
doi: 10.3319/TAO.2012.11.12.01(TibXS)

* Corresponding author 
E-mail: wbshen@sgg.whu.edu.cn

Terr. Atmos. Ocean. Sci., Vol. 24, No. 4, Part I, 591-604, August 2013

Improved Geoid Determination Based on the Shallow-Layer Method: A Case 
Study Using EGM08 and CRUST2.0 in the Xinjiang and Tibetan Regions

WenBin Shen1, 2, * and Jiancheng Han1

1 Department of Geophysics, School of Geodesy and Geomatics, Key Laboratory of Geospace Environment  
and Geodesy, Wuhan University, Wuhan, China 

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,  
Wuhan University, Wuhan, China

Received 24 March 2012, accepted 12 November 2012

ABSTRACT

In this paper we present the concepts and realization of the shallow-layer Shen geoid determination method, which is 
quite different from the classical geoid modeling methods (Stokes’ method, Molodenskiĭ’s method, etc.), for determining 
the global or regional geoids. This method takes full advantage of the precise Earth gravity field model EGM2008, digital 
topographic model DTM2006.0 and global crust model CRUST2.0 of a shallow layer, a layer from the Earth’s surface to a 
depth. As a case study this method is applied to the determination of a 5´ × 5´ geoid over the Xinjiang and Tibetan regions, 
which ranges from latitude 25 to 50°N and longitude 70 to 100°E. The modeled 5´ × 5´ regional geoid is compared with the 
EGM2008 geoid model in the same study area and validated by 21 GPS/leveling benchmarks (GPSBMs) distributed sparsely 
in the Xinjiang area. The results show that the regional geoid reaches an accuracy of ~18 cm and agrees with the GPSBMs 
better than the EGM2008 geoid in the Xinjiang region.
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1. InTRoDUCTIon

The geoid, defined as the equipotential surface that 
best approximates the mean sea level, is the most natural 
representation of the Earth’s figure and is used as vertical 
datum in many countries. Geoid determination remains a 
major issue in physical geodesy in this century and has at-
tracted significant attention from the international geodetic 
and geophysical communities. Two classical geoid model-
ing methods, Stokes’ method (e.g., Stokes 1849) and Molo-
denskiĭ’s method (e.g., Molodenskiĭ 1962), are used via the 
corresponding boundary-value problem solutions, namely, 
the Stokes boundary-value problem and the Molodenskiĭ 
boundary-value problem (e.g., Hofmann-Wellenhof and 
Moritz 2005). The former leads to the geoid solution, the 
latter to the quasi-geoid.

Based on the newly released high-precision 5´ × 5´ 
global gravity model EGM2008 (Pavlis et al. 2008, 2012), 

the high-resolution global digital terrain/elevation model 
(DTM/DEM, e.g., DTM2006.0, Shuttle Radar Topography 
Mission) (Farr et al. 2007; Pavlis et al. 2007), and the global 
crustal model CRUST2.0 (Bassin et al. 2000), we can now 
determine a global or regional geoid based on a method 
put forward by Shen (2006) (herein the shallow-layer Shen 
(2006) method or simply Shen method). The Shen method 
provides a solution from a new point of view based on the 
geoid definition. In order to illustrate the feasibility of this 
method, a case study is made in the Xinjiang and Tibetan 
regions.

This paper describes the Shen (2006) concept, method, 
data and computational strategies used to determine the 
geoid of the Xinjiang and Tibetan region and provides com-
parison and validation results with the EGM2008 geoid and 
GPS/leveling benchmarks in this region. In section 2, the 
Shen (2006) method is summarized and the prism and tes-
seroid modeling methods are described in detail. The Shen 
(2006) method is also named the shallow-layer method for 
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the reasons given in section 2. Section 3 describes the data 
sets and computation procedures. Section 4 describes some 
criteria used to validate the final results. Finally, conclusion 
and discussion are given in section 5. 

2. CoMpUTATIon METhoD
2.1 Theoretical Model 

Here we present the basic concept of the shallow-layer 
method put forward by Shen (2006). Generally, a geoid lies 
beneath the Earth’s surface wherever there are continents. 
The gravitational potential on the geoid cannot be directly 
calculated. In order to solve this problem, the term “shallow 
layer” (a layer from the Earth’s surface to a certain depth be-
low the surface, Fig. 1) is introduced. Now the gravitational 
potential of the Earth is separated into two parts. The first 
part is generated from the shallow layer mass. The second 
part is generated from the masses bounded by surface 2C . 

