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ABStRACt

Global warming has resulted in significant variability of global climate especially with regard to variation in temperature 
and precipitation. As a result, it is expected that river flow regimes will be accordingly varied. This study presents a prelimi-
nary projection of medium-term and long-term runoff variation caused by climate change at a river basin scale. The large 
scale precipitation projection at the middle and the end of the 21st century under the A1B scenario simulated by the CGCM 
model (MRI & JMA, 300 km resolution) is statistically downscaled to a basin scale and then used as input for the super-tank 
model for runoff analysis at the upper Thu Bon River basin in Central Vietnam. Results show that by the middle and the end 
of this century annual rainfall will increase slightly; together with a rising temperature, potential evapotranspiration is also 
projected to increase as well. The total annual runoff, as a result, is found to be not distinctly varied relative to the baseline 
period 1981 - 2000; however, the runoff will decrease in the dry season and increase in the rainy season. The results also in-
dicate the delay tendency of the high river flow period, shifting from Sep-Dec at present to Oct-Jan in the future. The present 
study demonstrates potential impacts of climate change on streamflow regimes in attempts to propose appropriate adaptation 
measures and responses at the river basin scales.
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1. IntRoduCtIon

Climate change is considered to be one of the major 
challenges for human beings in the 21st century. It has been 
causing enormous adverse impacts on mankind, environ-
ment and ecosystem on a global scale. It is obvious that 
many sectors are being affected by climate change. For in-
stance, a reduction of agriculture production and increased 
risk of animal and plant extinction are caused by rising tem-
perature; destruction of infrastructure and loss of lives are 
triggered by severe flood events; on the other hand, severe 
droughts occurring in dry seasons probably enhance water 
conflict. A regional assessment of climate change on man-
kind, to some extent, was addressed in the Fourth Assess-
ment Report by the IPCC 1 (2007). 

The main indicators of climate change are increased 
temperature and variability of precipitation. Observations 

showed that the last decade has been recorded as warmest 
years in the last hundred years. The surface temperature in-
crease was observed for the entire globe, about 0.74°C over 
the last 100 years (IPCC 2007). It is projected that by the 
end of this century (period 2090 - 2099), the global aver-
age surface temperature will be likely increasing by 2.8°C 
relative to period 1980 - 1999 which is based on scenario 
A1B simulation. Increases in temperature, therefore, are ex-
pected to result in changes in hydrological cycles, especially 
the increases of spatiotemporal variability of precipitation. 
It is very likely that river flow regimes will be varied. High 
river flow is projected to increase in most tropical regions 
due to the higher frequency of extreme precipitation. On the 
other hand, more serious drought events during dry periods 
might increase a threat of water shortage and further inland 
salinity intrusion. 

1 Intergovernmental Panel on Climate Change.
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Assessment of hydrological responses to climate 
change has been addressed since the middle of the last cen-
tury. It has been continuously revised as a result of the im-
provement of climate model output in terms of spatiotempo-
ral resolution and prediction capability. Most assessments 
have been based primarily on a coupling approach between 
global atmospheric general circulation models (GCMs), 
which are designed to simulate past and current climate then 
used to predict the future state of global climate based on 
specific scenarios of green-house gas emission, and hydro-
logical models. GCMs are generally operational with very 
coarse spatial resolution, of the order of hundreds kilome-
tres, given the limitation of computational capacity. Small 
scale effects of land surface, as a result, are not resolved by 
GCMs. Application of direct model output often results in 
large discrepancies of runoff simulations. It was reported 
that direct application seems to be suitable for assessments 
in macro river basins, as stated in the literature (Xu 1999). 
Given the limitation of the GCMs, downscaling the model 
output is often employed to derive sub-grid precipitation 
used for hydrological simulation. Downscale technology is 
simply classified into dynamic downscaling and statistical 
downscaling methods. The dynamic downscaling method, 
otherwise known as regional climate models, can provide 
higher spatiotemporal resolution of model output, but is 
costly to run. On the other hand, a statistical downscaling 
method has exhibited a cost-effective method which has 
been widely applied in most climate change impact assess-
ments. An inclusive review of downscaling methods for 
GCMs was presented by Wilby and Wigley (1997).

