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ABSTRACT

Regional water resources management generally requires knowledge of multisite streamflows which exhibit random, yet 
spatially and temporally correlated, variabilities. The complexity of such correlated randomness makes decision-making for 
water resources management a difficult task. With presence of uncertainties in space and time, risk-based decision making 
using stochastic models is sought after. In this study we propose a spatiotemporal stochastic simulation model for multisite 
streamflow simulation. The model is composed of three components: (1) stochastic simulation of bivariate non-Gaussian dis-
tributions, (2) anisotropic space-time covariance function which characterizes the spatial and temporal variations of multisite 
ten-day periods (TDP) streamflows, and (3) Monte Carlo spatiotemporal simulation of streamflows. The model was applied 
to the Chia-Nan Irrigation District in southern Taiwan for a multisite spatiotemporal ten-day-period streamflow simulation. 
Through a rigorous evaluation, the proposed spatiotemporal model is found capable of preserving not only the marginal 
distributions but also the spatiotemporal correlation structure of the multisite streamflows. An example application which 
demonstrates utilization of the proposed model for irrigation water shortage risk assessment is also presented.

Key words: Stochastic simulation, Spatiotemporal modeling, Multisite streamflows
Citation: Hsieh, H. I., M. D. Su, and K. S. Cheng, 2014: Multisite spatiotemporal streamflow simulation - with an application to irrigation water shortage 
risk assessment. Terr. Atmos. Ocean. Sci., 25, 255-266, doi: 10.3319/TAO.2013.10.21.01(Hy)

1. INTRODUCTION

Streamflow data are widely used in water resource 
management, hazard risk assessment, modeling climate 
change scenarios and other applications. Many applications 
require streamflow estimates at different gauging stations 
for regional-based decision making. Unfortunately, many 
gauging stations do not have flow observations with long 
record lengths to support meaningful analysis and model-
ing required by the target applications. In order to circum-
vent such problem, stochastic simulation (or Monte Carlo 
simulation) of multisite streamflows is an essential need in 
water resources management. Another factor exacerbating 
the simulation difficulties is that streamflows at different 
sites exhibit not only spatial but also temporal correlations, 
necessitating a spatiotemporal stochastic simulation model 
for multisite streamflows simulation.

An essential element of stochastic simulation is that 

statistical properties of the phenomenon under investigation 
must be preserved in the simulation outputs. While it may be 
difficult to preserve all statistical properties of complex phe-
nomenon, the minimum goal is to preserve up to the second-
moment properties, i.e., the expectation and variance/cova-
riance. Many environmental and natural variables, such as 
precipitation amount, storm duration, and streamflow exhib-
it significant degrees of non-Gaussian randomness (Parada 
and Liang 2010; Cheng et al. 2011). Univariate simulation 
of such non-Gaussian random variables can be achieved by 
using the probability integral transformation (Cheng et al. 
2007), and many statistical software packages provide built-
in commands for such univariate simulations. Validation of 
the results of univariate simulation only considers the prop-
erties (for examples, the unbiasedness and mean squared er-
ror) of parameter estimators (Cheng et al. 2007). Stochastic 
simulation of two correlated random variables, commonly 
known as the bivariate simulation, requires preservation of 
the parameters of marginal densities and the correlation of the 
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two random variables as well. Lee et al. (2010) conducted a 
bivariate storm frequency analysis by considering a bivariate 
Gumbel distribution for storm duration and depth. Cheng et 
al. (2011) developed a frequency-factor based approach for 
stochastic simulation of the bivariate gamma distribution.

For cases that involve simulation of more than two 
interrelated random variables, covariance between random 
variables also need to be preserved, in addition to param-
eters of individual random variables. A covariance matrix, 
which characterizes correlations of all possible pairs of two 
random variables, plays an important role in multivariate 
simulation. Wu et al. (2012) assessed climate change im-
pacts on basin-average annual typhoon rainfalls by simulat-
ing multi-site typhoon rainfalls with consideration of their 
multisite correlations. Wang and Ding (2007) developed a 
nonparametric multivariate kernel density model for multi-
variate daily flow generation. 