 The gravitational potential V1(P) generated from the 
shallow layer mass can be derived based on the following 
Newtonian integral

,V P G l
K

d P
_

1 !
t

x C=
x

^ ^h h#        (1)

where P = (r, θ, λ) denotes the spherical coordinate of the 
field point, G is the gravitational constant (The 2006 CO-
DATA adjustment is 6.67428 × 10-11 m3 kg-1 s-2; see e.g., 
Mohr et al. 2008), Kt^ h is the three-dimensional mass 
density distribution in the shallow layer domain, where K =  

(r´, θ´, λ´) stands for the spherical coordinate of the volume 
integral element dτ; l is the distance between P and K; 

_
C  

denotes the domain outside 2C , which includes the Earth’s 
external domain 

_
X  and the domain occupied by the shallow 

layer (cf. Fig. 1).
Given the external gravitational potential field V(P) of 

the Earth, the gravitational potential V0(P) generated by the 
inner masses bounded by the surface 2C  can be determined 
using the following expression

,V P V P V P P
_

0 1 ! X= -^ ^ ^h h h        (2)

where V1(P) is determined by Eq. (1). It should be noted that 
Eq. (2) is defined only in the domain 

_
X , as V(P) is a priori 

given only in this region. 
Note that the potential field V0(P) given by Eq. (2) 

is defined, regular and harmonic in the domain 
_
X , and is 

generated by the inner masses bounded by the surface 2C .  
It can then be easily confirmed (e.g., Shen 2006) that the 
potential field V P0

* ^ h defined in the region 
_
C  (the region 

outside the surface 2C) that is generated by the masses en-
closed by 2C  is just the natural downward continuation of 
the potential field V0(P).

The geopotential field W *(P) generated by the Earth in 
the domain 

_
C  can then be expressed as

,W P V P Q P P
_
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where sinQ P r2
1 2 2 2~ i=^ h  is the centrifugal potential 

which is known once the position P(r, θ, λ) is given, ω is 
the angular velocity of the Earth’s rotation and P(r, θ, λ) is 
the spherical coordinate.

One can now determine the geoid undulations by sim-
ply solving the following equation

V P Q P W0+ =* ^ ^h h        (4)

where W0 is the geopotential constant on the geoid. A 
rounded value W0 = 62636856.0 m2 s-2 provided by Burša et 
al. (2007) is adopted in this study.

Equation (4) plays a very important role in the under-
lying theory. The geoid is determined based on this equa-
tion, the solution of which is implemented by an iterative 
method. Geoidal height determination at an arbitrary point 
P on the geoid is completed as follows (Shen 2006):

(i)  The initial iteration begins with P , , Nz m^ h, with coordi-
nates provided by a known geoid model, e.g., EGM2008 
geoid.

(ii) The geodetic coordinates , , Nz m^ h are transformed into 
spherical coordinates (r, θ, λ) (first to the rectangular 

Fig. 1. Definition of the shallow layer, redrawn after Shen (2006). The 
thick solid line denotes the Earth’s surface 2X , the dotted line denotes 
the geoid G2 , and the thin solid line denotes a closed surface 2C , 
which is below the geoid. The masses bounded by 2X  and 2C , namely 
the shadow part, are referred to as the shallow layer.
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coordinates and then to the spherical coordinates, cf. 
Heiskanen and Moritz 1967). According to the coordi-
nates (r, θ, λ), one can compute V*(P), Q(P) and W *(P) 
as follows

V P V P V P1 0= +* *^ ^ ^h h h

sinQ P r2
1 2 2 2~ i=^ h

W P V P Q P= +* *^ ^ ^h h h        (5)

(iii) Then one gets

N
W P W0

c
D =

-* ^ h         (6)

where γ is the normal gravity at P. By adding ΔN to N, now 
the coordinate of point P is updated to , , N Nz m D+^ h.

(iv) Repeat (ii) and (iii) until the following criterion condi-
tion is satisfied

N
W P W

<0

c
dD =

-* ^ h         (7)

where δ is set at the value of 5 mm in this study (this value 
could be also set smaller if mm level accuracy is needed). 

The shallow-layer method proposed by Shen (2006) 
is quite different from the conventional approaches. Based 
on Eq. (4), to each point P on the geoid, on the right-hand 
side of Eq. (4), W0 is a constant, and on the left-hand side, 
the first term is the gravitational potential and the second 
term is the centrifugal potential. These two terms contain 
the geometrical information for point P. Hence, if Eq. (4) is 
solved, the geometrical position of point P is determined in 
the Earth-center fixed system and consequently determined 
with respect to the WGS84 ellipsoid. In this way, the geoid 
can be determined after sufficiently dense points on the 
geoid are determined. The geoid determination problem is 
then reduced to the problem of determining the gravitational 
potential V*(P) on the geoid, since the centrifugal potential 
Q is known. Hence, the shallow-layer method is based di-
rectly on the geoid definition and does not depend on the 
Stokes integral or the Molodenskiĭ integral.

