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AbStrACt

Polynomial interpolation and Holt-Winters exponential smoothing (HWES) are used to analyze and forecast Caspian 
Sea level anomalies derived from 15-year Topex/Poseidon (T/P) and Jason-1 (J-1) altimetry covering 1993 to 2008. Be-
cause along-track altimetric products may contain temporal and spatial data gaps, a least squares polynomial interpolation 
is performed to fill the gaps of along-track sea surface heights used. The modeling results of a 3-year forecasting time span 
(2005 - 2008) derived using HWES agree well with the observed time series with a correlation coefficient of 0.86. Finally, the 
3-year forecasted Caspian Sea level anomalies are compared with those obtained using an artificial neural network method 
with reasonable agreement found. 
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1. IntroDUCtIon 

Innovative application of historical geophysical data 
sets is the key to the progress of local and global climate 
change studies. Tide gauge measurements are one of the 
most reliable and helpful accessible data sets for monitoring 
sea level change (Parker 1992). In addition, the fluctuation 
of endothecia lakes, i.e., lakes in closed basins, is not only 
a critical parameter for understanding the water balance in 
drainage basins, but also a valuable indicator of climate 
change (Kostianoy et al. 2004). The Caspian Sea is the larg-
est isolated water reservoir in the world with a surface area 
of 370000 km2 (Fig. 1). Surrounded by five countries, Azer-
baijan, Iran, Kazakhstan, Russia, and Turkmenistan, the Sea 
plays a key role in their interaction as well as being a vital 
natural resource for all (Stolberg et al. 2006). 

Since lakes in closed basins are sensitive to climate 
change, the Caspian Sea observed traditionally by tide 
gauges exhibits large sea level variations. Scientists are 
interested in Caspian Sea variations because of its chrono-
logical oscillations in both surface area and depth causing 

complex geological and climatic evolution of the region 
(Rodionov 1994). 

Sea level measurements covering the entire ocean ba-
sin could provide useful information on the water mass bal-
ance and inter-annual and decadal oscillations in response to 
climate change (Cazenave et al. 2002). Tide gauge records 
relative to the crustal surface at the local coast are consid-
erably affected by a number of geographical and meteoro-
logical phenomena, including vertical crustal movements, 
changes in atmospheric pressure, wind, river discharge, wa-
ter circulation, water density, and increscent water mass due 
to melting ice (Kostianoy and Kosarev 2005). In the last 
two decades, satellite-based sensors in particular satellite al-
timetry have offered a promising alternative for monitoring 
water surface heights with unprecedentedly high accuracy 
from inter-seasonal to inter-annual time scales and spatial 
coverage regardless of meteorological and geological con-
straints (Campos et al. 2001; Cheng et al. 2008). Satellite 
altimetry has been applied in a wide variety of studies (Mer-
cier et al. 2002; Crétaux et al. 2011; Kuo and Kao 2011). An 
analysis of Caspian Sea level anomalies over a short time 
span (3.5 years) was conducted by Cazenave et al. (1997) to  
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estimate temporal sea level variations. Lebedev and Kos-
tianoy (2008) investigated the variations of some meteo-
rological phenomena, including sea level, wind speed, and 
wave height in different areas of the Caspian Sea, Kara-
Bogaz-Gol Bay, and the Volga River. However, their work 
was only based on the spatially spare crossover points of 
Topex/Poseidon (T/P) and Jason-1 (J-1) data sets. 

Along-track altimetric products have some gaps along 
the measurements due to technical noise or closeness to 
coastal areas, these data gaps may affect the analysis of sea 
level monitoring. In many instances, a careful interpolation 
along the track of corrective parameters to fill the data gaps 
is required to retrieve valid altimeter observations and the 
reclamation of a significant number of good-quality altim-
etric measurements (Durand et al. 2008). 

Interpolation is a process of estimating the values of 
a certain variable of interest at un-sampled locations based 
on measured values (Inggs and Lord 1996). Polynomial in-
terpolation is a commonly used method, in which for some 
given points, a polynomial which goes exactly through 
these points is found (Gerald and Wheatley 2008). Many 
studies have shown the importance of interpolating values 
of climate variables from stations to large areas (Kurtzman 
and Kadmon 1999; Gigov and Nikolova 2002). A compara-
tive analysis of interpolation techniques, including Inverse 
Distance Weighted, Polynomial, Splines, Ordinary Kriging, 
and Universal Kriging, was conducted by Basistha et al. 
(2008) to find the best interpolation method for the spatial 
distribution of rainfall in the Indian Himalayas with a case 
study of the Uttarakhand region. 