Stochastic simulations involving spatial and tempo-
ral variations have gained more attention in recent years. 
Westra and Sharma (2009) developed a multivariate estima-
tion model, based on independent component analysis, for 
multiple reservoir inflow estimations. Lee (2012) proposed 
a stochastic approach for multivariate streamflow simula-
tion by decomposing multivariate time series into indepen-
dent components. In this study we developed a stochastic 
spatiotemporal model for multisite streamflow simulation. 
The model aims to generate streamflows at different sites 
which can then be used for drought risk assessment of miti-
gation measures. Key elements of the model include sto-
chastic simulation of bivariate non-Gaussian distributions 
and an anisotropic space-time covariance function which 

characterizes the spatial and temporal variations of multi-
site streamflows.

The paper is organized as follows. Section 2 describes 
the study area and streamflow data used in this study. Sec-
tion 3 gives details of the methods for characterizing the 
spatial and temporal covariances of streamflows at differ-
ent sites. Section 4 introduces an algorithm for stochastic 
simulation of bivariate non-Gaussian distributions using a 
frequency-factor based approach. Procedures for extending 
from a bivariate simulation to a multivariate simulation are 
also described in section 4. Section 5 shows the results of 
stochastic spatiotemporal simulations using the proposed 
model. Validation of the simulation results is also presented 
in section 5. Section 6 demonstrates an application in irriga-
tion management using the simulation results. A few con-
cluding remarks are given in section 7.

2. STUDY AREA AND DATA

The Chia-Nan Irrigation District (CNID) and its neigh-
boring areas (see Fig. 1) in southern Taiwan were selected 
for our study area. The study area contains seven sub-basins 
with twelve streamflow gauging stations. In Taiwan, flows 
of nominal ten-day periods (TDP) are used for irrigation 
management, with a total of 36 TDP in each year. Twenty 
six years (from 1975 to 2000) of TDP streamflow data avail-
able at the twelve stations were used for this study. Figure 2  
shows the long-term average of TDP flows at individual 
flow stations. A distinct pattern can be observed with high 
flow season (May - October) accounting for a majority of 
the annual total flows.

Fig. 1. Study area and flow stations. The region enclosed by the red-marked polygon represents the irrigation subgroup of an exemplar application 
for irrigation water shortage risk assessment (see details in section 6 and Fig. 11).
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3. CHARACTERIZING MULTISITE  
STREAMFLOWS

TDP streamflow data are available at different gaug-
ing stations. The drainage areas for individual gauging sta-
tions vary from 83 km2 for station 4 to 812 km2 for station 
12. As a result, the magnitudes and statistical properties (for 
examples, the mean and standard deviation) of TDP stream-
flows differ from one station to another across the study 
area. The heterogeneity in the expected value and variance 
of site-specific TDP flows needs to be considered in multi-
site streamflow simulation.

Let Qi, j, k represent streamflow of the j-th TDP of the 
i-th year at the k-th station. Site-specific TDP flows are stan-
dardized with respect to their expected values and standard 
deviations through the following equation:

Q s
Q m
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*
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j k
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where mj, k and sj, k are respectively the mean and standard de-
viation of streamflows of the j-th TDP at the k-th station, and 
Q , ,
*
i j k  is the standardized TDP streamflows at the k-th station. 

Standardized TDP flows at different stations have common 
zero expectation and unit standard deviation. We consider the 
spatial variation of the standardized TDP flows as an isotro-
pic stationary Pearson Type III (PT3) random field with the 
following marginal probability density function:

( ) ( ) ( ) ,f x x e x1 1
( )

X
x

$ $ 3# #f f
a b aC

= - +
f

b
a

- - -
 (2)

where X represents the random variable (i.e., the standard-
ized TDP flows in this study), a , b , and f  are respectively 

the scale, shape and location parameters of the PT3 distribu-
tion. Using the method of L-moments (Hosking and Wallis 
1995; Hosking and Wallis 1997) the three parameters were 
estimated as ac  = 1.1059, bc  = 0.7453, and fc  = -0.8261. 
Combination of these parameter estimates ensures zero ex-
pectation and unit variance of the standardized TDP flows.