2.2 Modeling the Gravitational potential of the Shallow 
Layer

The gravitational potential generated by the shallow 
layer (masses) is computed using a discretized numerical 
integration based upon elementary bodies such as right-rect-
angular prisms and tesseroids. The integration of Eq. (1) can 
be analytically completed using prism modeling if the mass 
density Kt^ h of each volume integral element is homoge-
neous. Figure 2 demonstrates the geometry of the right-rect-
angular prism. The prism is bounded by planes parallel to 

Fig. 2. Sketch map of the definition of the right-rectangular prism (after Nagy et al. 2000).
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the coordinate planes, defined by the coordinates X1, X2, Y1, 
Y2, Z1, Z2, respectively, in the Cartesian coordinate system, 
and the field point P is denoted by (XP, YP, ZP).

The integration result is provided in the following form 
(Nagy et al. 2000, 2002; Kuhn 2003; Heck and Seitz 2007; 
Tsoulis et al. 2009) 
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,x X X x X XP P1 1 2 2= - = -
,y Y Y y Y YP P1 1 2 2= - = -
,z Z Z z Z ZP P1 1 2 2= - = -

x y z2 2 2+ +l =         (9)

Equation (8) provides a mathematically rigorous, 
closed analytical expression for the computation of the 
gravitational potential V1(P) of the right-rectangular prism. 
Although the potential V1(P) is continuous in the entire do-
main R3 , its solution is not defined at certain places in R3 :  
8 corners, 12 edges and 6 planes of the prism (Nagy et al. 
2000, 2002). The direct computation of Eq. (8) will fail 
when P is located on a corner, an edge or a plane, as men-
tioned above, but one can calculate the corresponding limit 
values in a manner given by Nagy et al. (2000, 2002) at 
these special positions.

The main drawback in computing the potential using 
Eq. (5) is the repeated evaluations of several logarithmic and 
arctan functions for each prism. Furthermore, the formulae 
for computing the potential generated by prisms are given 
in Cartesian coordinates. This implies a planar approxi-
mation and requires a coordinate transformation for every 
single prism before applying Eq. (8). One needs to perform 
transformations between the prism edge system and the lo-
cal vertical system at the computation point. The explicit 
formulae for the transformations can be found in Heck and 
Seitz (2007) and Kong et al. (2001, page 168). For the above 
reason, although the prism modeling is rigorous and exact, 
the corresponding computation is very time-consuming, 
especially when one wants to perform computations for a 
region with dense grids. 

Compared to the low efficiency of the prism modeling, 
tesseroid modeling is much faster. The notion “tesseroid” 
(see Fig. 3), which was first introduced by Anderson (1976), 
is an elementary unit bounded by three pairs of surfaces 
(Kuhn 2003; Heck and Seitz 2007; Grombein and Heck 
2010): a pair of surfaces with constant ellipsoidal heights (r1 

= const, r2 = const), a pair of meridional planes (λ1 = const, 
λ2 = const) and a pair of coaxial circular cones ( 1{  = const, 

2{  = const). 
Based on a Taylor series expansion and choosing the 

geometrical center of the tesseroid as the Taylor expansion 
point, truncated after the 3rd-order terms, the realization of 
Eq. (1) reads (Heck and Seitz 2007)

, ,V r G r K K r K24
1

1 000 200
2

020
2{ m t { m {D D D D D= + +^ ^h :

K O002
2 4mD D+ + ^h h@      (10)

where Δr = r2 - r1, 2 1{ { {D = - , Δλ = λ2 - λ1 denote the 
dimensions of the tesseroid, Kijk denote the trigonometric 
coefficients involved in the Taylor expansion, the Landau 
symbol O(Δ4) indicates that it contains only the 4th-order 
terms and higher ones, which could be neglected at pres-
ent accuracy requirement. The trigonometric coefficients 
depend on the relative positions of the computation point 
(r, {, λ) with respect to the geometrical center of the tes-
seroid (ro, o{ , λo). The zero-order term of Eq. (10), which 
is formally equivalent to the point-mass formula, has the 
following form 

,cos cosK l
r

l r r rr2
o

o o
o o o o000

2
2 2{

W= = + -

,sin sin cos cos coso o o o{ { { { dm dm m mW = + = -      (11)

The mathematical expressions of the second-order coeffi-
cients K200, K020, and K002 are rather complicated and can be 
found in the work of Heck and Seitz (2007). The tesseroids 
are well suited to the definitions and numerical calculations 
of DEMs/DTMs, which are usually given on geographical 
grids. The tesseroid modeling is also modest in terms of 
the computation costs, see more details in Heck and Seitz 
(2007). 

