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ABStRAct

Parameters of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall simulation model were region-
alized across the contiguous United States. Three thousand four hundred forty-four National Climate Data Center (NCDC) 
rain gauges were used to obtain spatial and seasonal patterns of the model parameters. The MBLRP model was calibrated to 
minimize the discrepancy between the precipitation depth statistics between the observed and MBLRP-generated precipita-
tion time series. These statistics included the mean, variance, probability of zero rainfall and autocorrelation at 1-, 3-, 12- and 
24-hour accumulation intervals. The Ordinary Kriging interpolation technique was used to generate maps of the six MBLRP 
model parameters for each of the 12 months of the year. All parameters had clear to discernible regional tendencies; except 
for one related to rain cell duration distribution. Parameter seasonality was not obvious and it was more apparent in some 
locations than in others, depending on the seasonality of the rainfall statistics. Cross-validation was used to assess the validity 
of the parameter maps. The results indicate that the suggested maps reproduce well the observed rainfall statistics for different 
accumulation intervals, except for the lag-1 autocorrelation coefficient. The boundaries of the expected residual, with 95% 
confidence, between the observed rainfall statistics and the simulated rainfall statistics based on the map parameters were ap-
proximately ±0.064 mm hr-1, ±1.63 mm2 hr-2, ±0.16, and ±0.030 for the mean, variance, lag-1 autocorrelation and probability 
of zero rainfall at hourly accumulation levels, respectively. The estimated parameter values were also used to estimate the 
storm and rain cell characteristics.
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1. IntRoductIon

Precipitation variability in time and space strongly in-
fluences important water issues ranging from flooding to 
drought to availability (i.e., from excess water to lack of wa-
ter). Drainage system design, the implementation of flood 
protection measures or the assessment of water availability 
for human consumption, irrigation or hydropower, for ex-
ample, require extensive understanding of the precipitation 
patterns in the area. Depending on the type of problem being 
addressed and the size of the hydrologic system, sub-daily 
precipitation data might be required, which is not always 
available. In fact, according to the National Climate Data 
Center (NCDC) (2011a, b), as of 2006, there were 25396 

rain gauges in the contiguous United States but only 25% of 
them keep sub-daily records (i.e., hourly). That is, on aver-
age, one gauge for each 1550 km2, but it can be even sparser 
in some areas of the country. In this context of lack of data 
with the desired temporal resolution, stochastic rainfall gen-
erators offer the possibility of producing synthetic precipita-
tion time series that resemble the fundamental characteris-
tics of the real precipitation, which can be used as input to 
hydrologic models.

This study addresses the regionalization of the pa-
rameters of the Modified Bartlett-Lewis Rectangular Pulse 
(MBLRP) stochastic point process rainfall model (Rodri-
guez-Iturbe et al. 1987, 1988), a stochastic rainfall generator,  
for the contiguous United States. Among the stochastic rain-
fall generators, the MBLRP model was selected because it 
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“is particularly accessible to mathematical analysis” (Ro-
driguez-Iturbe et al. 1987). However, it is well documented 
that the MBLRP model has limitations for accurately rep-
resenting extreme values for different accumulation inter-
vals and zero-depth probabilities (e.g., Onof and Wheater 
1994a; Verhoest et al. 1997; Cowpertwait 1998; Cameron et 
al. 2001). Maps of each model parameter for each month of 
the year were developed, which allow the simulation of sub-
daily rainfall at any point in the country without having to 
calibrate and validate the model each time. These maps, in 
raster format, are available for downloading at the first au-
thor’s Internet site at http://huniv.hongik.ac.kr/~dekaykim/
MBLRP_USA/MBLRP_USA.zip. The regionalization of the  
MBLRP model parameters presented here has similar goals 
previous studies had, but it is fundamentally different in the 
robustness of its results because of the much larger number 
of rain gauges used for map generation and validation, and 
of the approach used in calibration for handling the multi-
modality of the MBLRP model structure.

Rodriguez-Iturbe et al. (1987) presented the Bartlett-
Lewis Rectangular Pulse (BLRP) model in which storm 
events arise in a Poisson process. Rodriguez-Iturbe et al. 
(1988) further modified the 5-parameter BLRP model by 
introducing an additional parameter to enhance its ability 
to capture dry periods and called it the Modified Bartlett-
Lewis Rectangular Pulse (MBLRP) model. Among oth-
ers, Islam et al. (1990), Bo et al. (1994), Onof and Wheater 
(1994a), and Chandler (1997) discuss the complexity of the 
model calibration; and Islam et al. (1990), Bo et al. (1994), 
Onof and Wheater (1994b), Glasbey et al. (1995), Cowpert-
wait et al. (1996a), Khaliq and Cunnane (1996), Onof et al. 
(1996), and Verhoest et al. (1997) assess the overall accu-
racy of its fundamental assumptions by comparing statistics 
and extreme values of observed and synthetic precipitation 
time series. Verhoest et al. (1997), in particular, applied 
the MBLRP model to Uccle, Belgium, for which 27 years 
of 10-minute rainfall data were available. After calibrat-
ing their model using the mean, variance and probability 
of zero of the observed rainfall, synthetic time series were 
generated that successfully reproduced extreme values for 
long accumulation intervals but failed to do so for short ac-
cumulation intervals. They also noticed that the duration of 
the storms in the synthetic rainfall time series was shorter 
than that in the observed one, which was interpreted as a too 
intense clustering of rainfall events. Cowpertwait (1998) ap-
plied the MBLRP model to a site in Wellington, New Zea-
land, for which 41 years of hourly rainfall data were avail-
able and obtained a good fit for the observed extreme values 
for a range of accumulation intervals (e.g., 1 hour through 
24 hours) when calibration was also based on the skewness 
of the precipitation distribution, in addition to the mean and 
variance. However, as he points out, including high-order 
moments do not affect the extreme value estimates if a two-
parameter distribution - such as the Gumbel distribution, in 