The standardized TDP flows at different stations are 
spatial and temporally correlated and hence their covari-
ances in the spatial and time domains need to be consid-
ered simultaneously for a full characterization of the multi-
site TDP streamflows. Semi-variograms have been used in 
many studies for modeling of spatial variations of natural 
and hydrological phenomena (Cheng et al. 2000; Cheng et 
al. 2003; Franco et al. 2006). A semi-variogram is a func-
tion that describes the spatial correlation structure of a ran-
dom field. Let X(s) be a random variable at location s and 
{ ( ), }X s s ! X  be an isotropic stationary random field over a 
spatial domain X. In geostatistics, the characteristics of spa-
tial variation of a random field is often expressed in terms of 
the semi-variogram ( )s sc - l  defined as:

( ) [ ( ) ( )] , ,s s E X s X s s s2
1 2 !c X- = -l l l" ,  (3)

where E(X) represents the expected value of a random vari-
able X. For a stationary random field, the semi-variogram is 
independent of the locations (s and sl ) and can be expressed 
by ( )hc  with h being the distance between s and sl . Details 
of the properties of the semi-variogram and its modeling can 
be found in Journel and Huijbregts (1978).

In this study we first established the spatial semi-vario-
gram and temporal semi-variogram of the standardized TDP 
flows using only the same-TDP and same-site standardized 
TDP flows, respectively. Model fitting of both the spatial and 

Fig. 2. Long-term average TDP flows of 22 individual flow stations. Marked numbers represent flow station numbers in Fig. 1.
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temporal semi-variograms of the standardized TDP flows 
using an exponential model yields the following results:

( ) ( )s s s e1 / .
S S

s 54 6c c D- = = - D-l  (4)

( ) ( )t t t e1 / .
T T

t 2 38c c D- = = - D-l  (5)

where ( )sSc D  and ( )tTc D  are respectively the spatial and 
temporal semi-variograms, and Δs and Δt are measured in 
units of kilometers and ten-day periods, respectively. The 
covariance functions of the standardized TDP flows in space 
and time (i.e., CS and CT) are respectively related to the tem-
poral and spatial semi-variograms and can be represented 
by the following equations:

( ) ( )C s s s e1 / .
S S

s 54 6c D- = - = D-l  (6)

( ) ( )C t t t e1 / .
T T

t 2 38c D- = - = D-l  (7)

In modeling the temporal semi-variogram, we consider the 
time domain (measured in units of TDPs) as a one dimension-
al space, and the temporal semi-variogram was established in 
a manner similar to spatial semi-variogram modeling.

The above spatial and temporal semi-variograms (or 
covariance functions) characterize the random co-variations 
of the standardized TDP flows in the spatial domain and 
time domain, respectively. However, co-variation can also 
exist between standardized TDP flows of different TDPs 
and at different sites. For example, the standardized TDP 
flows of the 15th TDP at station 1 and the standardized TDP 
flows of the 16th TDP at station 2 (which is near station 1)  
are likely to be correlated. However, such co-variation 
cannot be characterized by either the spatial or temporal 
semi-variogram (or covariance function) alone. In order to 
account for such spatiotemporal co-variation (or the space-
time interaction) we consider the spatiotemporal random 
field being anisotropic in time and in space, and adopted the 
following spatiotemporal anisotropic covariance function of 
the standardized TDP flows:

[ ( , ), ( , )] ( , )Cov X s t X s t C s t e, .S T
t k s
2 38

2 2 2

D D= =
D D- +

l l  (8)

where ( , )C s t,S T D D  is the spatiotemporal covariance func-
tion and k is a scale factor, also known as the anisotropic 
ratio, with a value of k = 2.38/54.6. The above spatiotem-
poral covariance function characterizes isotropic covariance 
functions in space and time, but anisotropic covariance in 
space-time (Serban 2013).

4. SPATIOTEMPORAL SIMULATION OF TDP 
STREAMFLOWS

In the previous section we demonstrated that the mul-
tisite standardized TDP flows can be modeled as a PT3 
spatiotemporal random field with an anisotropic covariance 
function in space-time domain. In this section we describe 
details of the algorithm and procedures for spatiotemporal 
simulation of multisite TDP streamflows.