The prism modeling offers rigorous, analytical solu-
tion but its implementation is inefficient and requires very 
demanding computations. The tesseroid modeling on the 
other hand shows high numerical efficiency but may pro-
vide results at a relatively lower accuracy level. The ap-
proximation errors due to Taylor series truncation do ex-
ist but decrease very quickly with the increasing distance 
between the tesseroid and the computation point (Heck and 
Seitz 2007). Hence, the ideal way is to combine these two 
methods together for the practical computations, which 
would take full advantage of both methods and overcome 
their disadvantages at the same time (Tsoulis et al. 2009). 
In this study, we use the combination method to compute 
the gravitational potential of the shallow layer as stated in 
the following strategy. After the shallow layer masses are 
partitioned into elementary units, the prism modeling is 
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adopted to evaluate the contribution of the units located at 
the nearest vicinity surrounding the computation point. The 
tesseroid modeling is employed for computing the contribu-
tion of units located outside the mentioned vicinity area. In 
this case, one can maintain a manageable computation load 
without losing accuracy. The differences between the prism 
method and the combination method are quite small, with 
an order of ~10-3 m2 s-2 in this study. This means that the 
corresponding difference in height is less than 1 mm. This 
combination method will be hereinafter referred to as the 
combination modeling method (CMM).

3. DATA AnD CoMpUTATIon
3.1 The Data Sets

The 5´ × 5´ resolution (~10 km) geopotential model, 
EGM2008 (Pavlis et al. 2008, 2012), which is used in this 
study and released by the US National Geospatial Intelli-
gence Agency (NGA) in 2008, is the most recent high-degree 
global geopotential model of the Earth’s external gravity 

field. It is complete to spherical harmonic degree and order 
2159, and contains additional spherical harmonic coeffi-
cients extending to degree 2190 and order 2159. EGM2008 
has been developed by combining the space borne GRACE 
satellite data, terrain and altimetry data and the surface 
gravity data (Kenyon et al. 2007). Based on Shuttle Radar 
Topography Mission (SRTM) (Farr et al. 2007) data and 
other altimetry data sets, the high-resolution global digital 
topographic model DTM2006.0 complete to degree/order 
2160 (Pavlis et al. 2007) became publicly available at the 
same time. 

In order to evaluate the gravitational potential of the 
shallow layer, according to Eq. (1), one has to know (1) its 
interior structure, especially the density distribution and 
(2) the geometry of the entire layer. The density distribu-
tion is usually provided by geological investigations (rock 
samples, deep drilling projects, etc.) and active seismic 
methods. Dziewonski and Anderson (1981) presented the 
preliminary reference Earth model (PREM) with a spherical 
symmetric density distribution of the Earth. From then on, 

Fig. 3. Geometry of a tesseroid redrawn after Kuhn (2003).
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many other models have been presented with various levels 
of detail. In this study, the best currently available global 
crustal model, CRUST2.0 (Bassin et al. 2000; http://igpp-
web.ucsd.edu/~gabi/crust2.html), is adopted. Sample analy-
ses of CRUST2.0 are given by e.g., Bassin et al. (2000) and 
Tsoulis (2004). CRUST2.0 offers a detailed density distri-
bution and structure of the crust and the uppermost mantle 
on a 2° × 2° grid, and defines 360 crustal types, each con-
sisting of 7 layers: (1) ice, (2) water, (3) soft sediments, (4) 
hard sediments, (5) upper crust, (6) middle crust, and (7) 
lower crust. Each 2° × 2° cell is assigned to one kind of 
crustal type where the compressional and shear wave veloc-
ity (VP, VS), density t  and the upper and lower boundaries 
are given explicitly for each individual layer. 