which the parameters depend on the mean and variance only 
- is used. Cameron et al. (2001), likewise, propose a modi-
fied random pulse Barlett-Lewis stochastic rainfall model 
for extreme value simulations that uses a generalized pa-
reto distribution to represent the high-intensity rain cells. 
Onof et al. (2000) discuss the importance of considering 
“the application for which the rainfall model is to be used” 
when assessing the relevance of the discrepancies between 
observed and synthetic rainfall. A further development of 
the MBLRP model is the MBLRP spatial-temporal model 
(Cox and Isham 1988; Cowpertwait 1998; Onof et al. 2000), 
which accounts for the spatial and temporal correlation and 
variability of the precipitation field.

Studies on the regionalization of point-process based 
stochastic rainfall simulation models (including the MBL-
RP model) have been conducted in past decades. An early 
attempt at regionalizing the parameters of the Hershenhorn 
and Woolhiser (1987) point-process rainfall model was con-
ducted by Econopouly et al. (1990). Their study used data 
from two gauges, one in Missouri and one in Nebraska, and 
its results were compared to observed precipitation in three 
gauges, one in Illinois, one in Iowa and one in Wisconsin. 
They showed that parameter sets could be transferred up to 
470 km away within the same climatological regime. Hawk 
and Eagleson (1992) regionalized the parameters of the 
MBLRP model across the country and generated contour 
maps of each parameter for each month of the year. Their 
maps were generated based on data from 75 randomly se-
lected rain gauges and 4 additional gauges were used for 
validation. Cowpertwait et al. (1996b) suggest regression 
equations that relate the parameters of the Neyman-Scott 
Rectangular Pulse (NSRP) model (Rodriguez-Iturbe et al. 
1987) to regional properties (e.g., altitude and distance to 
the coast). Their analysis was performed using rainfall data 
from 112 sites in the United Kingdom.

Other regionalization studies address rainfall disaggre-
gation models in which coarse temporal precipitation time 
series are disaggregated into fine series. Gyasi-Agyei (1999) 
suggests a method for estimating the parameters of the Gya-
si-Agyei and Willgoose (1997) disaggregation model for 
regions where only coarse temporal data are available. His 
analysis was performed with 13 rain gauges over a region 
of several hundred square kilometers in Australia. Gyasi-
Agyei’s (1999) approach generated rainfall time series that 
matched well observed precipitation depth statistics such 
as mean, variance, probability of zero and auto-correlation 
coefficient at different accumulation intervals ranging from 
6 minutes to 24 hours. A more recent study on parameter 
regionalization of rainfall disaggregation is described in 
Gyasi-Agyei and Mahbub (2007). They implemented the 
approach of Gyasi-Agyei (1999) on the entire Australian 
continent using rainfall observations from 43 six-minute 
rain gauges. As in the previous case, the generated rainfall 
time series matched well observed precipitation depth sta-

http://huniv.hongik.ac.kr/~dekaykim/MBLRP_USA/MBLRP_USA.zip
http://huniv.hongik.ac.kr/~dekaykim/MBLRP_USA/MBLRP_USA.zip


Regionalization of the Modified BRLP Stochastic Rainfall Model 423

tistics at different accumulation intervals. Choi et al. (2008) 
applied Socolofsky et al.’s (2001) single-parameter rainfall 
disaggregation method to Texas. The method uses hourly 
precipitation records from one or more stations to simulate 
hourly precipitation at another station for which only dai-
ly data are available. They used a total of 532 hourly rain 
gauges that constituted a database of historical precipitation 
from which rainfall intermittence patterns were derived. 
The single parameter represented the smallest expected one-
hour event, and it was found to have a strong seasonal but a 
weak regional variability. Resulting simulated precipitation 
time series matched well observed precipitation statistics 
with the exception of high variances and high lag-one hour 
autocorrelation coefficients, which were systematically un-
derestimated.

In this study, maps of each of the six MBLRP model 
parameters for each month of the year - for a total of 72 maps  
- have been developed for the contiguous United States. 
This result is particularly meaningful in that it enables the 
generation of the synthetic rainfall time series at any spatial 
location in the contiguous United States based on MBLRP 
model. According to the conventional framework, generat-
ing synthetic rainfall time series using MBLRP model at 
ungauged locations requires the following steps: (1) estima-
tion of rainfall statistics at various temporal accumulation 
levels nearby rainfall gauges; (2) spatial interpolation of 
all calculated rainfall statistics for the location of interest; 
(3) estimation of the MBLRP model parameters using an 
optimization algorithm; and (4) generation of rainfall time 
series using the estimated parameters. Especially, the step 
(3) puts the major obstruction in the process because the 
typical slope-based optimization algorithm often fails, so 
using a heuristic optimization algorithm is essential, which 
requires a significant amount of effort to implement. This 
study overcame this issue by providing maps of the param-
eters which contains the predetermined parameter values at 
all spatial locations in the United States. Furthermore, the 
parameter values read from the maps were validated in their 
ability to reproduce the observed rainfall statistics at 3444 
gauge locations through the technique of cross-validation, 
which solidifies and adds the unique value to the result of 
this study.