Changes in river flow regimes in some largest river 
basins were addressed in the latest assessment, the Fourth 
Assessment Report conducted by the IPCC (2007), which 
employs advanced climate models developed by leading 
modelling institutions around the world (the Coupled Model 
Inter-comparison Project - Phase 3). The report indicated 
that river flows tend to decrease significantly during dry 
periods. Together with rising temperature and rapid popu-
lation growth most of these river basins are facing severe 
water scarcity by the middle of this century. Other studies 
indicated that the increased frequency of flood runoff dur-
ing rainy seasons is projected by most climate change sce-
narios (Gellens and Roulin 1998). However, it is expected 
that the hydrological responses are completely distinct for 
specific river basins given the differences in topography and 
weather patterns.

Located in South-east Asia, Vietnam is one of the most 
affected countries by climate change which has been aware 
of a major challenge in this century. With respect to adap-
tation strategies to climate change, estimates of river flow 
variability within a river basin scale can provide valuable 
input for decision makers and exposed communities for the 
better development of an adaptation strategy. This study 
presents a projection of medium-term and long-term runoff 

variation in the upper Thu Bon River basin as a case study. 
The large scale precipitation projection at the middle and 
the end of the 21st century under the A1B scenario simulated 
by a GCM is statistically downscaled to the basin scale and 
then used as input for a distributed hydrological model for 
runoff variation assessment.

2. Study AReA And methodology
2.1 Study Area

The catchment selected in this study is the upper reach 
of the Thu Bon River, which belongs to the Vu Gia-Thu 
Bon River system as illustrated in Fig. 1, with an area of 
3150 km2. Due to rapid economic development, the change 
in land use for agricultural expansion and increasing popu-
lation have been observed throughout the basin except the 
most upstream parts covered by forest. The study area, thus, 
has been coping with water-related issues given by climate 
change impacts. It often experiences large scale flooding 
disasters during wet seasons, from September to Decem-
ber, every year. These floods are usually caused by intense 
widespread rainfall. On the other hand, low river flow in the 
remaining months associated with sea level rise often leads 
to severe drought and further inland salinity intrusion. With 
regard to distribution of soil type, it is simply grouped in 
the following 3 categories: (i) alluvium distribution mainly 
found in downstream parts of the river basin and in some 
medium high places; (ii) red and yellow podzol in most me-
dium high and elevated places; and (iii) lithosol distributed 
mainly in elevated areas, known as most upstream parts. 
Hydraulic conductivity of soil type for loam, clay-loam, and 
clay varies from 10-4 to 10-7 m s-1.

2.2 general Circulation model

Regarding the contribution to phase 3 of the Coupled 
Model Inter-comparison Project, a large number of GCMs 
were developed by leading climate modeling centers in the 
world such as in Europe, America, and Asia. These mod-
els generally provide experimental simulations of global 
climate with relatively coarse spatiotemporal resolution; 
model output is usually on monthly basis for a grid cell dis-
tance of 2 - 5 degrees. Each modeling center, however, has 
its own simulation purposes, and is very much dependent 
on computational capability. The models, therefore, might 
be different in terms of physical parameterization, time slice 
and spatiotemporal resolution. This study used the output of 
the coupled general circulation model developed by the Me-
teorological Research Institute (MRI) in cooperation with 
Meteorological Agency of Japan (JMA), simply referred as 
CGCM, with spatial resolution of 2.8 degrees (approximate 
300 km). The CGCM is currently considered to be one of 
the most advanced global climate models which reproduces 
the past, present and future climate patterns with a high con-
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fidence for most scenarios. With respect to future climate 
projections, the CGCM simulates a number of scenarios 
that are in line with different estimates of greenhouse gas 
and CO2 concentration, for instance, scenarios A1B, A2, 
B1, among others. However, within the scope of the present 
study the climate change impacts will be analyzed using the 
projection of future climate under scenario A1B, the very 
likely scenario that keeps a balance consumption among 
all energy sources. Model output gives monthly averaged 
estimates of temperature, precipitation, humidity, pressure, 
wind velocity, and so on. 