Determination of the shallow layer geometry is dis-
cussed as follows. We focused first on the upper surface of 
the shallow layer, namely, the topographic surface. A digi-
tal terrain/elevation model (DTM/DEM) with a specific grid 
resolution can be used to represent the topographic surface. 
This representation depends on a discretization due to the 
fact that DTM/DEM is usually given at scattered locations 
or on geographical grids. For the numerical evaluation in 
this study, the global digital topographic model DTM2006.0 
mentioned before is used: this is a model created to supple-
ment EGM2008, and it can provide elevation on land ar-
eas and bathymetry on ocean areas for an arbitrary point. 
However, this is inconsistent with our case. What we need 
is the topographic surface on both continents and ocean sur-
face. This inconsistency can be simply eliminated by setting 
DTM2006.0 heights on ocean areas to zero. However, a bet-
ter choice is to introduce the Danish National Space Center 
data set DNSC08 mean sea surface (MSS), established from 

an integration of satellite altimetry data with a time span 
from 1993 to 2004 (Andersen and Knudsen 2009; Andersen 
et al. 2010). Hence, a new upper surface of the shallow layer 
is established by combining DTM2006.0 on land areas and 
DNSC08 MSS on ocean surfaces. 

Secondly, we have to choose the lower surface of the 
shallow layer, namely, the surface 2C(cf. Fig. 1). Theoreti-
cally, 2C  can be a closed surface in a quite arbitrary shape 
that lies inside the geoid (Shen 2006). Since the geoid un-
dulations vary globally within ±110 m, it is easy to deter-
mine the approximate position of the surface 2C . In order 
to simplify the description and calculations, we chose the 
EGM2008 geoid as a reference surface. A new surface that 
extends from the reference surface downward to a depth of 
150 meters is then constructed. This is referred to as the 
lower surface and denoted as 2C(cf. Fig. 3). Now both the 
upper and lower surfaces of the shallow layer have been 
determined. 

Finally, we use the CMM described in section 2 to cal-
culate the gravitational potential generated by the shallow 
layer. 

3.2 Computation Strategies and Results

In order to test the shallow-layer method for geoid 
determination, a numerical case study was performed. The 
area of interest (AOI) was restricted to a northwest China 
area (including Xinjiang Uygur Autonomous Region and 
Tibet Autonomous Region) between parallels 25 - 50°N and 
meridians 70 - 100°E, with a coverage of 25° × 30° area. A 
5´ × 5´ topography of this area is shown in Fig. 4, where the 
mesh was computed based on DTM2006.0 to degree and 

Fig. 4. A 5´ × 5´ topography of the area of interest (AOI) determined by DTM2006.0.

http://igppweb.ucsd.edu/~gabi/crust2.html
http://igppweb.ucsd.edu/~gabi/crust2.html
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order 2160. To avoid the boundary effects (edge effects), 
we extended the AOI by 5° beyond each parallel border and 
each meridian border. In the area outside the extended AOI, 
the interpolated values are used in order to make a smooth 
expansion. Hence, the extended AOI covers a 35° × 40° area 
located between 20 - 55°N and 65 - 105°E.

The gravitational potential integration of the shallow 
layer actually contains two parts, the shallow layer mass ef-
fect within the extended AOI and that of the distant masses 
outside this area. Owing to the high computation cost, the 
efficiency of the entire evaluation requires an appropriate 
choice of modeling methods and computation strategies. 
For the former issue, the CMM should be used as described 
in section 2, and for the latter issue, the integration domain 
is subdivided into three zones: (1) the extended AOI, (2) the 
near-zone and (3) the far-zone. Details of the subdivision 
and grid size for each zone are given in Fig. 5.

These zones each requires different modeling methods. 
Calculations were carried out using the CMM over the ex-
tended AOI, relying on prism modeling within a 1° spherical 
distance from the computation point and tesseroid modeling 
in the rest of the region (with a 5´ × 5´ DEM). The influence 
due to the near-zone was computed using the tesseroid mod-
eling method (with a 15´ × 15´ DEM), and the distant mass 
effect in the far-zone was computed using an approximate 
tesseroid modeling method (with a 30´ × 30´ DEM) that is 
the zero-order approximation of Eq. (10) by neglecting all 
the higher-order terms (Kuhn 2003; Heck and Seitz 2007). 
Due to the rapid attenuation of the truncation errors with re-

spect to the distance from the computation point to the field 
point, the zero-order approximation is accurate enough to 
deal with the effect of distant masses located in the far-zone 
and saves about 20% computation time. The global crustal 
model CRUST2.0 (both density and stratification informa-
tion) was interpolated to a finer 5´ × 5´ grid in the extended 
AOI, to a 15´ × 15´ grid in the near-zone and to a 30´ × 
30´ grid in the far-zone, respectively, corresponding to grid 
sizes in these three zones. Likewise, the DNSC08 mean sea 
surface model was re-sampled to a 30´ × 30´ grid in the far-
zone. A bilinear interpolation technique was used for these 
processing procedures.