Because the parameter maps presented here were de-
veloped using the MBLRP temporal model, they should be 
used to estimate precipitation at a single point only. Region-
alization of the MBLRP spatial-temporal model, for appli-
cations in larger areas, was out of the scope of this study, 
although it is recognized as an important matter for further 
research. Rainfall characteristics such as the average rainfall 
depth per storm, storm duration, number of rain cells per 
storm and rain cell duration were also derived from the es-
timated model parameters and spatially interpolated to pro-
duce maps. These maps can be used to better understand the 
rainfall characteristics of the continental United States.

2. ModIfIed BARtLett-LewIS RectAnguLAR 
PuLSe (MBLRP) ModeL

In the MBLRP model, rainfall time series are repre-
sented as sequences of storms comprised of rain cells (see 
Fig. 1). In the model, X1 [T] is a random variable that repre-
sents the storm arrival time, which is governed by a Poisson 
process with parameter λ [1/T]; X2 [T] is a random variable 
that represents the duration of storm activity (i.e., the time 
window after the beginning of the storm within which rain 
cells can arrive), which varies according to an exponen-
tial distribution with parameter γ [1/T]; X3 [T] is a random 
variable that represents the rain cell arrival time within the 
duration of storm activity, which is governed by a Poisson 
process with parameter β [1/T]; X4 [T] is a random variable 
that represents the duration of the rain cells. The distribution 
of the rain cell durations are known to have a long-tailed 
distribution (Rodriguez-Iturbe et. al. 1987), which was as-
sumed to vary according to an exponential distribution with 
parameter η [1/T] that, in turn, is a random variable repre-
sented by a gamma distribution with parameters ν [T] and 
α [dimensionless]; and X5 [L/T] is a random variable that 
represents the rain cell intensity, which varies according to 
an exponential distribution with parameter 1/μ [T/L]. From 
the physical viewpoint, λ is the expected number of storms 
that arrive in a given period, 1/γ is the expected duration of 
storm activity, β is the expected number of rain cells that ar-
rive within the duration of storm activity, 1/η is the expected 
duration of rain cells and μ is the average rain cell intensity. 
Parameters ν and α do not have a clear physical meaning, 
but the expected value and variance of η can be expressed 
as α/ν and α/ν2. Therefore, the model has six parameters: λ, 
γ, β, ν, α and μ; however, it is customary to use the dimen-
sionless ratios φ = γ/η and l  = β/η as parameters instead of 
γ and β.

Model parameter estimation is accomplished by 
matching - or minimizing the discrepancy between - statis-
tics of the simulated and observed rainfall time series. Some 
commonly used statistics are the precipitation depth mean, 
variance, probability of zero rainfall and lag-s covariance at 
various time scales (Khaliq and Cunnane 1996). According 
to Rodriguez-Iturbe et al. (1988) and Bo et al. (1994), the 
statistics of the synthetically generated rainfall time series 
at an accumulation interval T are:
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s is the lag time in number of accumulation intervals, and 
Y( )

t
T  is the rainfall time series at an accumulation interval 

T.

3. deveLoPMent of the MBLRP ModeL PA-
RAMeteR MAPS

As of 2006, there were 6356 hourly rain gauges in the 
contiguous United States, 3444 of which had a period of 
record longer than 20 years (NCDC 2011a, b) (see Fig. 2). 
These gauges were used for model calibration and valida-
tion. Model parameters at each rain gauge for each month 
were determined such that the difference between the statis-
tics of the simulated and observed rainfall time series was 
minimized. Once the parameters were determined at each 
rain gauge, they were spatially interpolated using the Or-
dinary Kriging technique to generate maps from which pa-
rameter values for any point could be obtained.

3.1 Rain gauge Statistics

For each of the 3444 gauges and month of the year 
(i.e., January, February, March, ...), the precipitation depth 
mean, variance and lag-1 autocorrelation coefficient and the 
probability of zero rainfall were calculated at 1-, 3-, 12- and 
24-hour accumulation levels. The means at 3-, 12-, and 24-

Fig. 1. Schematic of the MBLRP model. White and gray circles represent the arrival time of storms and rain cells, respectively. Each rain cell is 
represented by a rectangle whose width and height represent its duration and rainfall intensity.
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hour accumulation levels were not calculated because those 
will be the same as the one calculated at 1-hour accumula-
tion level. As a result, a total of 13 statistics per month (note 
that the mean is not affected by the accumulation level) was 
obtained. Different accumulation intervals and months were 
considered to capture the sub-daily and seasonal precipita-
tion variability. As a reference, maps of the four statistics for 
an accumulation interval of one hour for the month of May 
are shown in Fig. 3. Higher-order moments of the precipi-
tation depth were not included in this study because, even 
though they help represent better the tails of the precipita-
tion distribution (Cowpertwait 1998), the successful mod-
eling of extreme rainfall values at different accumulation 
intervals is still a pending matter and beyond the scope of 
this study (Kim et al. 2013). The Ordinary Kriging interpo-
lation technique was used to generate maps that adopted the 
spherical shape of variogram. The parameters of the vario-
grams were determined such that they minimize the sum of 
the square of the residuals between the model and sample 
variogram. For all months and accumulation intervals, the 
mean, variance and probability of zero rainfall showed a 
strong regional tendency. The regional tendency of the lag-
1 autocorrelation was not as strong as that of the other three 
statistics. Detailed discussion on the weak regional tendency 
of the lag-1 autocorrelation and its effect on the parameter 
regionalization are presented later in this article. 

