauser and Schanz 
1993; Thornton et al. 2002; Waters et al. 2010); however, 
few studies were found to compare clustering analysis 
against remote sensing technology. We used these two ap-
proaches to assess the spatiotemporal nitrogen concentra-
tions in Tampa Bay during drought impact and compare 
their performance.

IBM SPSS Modeler®, Version 14.1 was used for the k-
means clustering analysis. Grid-based TN values along with 
location information (latitude and longitude) were extracted 
from each GP-derived TN map and imported individually 
into k-means clustering models. Each clustering model was 
run with 7 scenarios using 4 - 10 clusters to determine the 
optimal cluster number according to the spatial distribu-
tion pattern of TN concentration. The default selections in 
the software were used to construct the k-means cluster-
ing models. The optimal model was selected from models 
with the minimal clusters containing less than three sample 
points (Fig. 5), based on the cluster quality (silhouette of 
cohesion and separation) and minimal standard deviation 
between sample parameters within each cluster.

3. RESULTS AND DISCUSSION

To estimate changing levels of TN in Tampa Bay 
through a machine-learning-based regression model, 103 
data points (88 for calibration and 15 for validation; Table 
2) were used to develop the proposed GP models. Corre-
lation was examined between measured and estimated TN 
concentrations with the R-square values of 0.75 based on 
the calibration dataset and 0.63 based on the validation (un-
seen) dataset (Fig. 6). 

In our study, DiscipulusTM sorted the 30 best models 
from millions of GP-based models and analyzed how of-
ten each input was used in the selected programs. A value 
of 1.00 (1.00 = 100%) indicates that this input variable ap-
peared in all top 30 programs (i.e., the variable plays the 
decisive role in the prescribed model). The frequency of use 
of all input variables of interest for the top 30 models dur-
ing the GP-based evolutionary process (Table 3) indicates 
that the in situ TN concentration correlated highly with six 
selected MODIS bands for ocean color use; Bands 8, 10, 11, 

Fig. 4. Sampling locations throughout the Tampa Bay.

Table 2. Dates of both MODIS images and ground truth measurements 
used to calibrate and validate GP models.

Year Date Number of data

2007

March 6 12
March 13 1
April 24 9
June 26 4
August 21 4
December 4 6

2008 October 30 22

2009

June 9 8
August 25 16
September 29 10
October 6 1
October 13 10

SUM 103

ments, a k-means clustering analysis was deployed to parti-
tion the dataset to evaluate the spatiotemporal patterns of 
water quality in Tampa Bay. The k-means clustering analy-
sis is a data-mining technique; its algorithm have been used 
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Fig. 5. Flowchart of the methodology in this study.

Fig. 6. Correlation between measured and estimated TN concentration yields R2 = 0.75 based on the calibration and R2 = 0.63 based on the validation 
(unseen) dataset. The 45 degree line shows the 1:1 linear trend.

Table 3. The frequency of use (FOU) in GP modeling analysis for TN estimation.

Variable Band Bandwidth, nm Band Number Frequency Rank

V1 nLw_412 405 - 420 8 1.00 1

V2 nLw_443 438 - 448 9 0.83 6

V3 nLw_488 483 - 493 10 1.00 1

V4 nLw_531 526 - 536 11 1.00 1

V5 nLw_547 546 - 556 12 0.90 5

V6 nLw_678 673 - 683 14 1.00 1



Spatiotemporal Assessment of Nitrogen Concentrations in a Coastal Bay 473

and 14 were the most important factors in determining TN 
concentration.

In the context of machine learning in this study, the GP 
model attempted to produce a TN estimation algorithm by 
expressing the in situ TN measurements as a nonlinear func-
tion in terms of the grid-based MODIS band images: 
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where, V1 = Band 8, V2 = Band 9, V3 = Band 10, V4 = Band 
11, V5 = Band 12, and V6 = Band 14.

The spatiotemporal patterns were delineated and ana-
lyzed based on the seasonal snapshots of GP-derived TN 
distributions (Fig. 7) with regard to the higher TN in the 
spring, summer, and fall and lower TN in winter. In addi-
tion, the TN concentrations remained relatively uniform 
among four bay segments in spring, summer and fall due 
to the low inflow from major rivers. The Lower Tampa Bay 
area normally has the best water quality compared to the 
other three bay segments; however, the spatial distribution 
of TN in the winter of 2007 appeared to be reversed. After 
reviewing the average flow rates (Fig. 3), it becomes obvi-
ous that the decrease of TN concentration of Hillsborough 
Bay and Middle Tampa Bay was caused by the backward 
flow from Tampa Bay into the Alafia River, which also led 
to the TN aggregation at the Alafia River mouth. The higher 
TN concentration in Lower Tampa Bay could be explained 
as ocean water intrusion from the Gulf of Mexico or pos-
sibly contribution from the Manatee River. 