The gravitational effects for all zones were computed 
on a spatial sphere enclosing all of the masses, with a ra-
dius RS = 6386 km from the center of the Earth. Note that 
the semi-major axis of the reference ellipsoid is ~6378 km, 
and the highest mountain in the world is ~8 km at a latitude 
around 27°N, so a sphere with a radius = 6386 km can in-
clude all of the masses of the Earth. The gravitational po-
tentials generated from the masses within and outside the 
extended AOI are shown in Fig. 6. 

Taking into account the gravitational effects of the 
masses outside the extended AOI, that is, the effects gener-
ated from the masses in the near- and far-zones, one gets the 
gravitational effects generated from the entire shallow layer, 
which is visualized in Fig. 7. 

The spherical harmonic approach was used in this 
study to determine the gravitational potential V P0

* ^ h in the 
domain 

_
C , and the procedures are described as follows:

Fig. 5. The solid-line rectangle is the extended AOI (20 - 55°N and 65 - 105°E), with a 5´ × 5´ DEM; the dotted rectangle extends the solid-line 
rectangle outward by 20° beyond each side, and the area between the solid-line rectangle and the dotted one is the near-zone, using a 15´ × 15´ DEM; 
the remaining area is the far-zone, using a 30´ × 30´ DEM. 
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Fig. 7. Gravitational potential generated from the entire shallow layer.

Fig. 6. (a) Gravitational potential generated from the masses within the extended AOI; (b) gravitational potential generated from the masses outside 
the extended AOI.

(a)

(b)
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(i) Expand the gravitational effects of the shallow layer up 
to degree and order 2190 in spherical harmonics, and 
the derived coefficients are denoted as ,C Snm nm

1 1" ,. In 
order to link the expansion coefficients with those of 
EGM2008, the same scale factor, namely, the geocentric 
gravitational constant GM, is used in the spherical har-
monic expansion
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where RS = 6386 km is the radius of a spatial sphere whose 
center coincides with the Earth’s center, n is the degree and 
m is the order used in the spherical harmonic analysis, and 
the truncated degree is 2190; (θi, λj) are co-latitude and lon-
gitude of the geometric center of the (i th, j th) grid, V1(θi, 
λj) is the gravitational potential of the shallow layer on the 
spatial sphere (interpolated values are used outside the ex-
tended AOI), wi are the area weights given by Driscoll and 
Healy (1994); P nm  denote the fully normalized associated 
Legendre functions of degree n and order m. For the sake 
of numerical stability, the function P nm  with high degree 
and order are calculated using the recursive algorithms pre-
sented in the study of Holmes and Featherstone (2002) to 
avoid the underflow and overflow.

(ii) Use a simple yet effective quality control of the spheri-
cal harmonic expansion to perform the reverse process 
of (i), and a spherical harmonic synthesis is used to com-
pute V ( )

1
1  from the spherical harmonics ,C Snm nm

1 1" ,. And 
then the residual ΔV1 is checked to make sure whether 
the criterion is fulfilled:
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(iii) Perform the spherical harmonic analysis again
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and update ,C Snm nm
1 1" , with the following relations

C C C( )
nm nm nm
1 1 1 1D= +

S S S( )
nm nm nm
1 1 1 1D= +       (15)

(iv) Repeat steps (ii) and (iii) until the iteration converges, 
namely after Ni steps one obtains ,C S( ) ( )

nm
N

nm
N1 1" ,, and the 

standard deviation (STD) of V ( )N
1D  does not change sig-

nificantly. The basic concern behind this iteration pro-
cess lies in the fact that the results provided by only 
one spherical harmonic analysis step are not accurate 
enough. In our study, the results converge after three 
iterations (Ni = 3). The residuals V ( )N

1
iD  range from -1.7 

to 1.1 m2 s-2, with a mean of almost zero and STD of 
0.16 m2 s-2, which is equivalent to 1.6 cm in height: the 
relevant results are visualized in Fig. 8 and described 
in Table 1.