3.2 objective function

Because it is not possible to analytically solve Eqs. (1) 
through (4) for the MBLRP model parameters of each rain 
gauge and month (Onof et al. 2000), the parameters were 
obtained by minimizing the following objective function 

OF, which represents the discrepancy between the statistics 
of the observed and simulated rainfall time series:

OF w f
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where i  is the parameter vector (λ, ν, α, μ, φ, l), n is the 
number of statistics being matched, Fk i^ h is the kth statistic 
of the simulated rainfall time series, fk is the kth statistics of 
the observed rainfall time series. Note that, in Eq. (5), all 
statistics have been given the same weight - wk in Eq. (5), 
despite not all of them having the same relative importance, 
and that the parameters determined with it will reflect this 
assumption. Kim and Olivera (2012) discussed an approach 
to estimate weight factors for the different statistics in Eq. 
(5) and indicate they should depend on the specific applica-
tion. The statistics used in the model calibration were the 
same 13 statistics calculated for the gauges (i.e., n = 13). 
According to Khaliq and Cunnane (1996), models calibrat-
ed based on these statistics at various accumulation levels 
produce rainfall time series that resemble historical obser-
vations. Higher-order moments were not included in the ob-
jective function despite the fact that matching them would 
have helped capture better low-frequency events (Cowpert-
wait 1998); however, at the expense of losing accuracy for 
higher-frequency events.

3.3 Multi-Modality of the objective function

In order to generate rainfall time series at any given 
point, parameter maps were obtained by interpolating the 
parameter values estimated for the rain gauges. Obtaining  

Fig. 2. Location of the 3444 NCDC rain gauges with hourly recording and period of record longer than 20 years.
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reliable results from this interpolation, however, is not 
straightforward because of the multi-modality of the ob-
jective function. What the multi-modality of the objective 
function is in this problem is presented with an example 
hereinafter. Let rain gauges A and B be located close to each 
other. Despite the gauges being located at different loca-
tions, for the sake of simplicity, it is assumed that both are 
affected identically by the storm depicted in Fig. 4. In the 
figure, the storm at gauge A is represented by two rain cells 
while the one at gauge B by six rain cells, where the rain 
cells at A have longer duration and greater rainfall depth 
than those at B, but the overall result is the same. That is, a 
storm - or a precipitation time series if we refer to a longer 
period - can be represented by different parameter vectors. 
The existence of different and equally-correct solutions for 
the parameter vector is represented as multiple minima of 
the objective function in the parameter space and referred 
to as multi-modality (Gyasi-Agyei 1999; Onof et al. 2000). 
Because of this multi-modality, spatial interpolation of the 
parameter values between gauges A and B might yield in-
correct estimates.

To address this multi-modality problem, as many min-
ima as possible of the objective function were identified at 

each gauge, and one of them was assumed to be the correct 
parameter vector. The Isolated Speciation-Based Particle 
Swarm Optimization (ISPSO) method (Cho et al. 2011) was 
used to identify the parameter vectors that generated minima 
within a given parameter space. The range of the parameters 
within which the parameters were estimated is provided in 
Table 1. The ISPSO assumes that it has found a solution 
when a best local particle converges to a point in the search 
space such that the particle’s age - the number of iterations 
during which the particle survived without being killed - is 
older than 10, and the normalized geometric mean of the 
particle’s past half-life trajectory is smaller than 0.00001, 
and the standard deviation of the particle’s past half-life fit-
ness values is smaller than 0.0001. The swarm size is 14 and 
500 iterations were performed; for a total of 7000 function 
evaluations were performed.

The following procedure was followed to select the 
correct parameter vector. A gauge in which the global mini-
mum is clearly lower than the other minima was chosen as 
an anchor gauge for estimating the parameter vectors in oth-
er gauges. The parameter vector that generates that global 
minimum was taken as the correct one at the gauge. In this 
specific study, the identical anchor gauge was used for all 

Fig. 3. Rainfall statistics for one hour accumulation interval for the month of May. From top to bottom and left to right, (a) mean (mm hr-1), (b) 
variance (mm2 hr-2), (c) probability of zero rainfall, and (d) lag-1 autocorrelation coefficient.