The study takes a convention that precipitation obtained 
from rain gauges is referenced rainfall (true rainfall). Seven 
rain gauges (Fig. 1) which measure daily rainfall either in or 
nearby the catchment boundary are selected for the analysis. 
A stream gauge at the outlet of the catchment is used for a 
runoff simulation and variation assessment. These hydro-
meteorological stations have provided a continuous record 
since 1981. 

2.3 Statistical downscaling model

Given the limitations of physical representation of the 
real world and computing capability, GCMs are dealing 
with relatively simple parameterization schemes and coarse 
spatial resolutions, grid cell distances on the order of hun-

dreds of kilometers. These spatial resolutions are too coarse 
for hydrological simulations or local-scale climate research 
which usually require resolutions of about hundreds of me-
ters for small-size catchments to a couple of kilometers for 
large-size basins. In addition, the land surface is averaged 
within very coarse grid cells; thus, small-scale effects of to-
pography may not be resolved in these GCMs. As a result, 
direct output from GCMs is usually subject to significant 
discrepancies such as precipitation that is well known as the 
most unpredictable variable.

The statistical downscaling is based fundamentally on 
the formulation of either linear or nonlinear relationships 
between large-scale atmospheric variables simulated by 
GCMs (usually referred as predictor variables) and local or 
single site scale variables (or so called predictand variables). 
These statistical relationships are then used to improve the 
direct model output of the GCMs. With respect to the for-
mulation of empirical relationships between predictands 
and predictors, downscaling schemes are dependent on the 
selection of transfer function, predictor variables, and statis-
tical fitting procedures (Wilby et al. 2002). In the context of 
this research, one of the most simple and popular artificial 
neural network (ANN) architectures which are commonly 
used in statistical downscaling, the feed-forward multilayer 
perceptron using error back-propagation weight update rule 
(Fig. 2), hereafter simply referred as ANN, is employed for 

Fig. 1. Map of the Vu Gia-Thu Bon River system in Central Vietnam and locations of hydro-meteorological stations.
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precipitation estimates. In terms of learning skill, ANN is 
generally observed to perform a better learning ability than 
the other regression-based downscaling techniques (Schoof 
and Pryor 2001). Details of the ANN structure and learning 
algorithm were described in literature (Nam et al. 2011a).

The most crucial part of any statistical downscal-
ing model is perhaps the selection of predictor variables. 
GCMs can give a large number of model output variables 
at different pressure layers, so that there are always more 
potential predictors available than those really need for a 
statistical prediction procedure. The selection of most sig-
nificant predictor variables for the formulation of empiri-
cal relationships, therefore, is most important. Inclusion of 
less relevant predictor variables in prediction equations may 
lead to the case of overfitting. The data which the excellent 
fit is achieved on the dependent data, but the fitted relation-
ship is unable to perform with independent data exclusion 
from the development of the prediction equation (Wilks 
2006). The optimized process of predictor variables selec-
tion should consider first those predictor variables that are 
meteorologically reasonable, given the physical processes 
associated with the particular climate pattern to be simulat-
ed, for instance, the prevailing synoptic climate conditions 
over targeted regions. Second, in case absence of meteoro-
logical and physical interpretations, purely empirical selec-
tion of predictor variables should be performed (Kuligowski 
and Barros 1998). In line with the scope of the present re-
search which attempts to downscale the large-scale monthly 
averaged precipitation derived from CGCM output so that 
meteorological interpretations are not properly defined, the 
later empirical selection of predictor variables is employed. 
A stepwise multiple linear regression method is then used to 
select the most statistically significant predictor variables. 