(v)   Subtract the coefficients ,C S( ) ( )
nm

N
nm

N1 1i i" , from the 
EGM2008 spherical harmonics ,C Snm nm" , in order to 
get the spherical harmonic representation ,C S0 0

nm nm
* *# - of 

the masses enclosed by the surface 2C  

C C C0
nm nm nm

1= -*

S S Snm nm nm
0 1= -*        (16)

(vi) Compute the gravitational potential generated by the 
masses enclosed by the surface 2C , V P P0 ! C* ^ ^h h 
from ,C Snm nm

* *# -

, , cos sinV r r
GM

r
a C m S mn

n

M
nm nm

m

n

0
0 0

i m m m= +
= =

* * *^ ` _h j i/ /

$ cosP nm i^ h       (17)

where r is the distance between the field point and the cen-
ter of the Earth. The geopotential W(P) in domain 

_
C  can be 

determined once V0
*  is available.

In order to determine the geoid based on Eq. (4), an 
iterative procedure [see Eqs. (5) - (7), which describe the 
calculation steps] could be applied (Shen 2006; Han and 
Shen 2007; Shen and Chao 2008). The geoid determined 
by the shallow-layer method presented in this study will be 
hereinafter referred to as the calculated geoid. 

4. TESTS AnD vALIDATIon
4.1 Comparison with the EGM2008 Geoid

The EGM2008 geopotential model plays an important 
role in describing the geopotential field generated by the 
Earth in the 

_
X  domain, as well as the global geoid deter-

mination in both the conventional (e.g., Pavlis et al. 2008) 
and shallow-layer approaches. Here, we use the EGM2008 
geopotential model, yet we calculate the geoid in a man-
ner quite different from the conventional one, so it is neces-
sary to demonstrate the differences between the calculated 
geoid and the EGM2008 geoid. We evaluate the differenc-
es between the two geoid models in the entire AOI. The  
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calculated geoid and the EGM2008 geoid are shown in  
Fig. 9, with the differences between these two geoid models 
shown in Fig. 10, where the 21 GPS leveling benchmark 
locations are denoted by red crosses. The statistics of both 
geoids and their differences are listed in Table 2. Note that 
both the calculated geoid and the EGM2008 geoid are below 
the WGS84 ellipsoid in the AOI. Significant differences be-
tween them are found in the range -1.2 to 1.9 m (see Table 2).  
The two geoid models show good agreement with each oth-
er in the basins (Tarim Basin, Junggar Basin), while large 
discrepancies occur in rough mountainous areas (Tianshan 
Mountain, Kunlun Mountain and Himalaya Mountain). 
For instance, the number 2 GPS leveling benchmark (cf.,  
Fig. 10) is located at an elevation of 4396 m (the highest 
point among all benchmarks) and very close to the border 
of the Tibet Autonomous Region, and here the difference 
reaches ~28 cm.

4.2 Comparison with GpS Leveling Data

A more reasonable validation relies on the GPS lev-
eling benchmarks (GPSBMs). Within the AOI, there are 
21 sparsely distributed GPSBMs available (at present) for 
the validation (Fig. 10). We note that all of these points be-

long to the Xinjiang region and most of them are located 
on rough mountains with maximum and mean elevations 
of 4936 and 1362 m, respectively. The calculated geoidal 
undulations, as well as the EGM2008 geoidal undulations, 
are compared with the heights anomalies at the GPSBMs. 
Before the comparisons can be made, additional computa-
tions are performed to convert these geoid undulations into 
the corresponding height anomalies using a second-order 
correction term presented in the work of Shen et al. (2011). 
Table 3 lists the statistical information for the comparisons. 
The differences between the geoidal heights from the cal-
culated geoid model and the GPSBMs vary from -0.34 to  
0.32 m, with a mean of 0.05 m. In particular, this mean 
value reveals that there is no significant datum shift. The 
standard deviation for the calculated geoid (compared with 
21 GPSBMs) is 17.9 cm while for the EGM2008 geoid it is 
19.8 cm, indicating that the calculated geoid is better than 
the EGM2008 geoid in the Xinjiang region. The reduc-
tions in the maximum and mean values also demonstrate 
the improvement. Since all of the GPS/leveling data used 
here are in the Xinjiang region, we cannot evaluate the ac-
curacy of both the calculated geoid and the EGM2008 geoid 
in the Tibet region. If there were more GPSBMs available 
in AOI (especially in the Tibetan plateau), the validation 
would give more insight into the calculated geoid using the 
shallow-layer method. 

5. ConCLUSIon AnD DISCUSSIon

This paper presented the shallow-layer method pro-
posed by Shen (2006) to determine a global or regional 

Table 1. Differences between synthesized result and the original data 
(unit: m2 s-2). 

Fig. 8. Residual ΔV1 after three iterations. 

Max Min Mean STD

1.011 -1.732 -1.500 × 10-3 0.1617
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Fig. 10. Differences between the calculated geoid (this paper) and the EGM2008 geoid.