The task of spatiotemporal simulation in this study is to 
generate a large set of TDP streamflow samples. Each TDP 
streamflow sample represents one year (36 TDPs) of TDP 
streamflows at n different flow stations, as demonstrated in 
Fig. 3a. A spatiotemporal sample is composed of 36 × n  
standardized TDP flows and can be expressed as X(s, t),  
s = {s1, …, sn}; t = {t1, …, tm}. Occurrence of such a sample 
is characterized by the following joint density:
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Based on the conditional probability, the above joint density 
can be further expressed as:
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Therefore, simulation of a spatiotemporal random sample 
can be achieved by a sequential conditional simulation ap-
proach. Figure 3b illustrates the column-preference (i.e., 
space preference) sequential conditional simulation algo-
rithm. Conditional simulation of X(sp, tq) given other X(si, tj) 
forms the foundation of the sequential simulation. Without 
loss of generality, simulation of X(s3, t3) given X(s1, t1) and 
X(s2, t2) is described as follows.

The joint distribution {X(s1, t1), X(s2, t2), X(s3, t3)} is 
non-Gaussian since standardized TDP flows are PT3 dis-
tributed. A PT3 distribution can be transformed to a cor-
responding standard normal distribution using its frequency 
factor (Cheng et al. 2007):

X KX Xn v= +  (11)
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K U U U U

U U
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- - + -
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where X is a PT3 random variable with expected value Xn ,  
standard deviation Xv  and coefficient of skewness c , K is 
the frequency factor of the PT3 distribution, and U repre-
sents a standard normal random variable. Similarly, a PT3 
spatialtemporal random field with spatiotemporal anisotro-
pic covariance function of Eq. (8) can be transformed to a 
corresponding standard normal random field. Cheng et al. 
(2011) showed that such transformation requires the fol-
lowing conversion between the correlation coefficient of a 
bivariate PT3 distribution and the correlation coefficient of 
a bivariate standard normal distribution:

( 6 9 ) 2 6A AC C B CX X U U U U U U
2 2 2 2 2 3

1 2 1 2 1 2 1 2
ct t t t- + + +  (13)

with X X1 2
t  and U U1 2

t  respectively being the correlation coef-
ficients of the bivariate PT3 and bivariate standard normal 
distributions, and A 1 6

4c= + ` j , B 6 6
3c c= - ` j , C 3

1
6
2c= ` j .

For convenience, {X(s1, t1), X(s2, t2), X(s3, t3)} is re-
placed by X = {X1, X2, X3} from here. The correlation ma-
trix of X(ΣX) can be converted to the correlation matrix of  
U = {U1, U2, U3}(ΣU) using Eq. (13). The correlation ma-
trix ΣX is calculated using Eq. (8) with consideration of the 
space-time anisotropy. From Eq. (10) we have

( , , ) ( ) ( ) ( , )f U U U f U f U U f U U U1 2 3 1 2 1 3 2 1$ $=  (14)

Techniques for multivariate Gaussian simulation have 
been well documented and we used a sequential Gaussian 
simulation (Liou et al. 2011) for stochastic simulation of  
U = {U1, U2, U3}. Random samples of a standard normal ran-
dom field can then be transformed to random samples of the 

spatiotemporal PT3 random field using Eqs. (11) and (12). 
An illustrative flowchart of the proposed spatiotemporal 
TDP streamflow simulation approach is shown in Fig. 4.

5. SIMULATION RESULTS AND VALIDATION

In this study TDP streamflows were generated at eight 
stations (stations 1, 3, 4, 7, 8, 9, 10, and 11) which have 
water intake structures. A spatiotemporal sample consists of 
36 TDP flows for each of the eight flow stations, making a 
total of 288 streamflows in each simulated sample. In order 
to compare sample statistics of the simulation results against 
that of the 26-year historical data, we generated 1000 blocks 
of TDP samples, with each block consisting of 26 spatiotem-
poral samples. Each block of simulated TDP samples can 
be viewed as a mimic (in a statistical sense) of the 26-year 
historical data. Using these 1000 blocks of simulated stream-
flows, we calculated the sample mean and standard deviation 
of the 26-year simulated TDP streamflows, and evaluated 
their uncertainties. For example, from each block of simu-
lated samples, an estimate of the mean (or standard devia-
tion) of the i-th TDP streamflows can be calculated for any 
station. A total of 1000 blocks yields 1000 estimates of the 
mean streamflow of the i-th TDP, and the mean and standard 
deviation of these 1000 estimates can be further calculated. 
Figure 5 demonstrates the uncertainties of the sample mean 
and standard deviation of the 26-year simulated TDP stream-
flows of station 1. The sample mean and standard deviation 
of observed TDP streamflows are also shown in Fig. 5. It can 
be observed that the mean and standard deviation of TDP 
streamflows are very well preserved by the simulated sam-
ples. Although the mean of the standard deviation of TDP 

(a)

(b)

Fig. 3. Illustration of the spatiotemporal domain for standardized TDP flow simulation. (a) The spatiotemporal random field is spatially isotropic, 
but anisotropic in time-space domain. (b) A two-dimensional grid network is used for implementation of the column-preference spatiotemporal 
simulation.
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flows calculated from 1000 blocks of simulated data was 
lower (less than 5%) than the standard deviation calculated 
from historical TDP flows during the high flow season, their 
differences are minor and will not result in any problems for 
practical applications.