To answer the question, “Will the nitrogen concentra-
tions remain stable after drought?” data from 2008 and 2009 
were used for a yearly-based comparison. Because all three 
rivers have a common high flow period around the fall sea-
son, two sets of data available within that time window were 
used to verify if the input is the dominant factor for the TN 
concentration changes; that is, would the TN concentration 
in Tampa Bay increase year by year with the recovery of in-
flow rate from three rivers after the drought period? The TN 
concentration did not rise as expected due to the increase of 
river inflows, however (Fig. 8); instead, it dropped to half 
that in 2007 demonstrating a reconstruction of the hydrol-
ogy and ecosystem throughout the Tampa Bay during the 
transition from drought to normal conditions. A traditional 
spatial pattern (higher TN concentrations in upper bays 
and lower TN in lower bay) reappeared from 2008 through 
2009. Based on the yearly based temperature comparison 
(Fig. 2), temperature also could be the limiting factor on the 
plankton growth in Tampa Bay. Overall, the results (Figs. 7 
and 8) strongly confirm the calibration and validation of the 
GP model, and the model was shown to be transferable in 
other years in Tampa Bay.

A k-means clustering analysis was introduced in this 
study to enrich the comprehensive techniques for remote 
sensing assessment of spatiotemporal nitrogen concentra-
tions under the impact of drought. In addition to gathering 
and grouping the data points with potential links, the col-
ors indicating different clusters in the k-means clustering 
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Fig. 7. Seasonal snapshots TN maps based on the GP model in the 2007 drought year.

model output also can be considered as tracers tracking the 
flow from different watershed sources. This information 
elucidates the interaction among bay segments and leads 
to a better understanding of nutrient transport throughout 
Tampa Bay via sea-bay-land interactions among ebbs, tides, 
and river discharges over time.

In contrast to the relatively uniform TN spatial dis-
tribution patterns (Figs. 7a, b, and d), the seasonal cluster 
distributions in 2007 (Fig. 9) were unexpectedly highly con-
sistent with the conventional division segments of Tampa 
Bay (Fig. 1) except in the fall of 2007. This captures the 
unexplained pattern showing the extremely complex hydro-
geologic phenomena during the alternate inversion between 
ocean water and bay water. The water in the Middle Tampa 
Bay area stretching into Hillsborough Bay validates the 
backward flow from the bay into Alafia River (Fig. 9d). The 
outspread of water flow from Lower Tampa Bay into Mid-
dle Tampa Bay also corroborates the conjecture of ocean 
water intrusion. The same color in both Hillsborough and 
Middle Tampa bay (Fig. 9e) implies that the Alafia River 
contributed most of the nitrogen loading toward both areas, 
a finding supported by the low flow rate of Little Mana-
tee River in fall 2008 (Fig. 3). Four points with higher TN 
concentrations were grouped and highlighted to mark the 
potential point source of pollution. When the flow input 
from rivers recovered in fall 2009, the turbulence and more 

intermediate zones caused by rushing inflow are apparent  
(Fig. 9f). In summary, a k-means clustering analysis follow-
ing a GP-derived TN assessment enabled us to present a 
clearer and more detailed picture of the impact of drought 
on the spatiotemporal TN concentration distribution in 
Tampa Bay.

4. CONCLUSIONS

This study confirms that MODIS images can be cor-
related with estimated TN values to explore the spatiotem-
poral patterns of TN concentrations in Tampa Bay, Florida. 
By using the MODIS-based GP models that derived the 
highly nonlinear structure between Chl-a-related band data 
and nutrient concentrations in coastal waters, the potential 
of machine learning capacity was confirmed. The impact of 
drought on TN in Tampa Bay is both a seasonal and yearly 
phenomenon as indicated by the contrast between relatively 
uniform TN distribution across the whole bay during the 
drought period and water quality conditions typically ob-
served with the exception of ocean water intrusion. We also 
found that the spatial TN concentration pattern returned to 
normal after drought, and the model was shown to be trans-
ferable to other years in Tampa Bay.

Based on the yearly comparisons, temperature could 
be the limiting factor on the plankton growth in Tampa 

(a) (b)
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Fig. 8. TN spatial distribution in fall 2008 (a normal year) and 2009 (a wet year).

Fig. 7. (Continued)

(c) (d)

(a) (b)
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Fig. 9. K-means clustering analysis output of TN distribution in Tampa Bay from a drought year (2007) to a normal year (2008) and a wet year 
(2009).

(c) (d)

(a) (b)
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Bay in addition to the presence of TN. To further substan-
tiate the credibility of nutrients estimation algorithm, the 
k-means clustering analysis was conducted in this study to 
better demonstrate sea-bay-land interactions among ebbs, 
tides, and river discharges in a drought year. Generally, the 
seasonal clusters distribution in 2007 is consistent with the 
conventional segments division of Tampa Bay. A seires of 
complex hydrogeologic phenomena during and after the 
drought period were also successfully captured by the k-
means clustering analysis. Therefore, spatiotemporal analy-
sis using remote sensing GP model followed by the k-means 
clustering analysis is highly recommended for multitempo-
ral change detection of time series in situ surface properties 
in coastal bays.
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