Fig. 1. Map of Caspian Sea (adopted from http://eol.jsc.nasa.gov).

http://eol.jsc.nasa.gov


Forecasting of Caspian Sea Level Anomal 523

Hydrological and climatic conditions are key issues 
in the international arena because of significant impact on 
human activities, thus accurate prediction of hydro-climate 
extremes helps to mitigate disasters, reduce losses in infra-
structure and productive activities and maximize the ben-
efits of socioeconomic consequences of these effects. An 
optimal forecasting technique is adopted based on the avail-
ability of information and the time scale of the data. The 
most commonly used forecasting techniques within differ-
ent time span from a few days to years include autoregres-
sive-moving-average models, bilinear and smooth threshold 
autoregressive models, and artificial intelligence techniques 
(Sfetsos 2000). A statistical method named exponential 
smoothing can be used for not only forecasting and smooth-
ing the analyzed function, but also presenting data conve-
niently and eliminating random errors. It is based on the 
intuitive application of movable averages where the mean 
of the last observations is employed to smooth the function 
(Taylor 2004a). The exponential smoothing method has 
been applied in various fields (Snyder et al. 2004; Taylor 
2004b). The primary advantage of the method is its fast and 
efficient implementation together with descriptive and in-
ferential statistics (Koçak 2008). Cadenas et al. (2010) ana-
lyzed and forecasted wind velocities in Chetumal, Quintana 
Roo, Mexico using the single-exponential smoothing meth-
od. Their results showed a very good accuracy of short-term 
forecasting. 

The present study focuses on the analysis and forecast 
of Caspian Sea level anomalies from T/P and J-1 measure-
ments along track 092 covering the years 1993 - 2008. 
The ground tracks of T/P and J-1 altimeters cover the op-
timal positions of the Caspian Sea surface (Fig. 2) with the 
proper orbital repeat period (~10 days) for effective study 
of inter-annual and seasonal sea level variations. As satel-
lite altimetry coverage has data gaps; a least squares poly-
nomial interpolation is employed to fill the gaps. Finally, 
3-year forecast of Caspian Sea level anomalies is derived 
using Holt-Winters exponential smoothing (HWES) and 
then compared with that obtained using the artificial neural 
network (ANN) method. 

2. DAtA

T/P altimeter data in the form of sea surface height 
(SSH) was extracted from the Merged Geophysical Data 
Record (MGDR) provided by the NASA Physical Ocean-
ography Distributed Active Archive Center (PODAAC) at 
the Jet Propulsion Laboratory (JPL) of the California Insti-
tute of Technology (Benada 1997). Similarly, SSHs of J-1 
were retrieved from the Interim Geophysical Data Record 
(IGDR) and the Geophysical Data Record (GDR) provided 
by AVISO (Archivage, Validation et Interprétation des don-
nées des Satellites Océanographiques) and PODAAC (Picot 
et al. 2006). After all recommended corrections, including 

standard instrumental, media, and geophysical corrections 
were applied, sea level anomalies were computed by sub-
tracting the geoid heights using the EGM96 geopotential 
model (Lemoine et al. 1998) from the corrected SSHs. In 
this study, the sea level anomalies of the pass 092 ground 
track of the Caspian Sea are used since it is the longest track 
(most data) and relatively free of strong winds and ice in the 
study area (Fig. 2).

3. MEtHoDS
3.1 Least Squares Polynomial Interpolation

As shown in Fig. 3, altimetric observations contain 
some spatial and temporal gaps in sea level measurements, 
which lead to inaccurate analysis of Caspian Sea level 
anomalies. In order to compensate for the gap-filled time 
series of the satellite ground track and obtain an integrat-
ed surface covered by interpolated altimetric data, a least 
squares polynomial interpolation was used.

For the polynomial interpolation, values can be inter-
polated on regular grids using un-gridded observations by 

Fig. 2. T/P and J-1 ground tracks over northern, middle, and southern 
parts of Caspian Sea (wherein measurements along track 092 are con-
sidered in this study).
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polynomials, whose coefficients are determined by the least 
squares method. Accurate interpolation schemes can be used  
to increase the resolution available for computational analy-
ses and thereby improve the accuracy of the results (Ko-
zak and Krajnc 2007). The polynomial fitting technique 
was first introduced by Panofsky, Cressman, and Gilchrist 
based on Lagrange’s classic interpolation formula and then 
improved by Gilchrist and Cressman (1954) by introducing 
the concept of a region of influence. The concept indicates 
only those observations locating within the region of influ-
ence (i.e., in a neighborhood of an interpolated point) when 
interpolating at the point is performed (Lanciani and Salvati 
2008). 