2.4 hydrological model

With respect to a rainfall-runoff analysis, the tank 
model that was first introduced by Sugawara (1967) has 

exhibited a simple lumped model, but it shows a great abil-
ity in runoff simulation. As a conceptual model the tank 
model, however, has many parameters that require calibra-
tion. The super-tank model used in this study for rainfall 
runoff analysis apparently tends to overcome this issue. 
The model is also based on the original tank, attributed 
with some physically based features (Kardhana et al. 2007; 
Nam et al. 2011b). The super-tank model, thus, has nearly 
calibration-free parameters, because the model parameters 
are internally calibrated using geo-topographical and land-
surface information. Furthermore, given a semi-distribut-
ed hydrologic model the super-tank model is assumed to 
outperform lumped hydrologic models in terms of spatial 
variation consideration. As a result, the super-tank model 
has successfully demonstrated its robustness and universal-
ity in rainfall runoff modeling, across a wide range of spa-
tial and temporal scales, especially the scarce observation 
catchments.

With regard to the vertical structure of the super-tank 
model, the sub-basin storage consists of linear cascade tanks 
that are illustrated in Fig. 3. The top 2 tanks represent the 
precipitation input and canopy interception respectively. 
Meanwhile the 3 sub-surface tanks represent the interflows; 
the bottom tank, referred as the groundwater layer, repre-
sents the baseflow. In the context of this study given the 
limitation of hydro-geological information of the ground-
water layer, a lump tank that represents the contribution of 
groundwater of the whole basin is used. Therefore, calibra-
tion for lump parameters, the gradient and initial storage of 
the groundwater tank applied for all grid cells is required. 
The generation of flow in channel networks is considered 
as a result of lumped flow to the channel nodes and flood 
routing in the channels. Further model description and gov-
erning equations were presented in the literature (Kardhana 
et al. 2007).

The evaluation of runoff model performance is based 
on the Nash Sutcliffe Index (NSI), or so-called coefficient of 
model efficiency, which is expressed in Eq. (1) below.

Fig. 2. Architecture of a feed-forward ANN with back-propagation algorithm.
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where, Qobs = observed monthly streamflow; Q obs  = ob-
served monthly mean streamflow; Qcal = calculated monthly 
streamflow.

3. ReSultS And dISCuSSIon
3.1 downscaled Precipitation

Surface climate analysis based on GCMs output is 
typically conducted for individual points, sub-grid scale or 
area-average bases. The GCMs output is provided as a grid-
point-value averaged over a grid cell. Using area-average 
downscaling approach apparently tends to reduce scale ef-
fects, in particular when the catchment size is large. Pre-
dictor variables from neighbor grid points are preliminarily 
interpolated and then averaged over the study basin using 
inverse distance weighting method. The same procedure is 
conducted for the ground rainfall observation points for ar-
eal estimate of actual precipitation. 

The downscaling process of large-scale precipitation 
in this study is divided into a training phase and validation 
phase, using CGCM output and historical precipitation for 
periods 1981 - 2000 and 2001 - 2010 respectively. Down-
scaled precipitation is performed on monthly averaged ba-
sis which is in line with temporal resolution of the CGCM 
output.

Large-scale atmospheric variables provided by the 
CGCM output for public uses are presented in Table 1. 
These variables are considered to be candidate predictors. 
Based on predictor variable screening process using the 
stepwise multiple linear regression method, the optimal 
predictor variables for model training are determined and 
presented in Table 2. These selected predictor variables are 
used to formulate the statistical downscaling model. The 
ANN architecture, therefore, comprises an input layer of 5  

nodes, a single hidden layer of 10 nodes, and the downscaled 
precipitation in the output layer. A simple source code writ-
ten by Brierley (1998), the Tiberius, is employed for model 
training.

The statistical downscaling model is first trained using 
historical data in the period 1981 - 2000. Monthly time series 
of downscaled results are averaged over this period. Figure 4  
illustrates the comparison of monthly mean precipitation 
during 1981 - 2000 derived from CGCM output, statistical 
downscaling model using ANN, and actual observation. It 
is obvious that the large-scale precipitation estimated by the 
CGCM depicts very large discrepancies compared to those 
measured by rain gauges, particularly in wet months lasting 
from October to December. On the other hand, the statistical 
downscaling model using ANN has demonstrated signifi-
cant skill in estimating precipitation. It shows a very good 
agreement with the actual rainfall observed in the field, ex-
cept slight underestimates are found at the end of the wet 
period. Area-averaged correlation coefficient of 0.98 is at-
tained. 