(a) (b)

(c) (d)
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months, which is the gauge located at Sawtooth National 
Forest in the State of Idaho (Latitude: 43.3586, Longitude: 
-115.4458). To select the parameter vector at a neighboring 
gauge that best captures the regional tendency, normalized 
Euclidean distances in the six-dimensional parameter space 
between the anchor gauge parameter vector and the many 
parameter vectors of the new gauge are calculated. The pa-
rameter vector of the new gauge with the lowest normal-
ized Euclidean distance was taken as the correct parameter 
vector. Mathematically, let A1  be the already-determined 
parameter vector at gauge A, and let , , ...B B B1 n2  be the es-
timated parameter vectors at neighboring gauge B, each of 
which is associated with a local minimum. The normalized 
Euclidean distance Δ between parameter vectors A1  and Bj  
is defined as follows:

max minP P
P P

j
i i

i
A

ij
B

i 1

6
2

D = -
-

= ^ ^h h< F/        (6)

where Pi
A  represents the ith parameter at gauge A, Pij

B  repre-
sents ith parameter of the jth parameter vector at gauge B, and 
max (Pi) and min (Pi) represent the maximum and minimum 
values of parameter Pi estimated at all gauges, respectively. 
The parameter vector Bj  with the lowest normalized Eu-
clidean distance is selected as the correct parameter vector 
at gauge B. The procedure continues one gauge at a time 
targeting the gauges that are closest to the ones at which 
the correct parameter vectors have already been determined. 
By applying this methodology, the variability between the 
parameter values in neighboring gauges is reduced because 

they tend to correspond to values that represent equivalent 
descriptions of the rainfall patterns (i.e., comparable num-
ber of rain cells with comparable rain cell durations).

3.4 Spatial Interpolation of the Parameter values

After the correct parameter vectors were estimated at 
each of the 3444 rain gauges, the Ordinary Kriging interpo-
lation method (Journel and Huijbregts 1978) was applied to 
obtain surface maps of each parameter and month. In this 
interpolation the parameter value and rain gauge locations 
were taken into account. Ordinary Kriging was used because 
an unknown constant spatial trend of the parameter values 
being interpolated was assumed. Other interpolation meth-
ods, such as Simple or Universal Kriging, require knowing 
the constant or variable spatial trend of the data, respective-
ly, and could not be used. A total of 72 monthly parameter 
maps (i.e., 6 parameters × 12 months) were generated. The 
variograms used in the interpolation of the model param-
eters were assumed to have a spherical shape and their prop-
erties were determined such that they minimize the sum of 
the square of the residuals between the model and sample 
variogram. The reader is referred to Journel and Huijbregts 
(1978) for detailed discussion of the Kriging interpolation 
method.

4. dIScuSSIon

As observed by Islam et al. (1990), the sensitivity of 
each rainfall statistic to each parameter is different. Specifi-
cally, they indicate that the lag-1 autocorrelation coefficient 
is strongly sensitive to l , ν, and α, and insensitive to λ, μ 
and φ; while the probability of zero rainfall is strongly sen-
sitive to λ, somewhat sensitive to ν, α and φ, and insensitive 
to μ. In fact, statistics sensitive to parameters with strong 
regional and/or seasonal patterns also tend to show strong 
regional and/or seasonal variability, and vice versa.

4.1 cross validation of the estimated Parameter values

Cross-validation was used to determine the robustness 
of the parameter interpolation. In cross-validation, param-
eter values at the gauges were compared to the values that 
would have been obtained by spatial interpolation of the 
parameter values of neighboring gauges. If the approach 
presented above were robust the calculated and interpo-
lated values would be very similar or, ideally, equal. As a 
reference, Fig. 5 illustrates the results of cross-validating 
the six parameters for the month of May. The regression 
equation and the R2 values for each plot is given in Table 2.  
The parameter space for the ISPSO runs was determined, as 
a first approximation, based on the results of Bo et al. (1994) 
and was redefined iteratively afterwards based on cross-val-
idation results. Table 1 shows the original parameter range 

Table 1. Parameter range for model calibration.

Parameters
Parameter Range

(original)
Parameter Range

(After cross-validation)

Minimum Maximum Minimum Maximum

λ (1 hr-1) 0.000010 0.045 0.00001 0.025

ν (hr) 2.0 10 5.5 8.8

α 6 300 20 140

μ (mm hr-1) 0.83 150 1 40

f 0.0013 0.40 0.01 0.06

l 0.01 0.99 0.03 0.44

Fig. 4. Rainfall event modeled with two different parameter sets.
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and the one that was narrowed after the cross-validation. 
Plots of other months show similar patterns. In these plots, 
if the estimated parameter values and those calculated by 
interpolation were equal, the points in the graph would co-
incide with the 1:1 line. Note that significant variability of 
the parameter values among neighboring gauges affects the 
reliability of the parameter interpolation in the area.

4.2 Regional and Seasonal Patterns of the Model Pa-
rameters

In the monthly statistic maps (four of which are shown 

in Fig. 3), the mean, variance and probability of zero rainfall 
show clear regional patterns, while the lag-1 autocorrela-
tion coefficient not to the same extent. Consequently, λ is 
expected to show a strong regional variability, while l , ν, 
and α are not necessarily.

In Fig. 5, note a stronger concentration of points around 
the 1:1 line for λ and μ than for φ, l , ν, and α. Correlation 
coefficients between the estimated and cross-validated pa-
rameters are 0.81 and 0.63 for λ and μ, respectively, which 
could be interpreted as an indicator of a strong spatial pat-
tern; while, for φ, l , ν and α, the correlation coefficients are  
0.43, 0.52, 0.11 and 0.40, respectively, indicating a much 

Fig. 5. Results of cross-validation of the parameters for the month of May. Parameter values estimated by optimization are shown on the x-axis and 
by cross-validation (interpolation of neighboring gauges) on the y-axis. From the top to bottom and left to right, λ (1 hr-1), ν (hr), α, μ (mm hr-1), f  
and l .

Table 2. Regression equation between the estimated and cross-validated parameters and the corresponding R2 values.