In this study, the along-track T/P and J-1 data of all 
available cycles are used to form a local two-dimensional 
(2-D) coordinate system (or a 2-D matrix) with the X-axis as 
the cycle (t) and the Y-axis as the distance (d) (Daley 1991). 
There are K observations of sea level anomalies [ho(rk), k = 
1,..., K, where rk = (tk, dk)], so the interpolated field ha(r) can 
be represented by a polynomial expansion as (Gerald and 
Wheatley 2008):

, 3, , 0h r C t d m n m na nm
m n

# $= +^ h //       (1) 

where Cnm are the unknown coefficients that can be estimat-
ed using observations, ho(rk), and m + n within the order of 
the polynomial. The quadratic cost function, essentially the 
mean square error between the interpolation and the obser-
vations, can be then written as:
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In order to estimate Cnm, J has to be minimized. The mini-
mization can be done by differentiating J with respect to 
Cnm and setting it equal to 0. The linear system can then 
be solved using standard algebraic techniques (Gerald and 
Wheatley 2008). If the error variances of the observations, 
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Fig. 3. (a) T/P tracks over Caspian Sea in January, 1994. (b) J-1 tracks over Caspian Sea in June, 2005.

(a) (b)
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that is, each increment is weighted by the corresponding 
variance (Holton 1992; Gerald and Wheatley 2008). 

3.2 Exponential Smoothing Approach 

Exponential smoothing techniques are widely used 
for the time series analysis because of their simplicity and 
robustness as automatic forecasting procedures (Corberán-
Vallet et al. 2011). Referring to Bowerman et al. (2005), 
the exponential smoothing approach can be effectively 
used to forecast stochastic time series. It constructs a time 
trend forecast with the ability to easily adjust for past er-
rors and prepare follow-on forecasts. Single, double, and 
triple exponential smoothing techniques are available de-
pending on whether no linear or quadratic trend is specified. 
Among different approaches, the Holt’s Linear Exponential 
Smoothing Technique is used to handle non-seasonal series 
by introducing smoothing parameters (Oyatoye and Fabson 
2011). 

Holt-Winters exponential smoothing technique extend-
ed from Holt’s method can be used to forecast data contain-
ing both trend and seasonality. The method has two versions, 
additive and multiplicative, depending on the characteristics 
of the particular time series (Chatfield and Yar 1988). In the 
multiplicative case, when a new observation, Xt, becomes 
available, the local mean level, trend, and seasonal index at 
time t, namely Lt, Tt, and It, are respectively updated using:
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where α, γ, and δ denote the smoothing parameters for up-
dating the mean level, trend, and seasonal index, respective-
ly, and p denotes the number of observations per seasonal 
cycle. The new forecast, tX^  at time t of the value k periods 
ahead is given by (Hanke and Wichern 2003):

 
, 1, 2, ...,k L kT I k pfort t t t p kX = + =- +

^ ^ ^h h       (7)

Exponential smoothing is recommended for time se-
ries data with increasing or decreasing trends. The HWES 
technique is here applied to the 1993 - 2005 (140 months) 
monthly Caspian Sea level anomalies of the pass 092 ground 
track. 37-month (2005 - 2008) altimetric sea level anomalies 
are used for verification of the model prediction results.

4. rESULtS AnD DISCUSSIon

As shown in Fig. 4, Caspian Sea level changes show a 
nonlinear trend over the considered time span with consid-
erable annual amplitude of sea level anomalies. The maxi-
mum value of the Caspian Sea level was -26.80 m (summer 
1995) and the minimum was -27.57 m (winter 2002).

By mid-1996, the Caspian Sea level started to decrease 
abruptly at an average rate of -23 cm yr-1. This drop, initi-
ated in July 1995, can be observed until 2001. At the end of 
this continuous falling, the sea level reached its lowest value 
among the studied years (Fig. 4). Two phases of rising and 
falling Caspian Sea levels were observed during the years 

Fig. 4. Caspian Sea level anomalies of pass 092 ground track from 1993 - 2008.
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2002 - 2008 where hydrometeorological phenomena (in-
cluding river discharge and precipitation/evaporation) and 
water usage strategies could be responsible for the nonlinear 
trend of annual Caspian Sea level anomalies (Table 1) (Kos-
tianoy and Kosarev 2005).

The Caspian Sea is usually divided into three distinct 
physical regions, namely the northern, middle, and southern 
Caspian (Fig. 2) (Amirahmadi 2008). As Table 1 shows, sea 
level changes in the northern (in the area of the Volga del-
ta), middle, and southern Caspian have different rates over 
different time spans although correlation results (Pearson 
correlation coefficient ) show similar patterns in sea level 
anomalies (r > 0.7; P-value < 0.001). 