The formulated empirical relationship between the ac-
tual rainfall observed by rain gauges and large-scale vari-
ables derived from CGCM output is then applied for the 
estimate of downscaled precipitation in the validation phase 
during 2001 - 2010. The comparison is also made similarly 
for the monthly mean precipitation. Validation results are 
illustrated in Fig. 5. It is found that the statistical downscal-
ing model has successfully proved its ability to derive lo-
cal-scale precipitation from large-scale predictor variables 
simulated by CGCM although minor discrepancies are also 
observed. This leads to a minor underestimation of precipi-
tation given by the proposed downscaling model.

In order to project future precipitation over the study 
area, the validated statistical downscaling model is then 
utilized to perform the prediction of precipitation in future 
scenarios under the scenario A1B for medium-term (2040 
- 2069) and long-term (2070 - 2099). Projected results are 
averaged over these periods, subsequently compared the 

Fig. 3. Schematic of the super-tank model.
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Fig. 4. Hyetograph of observed rainfall (P_obs) and those directly derived CGCM output (P_cgcm) and statistical downscaling model (P_ann) for 
the training phase, 1981 - 2000.

Table 1. Candidate predictor variables for model calibration.

Table 2. Selected predictor variables for model training.

no. Variables unit

1 Near surface specific humidity 1

2 Precipitation flux mm month-1

3 Air pressure at sea level Pa

4 Surface down welling short-wave flux in air W m-2

5 Air temperature °C

6 Eastward wind speed m s-1

7 Northward wind speed m s-1

8 Wind speed m s-1

no. Variables unit

1 Near surface specific humidity 1

2 Precipitation flux mm month-1

3 Air pressure at sea level Pa

4 Air temperature °C

5 Wind speed m s-1

baseline precipitation (1981 - 2000). Figure 6 presents fu-
ture changes in precipitation relative to the baseline period. 
Results show that there will be not much variability of pre-
cipitation in the future, except significant variations found 
in September (negative) and January (positive). It is pre-
sumably understood as the potential of seasonal variation 
that shifts wet months, currently, from September-Decem-
ber to October-January in the future. In other words, the wet 
season tends to be delayed in onset and late in withdrawal 
(Kitoh and Uchiyama 2006).

3.2 Runoff Simulation

One of the greatest advantages of the super-tank model 
is its nearly calibration-free parameters. Theoretically, the 4 
parameters of the model are required calibration. However, 
these parameters have been optimized through the physical 
interpretation or similarity. The interception storage capac-
ity (S) is selected at the value of 0.025 m (Kardhana et al. 
2007). The infiltration rate has been controlled by the top 
soil saturated hydraulic conductivity. c is a dimensionless 
modification coefficient on the saturated hydraulic conduc-
tivity that represents the assumed deviation between esti-
mation and actual interflow from the Darcy Law given the 
nature of soil structure. The c coefficient tends to be the uni-
versal number, found at the optimal value of 10 (Kato and 
Mano 2003; Kardhana et al. 2007; Nam et al. 2012). a co-
efficient is used to determine the distribution of roughness 
coefficient in river. The a coefficient is determined with the 
value of 0.15 for this study basin. 

Calibration for lump parameters, the gradient and ini-
tial storage of the groundwater tank, applied for all grid cells 
is conducted here simply based on trial and error approaches 
using historical rainfall and flow data of during the period 

1981 - 1990. The best values for the groundwater tank gra-
dient and initial storage are found of 5.0E-2 and one fourth 
of the tank depth (approximate 10 m) respectively. Model 
validation is performed for the period 1991 - 2000. Results 
showed that the simulated hydrograph agreed very well 
with the observed hydrograph (Fig. 7); most high flow peri-
ods are captured by the runoff model. Coefficient of model 
efficiency (NSI = 0.71) is attained for the overall model per-
formance.
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Fig. 6. Medium-term and long-term projections of changes in monthly mean precipitation relative to the baseline, 1981 - 2000.