Fig. 9. (a) 5´ × 5´ EGM2008 regional geoid; (b) 5´ × 5´ calculated regional geoid.

(a)

(b)
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geoid from a new point of view. The feasibility of the Shen 
method was discussed using a case study in the Xinjiang 
and Tibetan regions. The calculated 5´ × 5´ geoid takes 
full advantage of recently published models and data sets, 
namely, EGM2008, DTM2006.0, CRUST2.0 and DNSC08. 
A model of the shallow layer with 3D density distribution 
and stratification was also established to implement this 
method. The prism and tesseroid modeling methods were 
reviewed in this study. From the point of view of computa-
tional economy, a combination modeling method with spe-
cial computational strategies for different zones was used in 
our computations. The iterative spherical harmonic analysis 
and synthesis procedures were presented to determine the 
gravitational potential V P0

* ^ h in the domain 
_
C . The vali-

dations presented in this contribution show that the calcu-
lated geoid reaches an accuracy of ~18 cm and fits GPSBMs 
better than the EGM2008 geoid in the Xinjiang region by 
about two centimeters. This noticeable improvement is due 
mainly to the use of CRUST2.0, which takes into account 
both the radial and lateral density variations, compared with 
the fact that the EGM2008 geoid adopts the constant density  
(2670 kg m-3) hypothesis. Using different density hypoth-
eses is the main cause inducing the differences between 
the EGM2008 geoid and the calculated geoid in the test re-
gion. Since the GPS/leveling data in the Tibet region were 
not available, the geoid accuracy in this region could not 
be evaluated at present. The validation would reveal more 
details about the calculated geoid, provided that more GPS-
BMs are available.

The final accuracy of the calculated geoid depends on 
the accuracy of the models involved in the computations, as 
well as the methodology itself. The influence of DNSC08 
MSS is minor, because it was used only for computing 
the far-zone effect. Errors in EGM2008, DTM2006.0 and 
CRUST2.0 dominate the accuracy of the calculated geoid. 

EGM2008 is currently the best and most reliable global 
geopotential model, with a globally 10 cm-level precision. 
Errors in elevations from DTM2006.0, which is a supple-
ment to EGM2008, may introduce large errors in the geoi-
dal heights, according to Merry (2003) and Kiamehr and 
Sjöberg (2005). A careful study is needed to consider this 
effect in our further investigations. Compared with the high-
resolution geopotential model and DEM, CRUST2.0 pro-
vides density and stratification information in a relatively 
poor resolution (2° × 2°). In order to maintain the same reso-
lution in each computational step, we have to interpolate 
CRUST2.0 to finer grid. Uncertainties in the CRUST2.0 
model (i.e., deviations of model density from the real 
Earth’s crustal density heterogeneities) and the interpola-
tion process may yield unacceptable errors, which will be 
estimated in a separate paper. Optimistically, better results 
could be achieved after a forthcoming new updated version, 
CRUST1.0 (Laske 2011), is released. 

The error caused by the analytical downward con-
tinuation (ADC) has been investigated by various authors 
(Sjöberg 1977; Jekeli 1981; Wang 1997; Shen and Tao 
2007). In this study, the error caused by ADC is negligible 
(Shen and Tao 2007).

Reasonably, the newly derived geoid in this study may 
offer complementary information to map the geological 
structures in the AOI. This study also shows the practical 
potential of the shallow-layer method for regional geoid 
determination (especially in mountainous areas), and this 
method may be easily applied to global geoid determina-
tion using the publicly available data sets (e.g., EGM2008, 
DTM2006, CRUST2.0), without the requirement for addi-
tional gravity measurements and spirit leveling. We point 
out that provided a better gravity model, DEM, and espe-
cially more accurate density distribution in the shallow layer 
domain, one could determine a geoid with higher accuracy 
using the shallow-layer method. 

Future work, which is still in progress, may extend the 
application of the shallow-layer method to determining a 
global geoid. 
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Table 3. Statistics of differences between EGM2008 geoid/calculated 
geoid and GPSBMs (unit: m).

Table 2. Statistics of two geoid models (unit: m). 

Geoid model Max Min Mean STD

Calculated geoid -17.677 -68.163 -45.265 10.556

EGM2008 geoid -18.088 -68.091 -45.266 10.534

Calculated geoid -  
EGM2008 geoid

1.939 -1.228 0.0009 0.188

Geoid model Max Min Mean STD

EGM2008 geoid 0.413 -0.320 0.120 0.198

Calculated geoid 0.321 -0.344 0.051 0.179
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