4.1 Smoothing and Forecasting

 In conventional forecasting methods, the mean of the 
past n observations is used for future forecasting. This im-
plies an equal weight (equal to 1/n) for all n data points. 
However, through forecasting, the most recent observations 
are usually the best guide for predicting the future. Further-
more, a weighting scheme that has decreasing weights as 
the observations get older can provide better results. If the 
weights decrease exponentially when the observations be-
come older, exponential smoothing methods can be very 
useful for forecasting. 

In order to quantitatively determine the best model, the 
following statistical error measurements were employed to 
evaluate performance of the models: mean absolute error 
(MAE), root mean square error (RMSE), mean square devi-
ation (MSD), and mean absolute percentage error (MAPE). 
The best smoothing parameters were determined as α = 0.2, 
γ = 0.01, and δ = 0.2, which lead to the least errors for 
the selected model (Table 2). Figure 5 shows the results of 
HWES modeling (blue) compared with the observed time 
series (black). Although the modeling misses some peaks, 
such as those over 1997 - 1999, there is still satisfactory 
agreement between the two time series. The computed Pear-
son correlation coefficient between the observed and mod-
elled value is high (r > 0.91; P-value < 0.001), which means 
that the selected model is excellent. The correlation coef-
ficient between the forecasted value from the model (red) 
and observed data is 0.86, which is satisfactory in common 
model applications. In addition, as shown in Fig. 5, not only 
the annual signal of sea level anomalies but also the nega-
tive trend over 2005 - 2008 compared to the large positive 
trend of observed sea level over 2001 - 2005 can be accu-
rately predicted. 

In order to compare the results obtained by the HWES 
model with other forecasting methods, the ANN model 
proposed by Cadenas and Rivera (2007) was employed.  
Figure 6 compares the HWES and the ANN methods against 
the observed data. Both methods adjust quite well to the real 
data; however, it is not possible to assess the models in de-

tail based on these figures, so the statistical error measure-
ments for the two models were thus evaluated.

Statistical error measurements for the HWES and 
ANN methods compared with the observed values (Table 
2) show that there is a satisfactory agreement among the 
models. HWES is thus a useful tool for short-time forecast-
ing of Caspian Sea level anomalies. The main advantage of 
HWES is its relative simplicity compared to that of ANN. 
Due to the widespread familiarity of the standard Holt-Win-
ters method, the formulation can be accepted. Furthermore, 
the method is straightforward to implement (Taylor 2010) 
and shows satisfactory accuracy based on statistical error 
measurements.

5. ConCLUSIon 

Sea level anomalies in the Caspian Sea were analyzed 
and forecasted using HWES. In order to achieve information 

Table 1. Rates of Caspian Sea level anomalies in different regions and 
time span.

Table 2. Statistical error measurements (m) of the forecast methods 
compared with observed values during the years 2005 - 2008.

Model rMSE MAE MSD MAPE %

HWES 0.07 0.05 0.005 22.9

ANN 0.06 0.05 0.006 20.8

r
at

e 
(m

 y
r-1

)

time Span
region

northern Middle

1993 - 1995 +0.17 ± 0.02 +0.15 ± 0.02

1995 - 1996 -0.22 ± 0.01 -0.19 ± 0.01

1996 - 2001 -0.05 ± 0.02 -0.06 ± 0.02

2002 - 2005 +0.08 ± 0.01 +0.09 ± 0.01

2005 - 2008 -0.09 ± 0.01 -0.08 ± 0.01

time Span
region

Southern Whole Sea

1993 - 1995 +0.22 ± 0.02 +0.17 ± 0.02

1995 - 1996 -0.24 ± 0.01 -0.23 ± 0.01

1996 - 2001 -0.09 ± 0.02 -0.07 ± 0.02

2002 - 2005 +0.15 ± 0.01 +0.14 ± 0.01

2005 - 2008 -0.13 ± 0.01 -0.13 ± 0.02
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Fig. 5. (a) Comparison of HWES model values with observed time series, and (b) observed and forecasted values.

continuity over the considered track, a least squares poly-
nomial interpolation was used to fill the gaps and acquired 
an integrated time series. Significantly higher correlations 
were found between sea level anomalies in northern, middle 
and southern regions of the Caspian Sea, which may indi-
cate the same explanation (sounds Volga river discharge) 
for the observed variations through whole area. HWES 
provides satisfactory precision and accuracy for supporting 
water reservoir management plans. HWES is a robust, easy-
to-use projection procedure which generally works quite 
well in practice. It is accentuated significantly due to its 
simplicity and exactness (based on the analysis of statistical 
error measurements) which has performed consistently well 
in more recent forecasting scenarios, when compared with 
other complicated projection techniques; for example, ANN 

which has greater computational burden. HWES is thus a 
useful tool for forecasting sea levels in water bodies with 
similar stochastic behavior. 
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