Fig. 7. Time-series of observed and simulated monthly discharge for the model validation, 1991 - 2000.

Fig. 5. Hyetograph of observed rainfall (P_obs) and those directly derived CGCM output (P_cgcm) and statistical downscaling model (P_ann) for 
the validation phase, 2001 - 2010.
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Another validation procedure is conducted for the 
downscaled precipitation which is estimated by the statisti-
cal downscaling model (using ANN). Monthly mean pre-
cipitation downscaled by ANN (P_ann) in the validation 
period 2001-2010 is used as input for the super-tank model 
for runoff simulation. It can be observed in Fig. 8 that the 
simulated hydrograph exhibits a very good agreement with 
the actual hydrograph; it is comparable to those reproduced 
using rainfall information from rain gauges. Overall model 
performance is evaluated through the coefficient of model 
efficiency (NSI = 0.9). As a result, validations of statisti-
cal downscaling model and runoff model for the estimate 
and simulation of monthly mean precipitation and runoff, 
respectively, demonstrate a high level of confidence for the 
application of these calibrated models in future climate and 
runoff analysis.

3.3 Projection of Runoff Variation

In order to assess the potential runoff responses to cli-
mate change impact, the medium-term and long-term pro-
jections of precipitation based on downscaling model will 
be used to simulate river flow. Simulated results are then 
compared to those in the baseline at the end of the 20th cen-
tury.

Though changes in precipitation are regionally depen-
dent, increase in surface temperature has been observed 
for the entire globe (IPCC 2007). Projection of significant 
increase in future surface temperature is likely to enhance 
evapotranspiration processes so that higher evapotrans-
piration rate is expected. It will directly influence runoff 
generation processes, so that the inclusion of variation in 
evapotranspiration rate is essential for runoff assessment. 
Projection of potential evapotranspiration (PET) rate in this 
study is simply based on climatic average monthly tem-
perature. Malmström (1969) introduced a method for the 

estimate of monthly climatic PET as expressed in Eq. (2) 
below.

 
e.PET T40 9 *

s s= ^ h         (2)

where e*
s  is the saturation vapor pressure at the surface tem-

perature (Ts) and determined in Eq. (3).
 

T. .
.expe T0 611 237 3

17 3*
s

s

s= +c m       (3)

Here, the the saturation vapor pressure and surface tempera-
ture are in kPa and °C respectively.

In the context of this study, projection of surface tem-
perature is directly derived from the CGCM output. It is 
simply explained as the CGCM actually exhibits very good 
estimates of surface temperature. Correlation coefficient be-
tween simulated and observed temperature is about 0.9 for 
the baseline period. However, the CGCM slightly overesti-
mates and underestimates the temperature in cold and hot 
months respectively so that the same order of errors in PET 
estimates is expected. As a result of rising surface tempera-
ture, of about 1.2°C and 1.8°C by the middle and the end 
of the century respectively relative to the baseline period 
1981 - 2000, results show that the averaged PET in 2040 - 
2069 and 2070 - 2099 will increase about 9% and 13% of 
that order relative to the baseline period (Fig. 9). It seems to 
underestimate for July and August. 

Subsequently, the simulations of runoff correspond-
ing to these scenarios are conducted using the super-tank 
model. Simulated hydrographs are illusttraed in Fig. 10. It is 
compared to the discharge observed in the baseline period. 
In general, the runoff generation depicts a similar behavior 
with those obseved in the baseline period except a slower 
declination towards the recession limb in January and Feb-

Fig. 8. Hydrographs of observed and simulated monthly mean discharge for the model validation, 2001 - 2010.
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ruary for both cases (medium-term and long-term). It could 
be explained due to the late withdrawal of the wet period. 

Quantitative evaluation of monthly runoff variation 
relative to the baseline period is presented in Fig. 11. There 
is a tendency that climate change will cause impacts on the 
runoff regimes towards a decline in a dry period and a lon-
ger duration of high streamflow. As a result of the delayed 
onset of the wet season, a considerable runoff reduction is 
observed in September of about 25%. While an approximate 
a double increase of runoff is found in January and February 
given by the late withdrawal. It is also found that future run-
off will not vary much between these two scenarios. With 
respect to catchment water balance, both medium-term and 
long-term projections show almost a similarity in annual 
runoff relative to the baseline period. This is perhaps due to 
the increasing PET rate over time while a slight increment 
of precipitation is projected. 