In addition to the mean and standard deviation of TDP 
streamflows, it is also important to assess whether the spa-
tiotemporal TDP streamflow simulation can preserve the 
correlation in time, space, and time-space. A spatiotemporal 
correlation matrix P is defined as:
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where Pij itself is a sub-correlation matrix of dimension  
8 × 8 which represents the correlation between the i-th TDP 
flows and the j-th TDP flows, i.e.,
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Using 26 years of historical streamflows, we calculated the 
empirical spatiotemporal correlation matrix of TDP stream-
flows (see Fig. 6). A sample correlation matrix can also 
be calculated using each block of simulated samples, and 
thus the sample mean and standard deviation of the correla-

tion matrix P can be derived from a total of 1000 blocks 
of simulated samples. Figure 7 demonstrates that the mean 
spatiotemporal correlation matrix based on 1000 blocks of 
simulated streamflows is almost identical to the theoretical 
spatiotemporal correlation matrix which can be derived by 
substituting Eq. (8) into Eqs. (15) and (16). Standard de-
viation map of the spatiotemporal correlation matrix is also 
shown in Fig. 8. The diagonal elements (from the lower left 
corner to the upper right corner) have zero standard devia-
tion since they are associated with correlation coefficients 
of the same site and same TDP streamflows. It can also be 
observed that moving from the diagonal element, the stan-
dard deviation of the spatiotemporal correlation generally 
increases with the space-time lag from the diagonal element, 
until the lag reaches approximately 48. Beyond a space-time 
lag of 48, standard deviations of the spatiotemporal correla-
tion of TDP streamflows seem to stabilize at a value of ap-
proximately 0.20. This result can be explained as follows.

The space-time lag of 48 is equivalent to a time lag of 6 
TDPs since Pij in Eq. (16) represents the correlation matrix of 
TDP streamflows at eight stations. Notwithstanding the lag 
in space, the spatiotemporal correlation coefficient [Eq. (8)] 
drops to lower than 0.1 when the time lag between stream-
flows at any two stations becomes greater than 6 TDPs (see 
Fig. 9). With a very low spatiotemporal correlation coef-
ficient (near zero), the asymptotic standard deviation of the 
sample correlation coefficient can be approximated by the 
following equations (Hooper 1958; Priestley 1982):

(1 )
nr

2

v
t= -  (17)

Fig. 4. Illustrative flowchart of the proposed spatiotemporal TDP streamflow simulation approach.
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(a) (b)

Fig. 5. Simulated TDP streamflows (mean and standard deviation) at station 1. (a) Mean of TDP streamflows and (b) Standard deviation of TDP 
streamflows.

Fig. 6. Spatiotemporal correlation matrix 
(P) of historical TDP streamflows. Profile 
of the correlation coefficient of the first 
row is shown in Fig. 10.

Fig. 7. Comparison of (a) the mean spatiotemporal correlation matrix of simulated TDP streamflows and (b) the theoretical spatiotemporal correlation 
matrix of TDP streamflows.

(a) (b)
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n
1

rv =  (18)

where n represents the sample size (in our study, n = 26) for 
calculation of the sample correlation coefficient, t  is the 
population correlation coefficient, and rv  is the asymptotic 
standard deviation of the sample correlation coefficient. In 
our study the sample size n equals 26 and the asymptotic 

standard deviation of the sample correlation coefficient 
calculated by either of the two equations yields a value of 
0.196. These results also suffice to demonstrate the capabil-
ity of the spatiotemporal simulation model in preserving the 
spatiotemporal correlation structure of TDP streamflows.