Parameters
original Parameter Range Parameter Range after cross-validation

equation R2 equation R2

λ (1 hr-1) Y = 0.572X + 0.0043 0.54 Y = 0.664X + 0.0032 0.66

ν (hr) Y = 0.00001X + 7.3981 3 × 10-7 Y = 0.0311X + 7.35 0.012

α Y = 0.136X + 42.76 0.083 Y = 0.421X + 5.91 0.16

μ (mm hr-1) Y = 0.154X + 10.53 0.091 Y = 0.205X + 0.0217 0.40

f Y = 0.144X + 0.0252 0.093 Y = 0.205X + 0.0217 0.19

l Y = 0.159X + 0.147 0.11 Y = 0.2857X + 0.117 0.27

(a) (b) (c)

(d) (e) (f)
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weaker one. Likewise, student t-tests were performed on the 
slope of the regression lines with the null hypotheses that 
they were equal to zero; that is, the null hypotheses implied 
that the parameter values at a gauge are not related to those 
of their neighbor gauges and that no spatial pattern existed. 
The t-values for the parameter λ, ν, α, μ, φ, and l  were 
81.5, 6.69, 25.3, 47.8, 27.9, and 78.7, respectively. These 
values correspond to the p-values that lead to the rejection 

of the null hypotheses with a 99% of significance, implying 
that all slopes were statistically different from zero. In other 
words, the value of all parameters at a given location can be 
predicted, to some extent, by the value of the parameters at 
its neighboring gauges.

Figure 6 shows maps of interpolated parameter val-
ues for the month of May. Confirming what was observed 
above, a spatial pattern is clearer for λ and μ than for the 

Fig. 6. MBLRP model parameters for the month of May. From the top to bottom and left to right, λ (1 hr-1), ν (hr), μ (mm hr-1), α, f and l . The maps 
in digital format are downloadable at the 1st author’s website http://huniv.hongik.ac.kr/~dekaykim/MBLRP_USA/MBLRP_USA.zip.

http://huniv.hongik.ac.kr/~dekaykim/MBLRP_USA/MBLRP_USA.zip
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other parameters; however, based on the maps, φ and l  also  
show discernible spatial patterns, particularly if the num-
ber of rain gauges included in the analysis is considered. 
Note that parameter λ, because it is associated to an observ-
able physical variable such as the number of storms per unit 
time, is less inclined to be affected by the multi-modality 
of the model calibration. Comparison of our map of λ for 
the month of May with that of Hawk and Eagleson (1992)  
shows similar regional patterns in both maps, with low 
and high values in very much the same areas. Although 
not identical, the maps greatly resemble each other, even 
though differences can be identified. Our map, for instance, 
is more complex in its shapes, most likely, because of the 
significantly larger number of rain gauges used to develop 
it. The range of λ values is 0.00089 to 0.017 storms per hour 
in our map and 0.001 (value extrapolated) to 0.019 storms 
per hour in theirs. The comparison of the maps of λ for the 
other months was similar and is not included here because 
of space limitations. Maps of the other parameters were not 
compared because their values were affected by the multi-
modality of the objective function used to calculate them, 
and should be taken as a set and not individually.

Figure 7 shows the seasonal variability of the pa-

rameters and rainfall statistics of two randomly-selected 
gauges in the states of New York (NCDC 3851 located at 
75.5208°W, 43.5753°N) and Washington (NCDC 6858 lo-
cated at 124.5550°W, 47.9375°N). In the figure, it can be 
seen that seasonality is not apparent in gauge NCDC 3851, 
while it is reflected in the parameter λ and the statistics 
of NCDC 6858. Based on the temporal variability of the 
parameter values and statistics in a large number of rain 
gauges, it was observed that seasonality of some of the pa-
rameters depended on the seasonality of the statistics. In 
general, λ showed the strongest seasonal variability because 
the parameter λ is highly influenced by the rainfall mean, 
which shows strongest seasonal variability. For the same 
reason, parameter ν showed the weakest seasonal variation 
because it is highly influenced by the lag-1 autocorrelation 
of rainfall, which does not have clear seasonal tendency.

4.3 Rainfall characteristics Based on the Model Param-
eter values

Rainfall characteristics, such as the average rainfall 
depth per storm, the average storm duration, the average 
number of rain cells per storm, the average rain cell arrival 

Fig. 7. Monthly variation of the parameters and statistics of gauges NCDC 3851 (black line) located at 75.5208°W, 43.5753°N in the state of New 
York, and NCDC 6858 (gray line) located at 124.555°W, 47.9375°N in the state of Washington.
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rate or the average rain cell duration can be estimated based 
on the MBLRP parameters. According to Hawk and Eagle-
son (1992), these rainfall characteristics can be expressed 
as:

Average rainfall depth per storm [L] = 1n
a
o

z
l+c m  

Average duration of storm activity [T] = 
za
o  

Average number of rain cells per storm = 1
z
l+  

Average rain cell arrival rate [1/T] = 
o
la

Average rain cell duration [T] = 
a
o

These rainfall characteristics were calculated at all 
gauges and interpolated with the Ordinary Kriging tech-
nique. Figure 8 illustrates these interpolated surfaces for the 
month of May. Other storm and rain cell characteristics such 
as the average number of storms arriving during a given  

Fig. 8. Storm and rain cell characteristics for the month 
of May according to the MBLRP model parameters. 
From top to bottom and left to right, (a) average rain-
fall depth per storm (mm), (b) average storm duration 
(hr), (c) average number of rain cells per storm, (d) 
average rain cell arrival rate (1 hr-1), and (e) average 
rain cell duration (hr).
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period (λ) and average precipitation rate of each rain cell 
(μ) were already presented in Fig. 6. As a reference Table 3  
compares the rainfall characteristic for the month of May 
at four locations of the United States with the same mean 
monthly rainfall (141 mm). It was observed that the rainfall 
depth per storm, which is an observable physical variable 
and, therefore, less affected by the multi-modality of the 
model calibration, showed a strong regional pattern. The 
other storm and rain cell characteristics showed less well 
defined spatial patterns, most likely because an error in any 
of them can be compensated by an error in other.