It is obvious that variation in runoff regimes will 
propbably lead to potential impacts on an ecosystem, envi-

ronment, and activities not only within the catchment scale, 
but also downstream. Reduction of water availability in a 
dry season accompanied by rising surface temperature tends 
to raise pressure on water resources. In addition, the low 
river flow in a dry season will enhance further inland sa-
linity instrusion so that cultivable area becomes lessened. 
Agricultural production, therfore, is projected to decrease. 
An increasing water shortage might also increase level of 
water conflicts. On the other hand, land use change together 
with a rapid urbanisation process will increase risk of flood 
disaster which its intensification and level of severity are 
more frequently expected.

4. ConCluSIonS And RemARkS

It is very likely that climate change will be a major 
concern for the mankind, ecosystem, and environment. De-
veloping a strategy for adaptation is one of a number of ef-
ficient responses to climate change impacts. This research  

Fig. 9. Medium-term and long-term projections of changes in monthly potential evapotranspiration (PET) relative to the baseline, 1981 - 2000.

Fig. 10. Hydrographs of observed and projected monthly mean discharge for the middle and the end of this century.
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attempts to explore the hydrological responses to the im-
pacts through the assessment of runoff regimes in the fu-
ture based on downscaled precipitation from large-scale 
variables simulated by the CGCM and the runoff model. 
Medium-term and long-term impacts have been examined 
at a river basin scale in Central Vietnam. Preliminary find-
ings are summarized as follow:

(i) Coupling between a statistical downscaling model and 
distributed runoff model has demonstrated a useful 
technology in climate change impact assessment on wa-
ter resources. The simplicity of model structure allows 
these models to be easily implemented across a wide 
range of temporal and spatial scales. Due to less com-
putational demands and calibration requirements, the 
coupled model has become a robust tool in runoff as-
sessment, especially in scattered/ungauged catchments.

(ii) In medium-term and long-term projections, the aver-
aged annual runoff is found not to be really distinc-
tive relative to the baseline period 1981 - 2000 though 
precipitation is slightly increased. This is perhaps due 
to the substantial increase of evapotranspiration rate 
caused by temperature rising. Regarding seasonal varia-
tion, the runoff is projected decreasing in the dry season 
and increasing in the rainy season.

(iii) As a result of delay in onset and late withdrawal of the 
wet season, the high flow period tends to shift from 
September - December at present to October - January 
in the future. 

In the next steps of the current study, it is planned to 
concentrate on extreme event projection using the super high 
resolution global climate model (20 km grid cell distance) 
which is also experimented by MRI & JMA. It is hoped to 
provide higher level of confidences for each projection sce-
nario. So that the outcome would possibly be a vital tool for 
planning and management at river basin scales in response 
to climate change impacts.

Acknowledgements This study is under the financial sup-

port of the Japan Society for the Promotion of Science 
(JSPS), and JST/JICA, SATREPS (Science and Technology 
Research Partnership for Sustainable Development). 

RefeRenCeS

Brierley, P., 1998: Some practical application of neural net-
works in the electricity industry. Ph.D. Dissertation, 
Cranfield University, Cranfield, UK.

Gellens, D. and E. Roulin, 1998: Streamflow response of 
Belgian catchments to IPCC climate change scenarios. 
J. Hydrol., 210, 242-258, doi: 10.1016/S0022-1694(98) 
00192-9. [Link]

IPCC (Intergovernmental Panel on Climate Change), 2007: 
An Assessment of the Intergovernmental Panel on Cli-
mate Change. Synthesis Report.