Using the mean and standard deviation of  the spa-
tiotemporal correlation coefficient, we can construct the 
(mean ± standard deviation) range of the sample correlation 

(a)

(b)

Fig. 8. (a) Map of standard deviations of the spatiotemporal correlation matrix of simulated TDP streamflows. (b) An enlarged area showing standard 
deviation maps of the correlation matrix of multisite streamflows lagged by zero to two TDPs.

Fig. 9. Model-based spatiotemporal correlation coefficient of TDP streamflows with respect to lags in time and space.
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coefficients. Figure 10 demonstrates the sample spatiotem-
poral correlation coefficients in the first row of the empiri-
cal spatiotemporal correlation matrix (see Fig. 6), together 
with the corresponding mean and (mean ± standard devia-
tion) range of the sample correlation coefficients. It can be 
seen that the mean profile based on 1000 blocks of simu-
lated data is almost identical to the profile of theoretical spa-
tiotemporal correlation coefficient. In addition, most of the 
sample spatiotemporal correlation coefficients fall within 
the (mean ± standard deviation) range. A few points that fall 
outside of the (mean ± standard deviation) range are found 
to be within the [mean ± 2 × (standard deviation)] range. 
Although not shown in the paper, similar results were found 
for other profiles of the spatiotemporal correlation matrix. 
This suggests that the spatiotemporal correlation structure 
of the historical TDP streamflows can be reflected in the 
spatiotemporal TDP flow simulation results.

6. EXAMPE APPLICATION FOR IRRIGATION 
RISK ASSESSMENT

In order to demonstrate a potential application of the 
proposed spatiotemporal streamflow simulation technique, 
an example application for irrigation water shortage risk 
assessment was carried out. Irrigation water for an irriga-
tion subgroup (see Fig. 11 and the red-marked polygon in  
Fig. 1) within the CNID is provided by the Bah-Jon River 
and the Tzi-Shuei River. The irrigation subgroup is com-
posed of 22 subdivisions with irrigation demand varying 
from 0.02 to 0.3 million cubic meters per TDP. Among the 
22 subdivisions, subdivisions A and B were chosen to dem-

onstrate irrigation risk assessment based on the results of 
spatiotemporal TDP streamflow simulation. The irrigation 
subgroup often experiences irrigation water shortage during 
the dry season and a mitigation measure using groundwater 
from a total of 18 groundwater wells (see Fig. 11) has been 
investigated. The mitigation measure plans to withdraw 
groundwater at a rate of 0.01 million cubic meters per TDP 
from each of the 18 groundwater wells. Calculations of the 
irrigation water amount that can be provided to individual 
subdivisions within the irrigation subgroup are conducted 
by an irrigation management model. Within an irrigation 
subgroup, individual irrigation subdivisions are prioritized 
by considering their locations in the irrigation water supply 
network. A general criterion of the irrigation management 
model is to supply 70% of the irrigation water demand (i.e., 
the initial supply) to as many subdivisions as possible first, 
and then the additional amount of water, if existing, is sup-
plied to the subdivisions with higher priorities. The ratio-
nale of allocating the initial supply is that with this amount 
of irrigation water, paddy field rice can endure water stress 
without significant adverse effects. A detailed description of 
the irrigation management model is out of the scope of this 
study and readers are referred to Wen et al. (2007) and for 
details of the irrigation management model.

One thousand runs of spatiotemporal streamflow simu-
lation were conducted for this example application study. 
Each simulation run yields a spatiotemporal sample consist-
ing of 36 TDP streamflows at each flow station. Using the 
results of each simulation run, the irrigation management 
model calculated the amounts of irrigation water that can 
be provided to individual subdivisions under two different 

Fig. 10. Profile of correlation coefficients in the first row of the spatiotemporal correlation matrix {[ (1, ) (1, ) (1, )]; , , }j j j j 1 36, , ,1 1 1 2 1 8g gt t t = .
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scenarios - (1) without groundwater withdraw and (2) with 
groundwater withdraw. Under scenario 2, available surface 
water from a reservoir and rivers are considered as the pri-
mary source of irrigation water, i.e., irrigation water drawn 
from groundwater wells will be provided only when surface 
water is insufficient for irrigation water supply.