4.4 validation of the Parameter Maps

Validation of the parameter maps consisted of compar-
ing the statistics of the observed rainfall and of the simu-
lated rainfall obtained using the cross-validated parameter 
sets. Cross-validated parameter values were used because 
they have the level of accuracy of the parameters estimated 
by interpolation at points where no gauges are located. The 
statistics used for validation were precipitation depth mean, 
variance and lag-1 autocorrelation coefficient, and prob-
ability of zero rainfall for accumulation intervals of 1, 3, 6, 
12 and 24 hours (note that the 6-hour accumulation inter-
val was not used in calibration). This comparison was per-
formed for all 3444 NCDC hourly precipitation gauges used 
to generate the maps. The results for the month of May are 
shown in Fig. 9. In the figure the dotted lines correspond to 
the 95% prediction interval of the regression line. The width 
of the range represents the uncertainty in the statistics of the 
simulated rainfall. Qualitatively speaking the predictions 
can be considered satisfactory for the mean, variance and 
probability of zero rainfall for different levels of accumula-
tion, but not to the same extent for the lag-1 autocorrelation 
coefficient. Note that the lag-1 autocorrelation coefficients 
of the simulated rainfall time series tend to vary over a much 
narrower range than those of the observed precipitation. Ta-
ble 4 shows the mean and standard deviation of the residuals 
between the observed rainfall statistics and the simulated 
rainfall statistics produced from the cross-validated param-

eter maps. The residual of all 4 types of statistics at all ac-
cumulation levels follows the normal distribution according 
to the k-s test, thus the quantification of the uncertainty in-
duced in using the parameter map values is possible.

However, despite successfully reproducing most of the 
observed rainfall time series statistics for the great majority 
of rain gauges, they were not for a number of them. For an 
accumulation interval of one hour 5% of the gauges with 
the greatest residuals between each of the statistics of the 
observed and simulated precipitation time series showed the 
following characteristics: (1) for the mean, their average an-
nual rainfall was 1650 mm and were located mostly along the 
northeast and northwest coast, although a number of them 
were evenly distributed east of the 100°W meridian; (2) for 
the variance, their average annual rainfall was 1750 mm and 
were located mostly evenly distributed east of the 100°W 
meridian, although a small number were located along the 
northwest coast; (3) for the probability of zero rainfall, their 
average annual rainfall was 1250 mm and were located in 
the northeast and northwest parts of the country; and (4) 
for the lag-1 autocorrelation coefficient, their average an-
nual rainfall was 750 mm and were located mostly west of 
the 100°W meridian with a higher concentration along the 
coast, although a small number of them were located in the 
northeast. Note that the average annual precipitation in the 
country is 1250 mm. Even though mismatches in all statis-
tics were found based on the results presented in Fig. 9, the 
lag-1 autocorrelation coefficient was of concern. For this 
statistic the location of the gauges where the mismatch was 
more pronounced coincided in part with the driest parts of 
the country. Likewise, the fact that gauges in the northwest 
coast have some of the greatest residuals for all statistics 
seems to respond to high spatial variability of precipitation 
in the area and the limitations of the interpolation technique 
to capture it with the existing gauge network.

4.5 Resolution of Multi-Modality

The multi-modality of the objective function, as previ-
ously discussed, puts a major obstruction in obtaining the 

Table 3. Average rainfall characteristics for the month of May for selected locations with mean monthly 
rainfall depth of 141 mm.

State texas Iowa washington florida

Longitude -95.592° -93.591° -123.975° -80.913°

Latitude 30.349° 41.966° 47.862° 27.050°

Rainfall depth per storm (mm) 22.2 13.5 14.2 19.2

Storm duration (hr) 7.9 8.7 12.1 11.7

Number of rain cells per storm 4.7 6.0 16.4 4.0

Rain cell arrival rate (1 hr-1) 0.57 0.61 1.30 0.38

Rain cell Duration (hr) 0.24 0.28 0.21 0.24
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Fig. 9. Mean (mm hr-1), variance (mm2 hr-2), probability of zero rainfall and lag-1 autocorrelation coefficient of the observed precipitation (y-axis) vs. 
those calculated from the cross-validated parameters (x-axis) at various accumulation intervals for the month of May. The dotted lines correspond 
to the prediction interval with 95% confidence.