Kardhana, H., H. Tatesawa, and A. Mano, 2007: Flood 
forecast based on numerical weather prediction and 
distributed runoff model. In: Brebbia, C. A. and K. L. 
Katsifarakis (Eds.), River Basin Management IV, WIT 
Press, 201-211, doi: 10.2495/RM070201. [Link]

Kato, H. and A. Mano, 2003: Flood runoff model on one 
kilometer mesh for the Upper Chang Jiang River. Pro-
ceeding of GIS & RS in Hydrology, Water Resources, 
and Environment, 1, 1-8.

Kitoh, A. and T. Uchiyama, 2006: Changes in onset and 
withdrawal of the East Asian summer rainy season by 
multi-model global warming experiments. J. Meteo-
rol. Soc. Jpn., 84, 247-258, doi: 10.2151/jmsj.84.247. 
[Link]

Kuligowski, R. J. and A. P. Barros, 1998: Localized precipi-
tation forecasts from a numerical weather prediction 
model using artificial neural networks. Weather Fore-
cast., 13, 1194-1204, doi: 10.1175/1520-0434(1998)0
13<1194:LPFFAN>2.0.CO;2. [Link]

Malmström, V. H., 1969: A new approach to the classifica-
tion of climate. J. Geogr., 68, 351-357, doi: 10.1080/ 
00221346908981131. [Link]

Fig. 11. Medium-term and long-term projections of changes in monthly streamflow relative to the baseline, 1981 - 2000.

http://dx.doi.org/10.1016/S0022-1694(98)00192-9
http://dx.doi.org/10.2495/RM070201
http://dx.doi.org/10.2151/jmsj.84.247
http://dx.doi.org/10.1175/1520-0434(1998)013<1194:LPFFAN>2.0.CO;2
http://dx.doi.org/10.1080/00221346908981131


Climate Change Impacts on Runoff Regimes 551

Nam, D. H., K. Udo, and A. Mano, 2011a: Downscal-
ing global weather forecast outputs using ANN for 
flood prediction. J. Appl. Math., 246286, 1-14, doi: 
10.1155/2011/246286. [Link]

Nam, D. H., K. Udo, and A. Mano, 2011b: Flood forecasting 
and early warning for river basins in Central Vietnam. 
Ann. J. Hydraul. Eng. (JSCE), 67, 7-12, doi: 10.2208/
jscejhe.67.I_7. [Link]

Nam, D. H., K. Udo, and A. Mano, 2012: Inflow forecast 
using downscaled rainfall from global NWP for real-
time flood control. Ann. J. Hydraul. Eng. (JSCE), 68, 
181-186. 

Schoof, J. T. and S. C. Pryor, 2001: Downscaling tempera-
ture and precipitation: A comparison of regression-
based methods and artificial neural networks. Int. J. 
Climatol., 21, 773-790, doi: 10.1002/joc.655. [Link]

Sugawara, M., 1967: The flood forecasting by a series stor-

age type model. International Symposium Floods and 
Their Computation, International Association of Hy-
drologic Sciences, 1-6.

Wilks, D. S., 2006: Statistical methods in the atmospheric 
sciences. Academic Press, second edition, 210-211.

Wilby, R. L. and T. M. L. Wigley, 1997: Downscaling gen-
eral circulation model output: A review of methods 
and limitations. Prog. Phys. Geogr., 21, 530-548, doi: 
10.1177/030913339702100403. [Link]

Wilby, R. L., C. W. Dawson, and E. M. Barrow, 2002: SDSM 
- A decision support tool for the assessment of regional 
climate change impacts. Environ. Modell. Softw., 17, 
145-157, doi: 10.1016/S1364-8152(01)00060-3. [Link]

Xu, C., 1999: From GCMs to river flow: A review of 
downscaling methods and hydrologic modelling ap-
proaches. Prog. Phys. Geogr., 23, 229-249, doi: 10.11 
77/030913339902300204. [Link]

http://dx.doi.org/10.1155/2011/246286
http://dx.doi.org/10.2208/jscejhe.67.I_7
http://dx.doi.org/10.1002/joc.655
http://dx.doi.org/10.1177/030913339702100403
http://dx.doi.org/10.1016/S1364-8152(01)00060-3
http://dx.doi.org/10.1177/030913339902300204