Kim et al.434

consistent parameter sets at neighboring gauges which en-
ables capture of the correct, thus smooth spatial pattern of 
the parameters. This study applied 2 approaches to resolve 
this issue: (1) the one in which an anchor gauge is chosen 
and the parameter set at the neighboring gauge with the low-
est Euclidean distance to the parameter set of the anchor 
gauge is chosen iteratively; and (2) the one in which the pa-
rameter estimation range is narrowed down according to the 
cross-validation result. Unfortunately, the first approach did 
not reduce the impact of the multi-modality well regardless 
of its solid logic. This is primarily because the parameter set 
selection process converges to an identical path regardless 
of the choice of different anchor gauge once the algorithm 
goes through the gauge with only one parameter set with 
high objective function value estimated at different modes in 
the parameter space, or simply a “bad” gauge. However, it is 
expected that this approach will reduce the impact of modal-
ity if such bad gauges are removed and the selection process 
is manually controlled with caution, which was out of the 
scope of this study due to the large size of data to treat.

In the meantime the effect of the second approach was 
significant. Table 2 compares the regression equations and 
the R2 values of the fit between the estimated parameter set 
and the cross-validated parameter set before and after the 
parameter range adjustment through cross-validation. Note 
that the slope and R2 values corresponding to the case in 
which the parameter space was narrowed are significant-
ly higher than those in the original case, which indicates 
higher spatial correlation of the parameters. This is because 
the parameter sets that differ significantly from those of the 
neighboring gauge were not produced from the beginning 
because those are located out of the parameter range rede-
fined through cross-validation, and thus were not included 
in the spatial interpolation process.

5. SuMMARy And concLuSIonS

Seventy-two maps of the six parameters of the MBL-
RP stochastic rainfall generation model for each of the 
12 months of the year were generated. These maps allow 
MBLRP model implementation at any location in the con-
tiguous United States without having to calibrate and vali-
date the model each time. The parameters were estimated at 
3444 NCDC rain gauges by matching rainfall statistics (i.e., 
mean, variance, probability of zero rainfall and lag-1 au-
tocorrelation coefficient) at different rainfall accumulation 
levels (i.e., 1, 3, 12 and 24 hours). The parameters obtained 
at the gauges were then interpolated using the Ordinary 
Kriging technique to generate surface maps.

Parameters λ and μ were identified to have clear re-
gional patterns, while φ and l  had less clear yet discernible 
spatial tendencies. On the contrary, parameters α and ν did 
not show a clear pattern over space presumably because the 
lag-1 autocorrelation coefficient, to which they are highly 
sensitive, does not have a clear regional tendency either. 
Seasonality of the parameters appeared to depend on loca-
tion and some parameters showed strong time dependence 
in some regions and no dependence in others.

The parameter maps were cross-validated to assess the 
validity of the Ordinary Kriging interpolation. It was ob-
served that the synthetic rainfall time series statistics gen-
erated with parameters obtained from the maps developed 
here matched well the means, variances and probabilities of 
zero rainfall (except for a small number of low probabili-
ties of zero rainfall) of observed rainfall time series, but not 
the lag-1 autocorrelation coefficients (whose higher values 
were underestimated and lower values, overestimated). A 
study of the relevance of matching the lag-1 autocorrela-
tion coefficient, when using synthetic rainfall in complex 

Table 4. Mean and standard deviation of the residaul between the observed rainfall statistics and the 
simulated rainfall statistics produced from the parameter maps.

Accumulation Level Mean 
(mm hr-1)

variance
(mm2 hr-2)

Lag-1  
Autocorrelation

Probability of  
Zero Rainfall

1-hour
Mean 0.00506 0.0753 -0.0320 -0.00215

Stdev 0.0322 0.820 0.0828 0.0151

3-hours
Mean 0.0152 0.287 0.00636 -0.0101

Stdev 0.0965 3.049 0.0694 0.0198

6-hours
Mean 0.0304 0.850 0.0313 -0.00919

Stdev 0.193 7.17 0.0651 0.0244

12-hours
Mean 0.0607 3.18 0.0149 -0.00793

Stdev 0.386 17.2 0.0632 0.0309

24-hours
Mean 0.1214 10.4 -0.0398 -0.0115

Stdev 0.772 41.14 0.0621 0.0422
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hydrologic applications, is beyond the scope of this article 
but a matter currently being researched by the authors. Even 
though mismatches in all statistics were found, according 
to the value of the standard deviation of the residuals, only 
the lag-1 autocorrelation coefficient is of concern. For this 
statistic the location of the gauges where the mismatch was 
more pronounced coincided in part with the driest parts of 
the country. Likewise, the fact that gauges in the northwest 
coast have some of the greatest residuals for all statistics 
seems to respond to high spatial variability in the area and 
the limitations of the interpolation technique to capture it 
with the existing gauge network. In this context, classifying 
the study area into smaller sub-regions based on the spa-
tial variability of the parameters and applying the optimal 
interpolation technique for each sub-region separately may 
enhance the result.

 Our map of λ for the month of May was compared 
with that developed by Hawk and Eagleson (1992) and sim-
ilar regional patterns were found, with similar low and high 
values in very much the same areas. Our map, however, is 
more complex in its shapes, most likely because of the sig-
nificantly larger number of rain gauges used to develop it. 
Maps of the other parameters were not compared because 
their values involved the effect of multimodality and should 
be taken as a package and not individually.

Overall, it was observed that model parameters and 
storm and rain cell characteristics associated to observable 
physical variables were consequently, less affected by the 
multi-modality of calibration and showed stronger regional 
patterns. Other model parameters and storm and rain cell 
characteristics showed less well defined spatial patterns, 
most likely because the error in any of them can be compen-
sated by the error in others.
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