Consider the irrigation water supply (including surface 
and groundwater) and irrigation demand of a subdivision 
(for example, subdivision A or B). For the t-th TDP, let Xd(t) 
and Xs(t) respectively represent the amounts of irrigation de-
mand and irrigation water supply. From the results of one 
spatiotemporal TDP streamflow simulation run, the ratio of 
irrigation shortage (hereinafter referred to as the shortage 
ratio) is calculated as:

( )
[ ( ) ( )] ( ), ( ) ( )
, ( ) ( )

r t
X t X t X t if X t X t

if X t X t0
>d s d d s

d s#
=

-)  (19)

Not only does the shortage ratio vary with TDPs in one year 
but also from one year (simulation run) to another. Thus, 
from the results of 1000 spatiotemporal simulation runs, the 
mean and empirical cumulative distribution function (ECDF) 
of each TDP-specific shortage ratio can be obtained.

Figure 12 demonstrates the TDP-specific average short-
age ratios and the ECDF of shortage ratios of the 7th TDP 
for subdivisions A and B under different scenarios. Average 
shortage ratios are higher within the 4th - 14th TDP period 

(the first-crop period) during which streamflows are low 
(see Fig. 2) and large amount of irrigation water is needed 
for paddy field leveling and rice planting.

Under scenario 1, (i.e., without implementation of the 
groundwater mitigation measure), the mean of average short-
age ratios for subdivisions A and B during the 4th - 14th TDP 
period are 0.225 and 0.18, respectively (see Fig. 12a). The 
probabilities for subdivisions A and B to be fully supplied 
with their irrigation water demands (i.e., zero shortage ratio) 
in the 7-th TDP are 0.22 and 0.38 (point 1 in Figs. 12b and c), 
respectively. This is equivalently to say that the risk of irriga-
tion water shortage in the 7-th TDP for subdivisions A and 
B are 0.78 and 0.62, respectively. Similarly, the probability 
for the 7-th TDP shortage ratio exceeding 0.3 for subdivi-
sions A and B are 0.05 and 0 (point 3 in Figs. 12b and c), 
respectively.

Under scenario 2, the mean of average shortage ratios 
for subdivisions A and B during the 4th - 14th TDP period re-
duce to 0.125 and 0.075, respectively. The probabilities for 
subdivisions A and B to be fully supplied with their irriga-
tion water demands in the 7-th TDP become 0.46 and 0.72 
(point 2 in Figs. 12b and c), respectively. The probability 
for the 7-th TDP shortage ratio exceeding 0.3 becomes 0 for 
both subdivisions.

The above results demonstrate that the groundwater 
mitigation measure can help reduce the average irrigation 
shortage of the first-crop period by approximately 10% of 
the irrigation water demand (0.225 - 0.125 and 0.18 - 0.075) 
for both subdivisions. The mitigation measure can also re-
duce the risk of irrigation water shortage in the 7-th TDP by 
0.24 (0.46 - 0.22) for subdivision A and 0.34 (0.72 - 0.38) 
for subdivision B.

7. SUMMARY AND CONCLUSIONS

In this study we propose a spatiotemporal stochas-
tic simulation model for multisite streamflow simulation. 
Through a rigorous evaluation, the model is capable of 
preserving not only the marginal distributions but also the 
spatiotemporal correlation structure of the multisite stream-
flows. A few concluding remarks are given here:
(1)  The spatiotemporal correlation structure plays an es-

sential role in spatiotemporal modeling. An anisotropic 
spatiotemporal correlation function which characterizes 
isotropic covariance functions in space and time, but 
anisotropic covariance in space-time provides an effective 
tool for modeling the spatiotemporal correlation structure. 
However, the assumption of isotropic spatial correlation 
in space implies that standardized TDP flows (PT3 distrib-
uted) at different sites have approximately the same val-
ues of the coefficient of skewness. For applications which 
exhibit significant spatial variation of the coefficient of 
skewness, preprocess of the data may be required.

(2)  Stochastic simulation of a non-Gaussian random field 

Fig. 11. Irrigation subgroup of an application for irrigation water short-
age risk assessment (also see the red-marked polygon in Fig. 1).



Spatiotemporal Streamflow Simulation 265

can be achieved by transforming the non-Gaussian bi-
variate distribution to a corresponding bivariate standard 
Gaussian distribution and then conducting a sequential 
Gaussian simulation. 

(3)  The proposed multisite spatiotemporal streamflow simu-
lation model can facilitate risk-based decision making 
in water resources management, as illustrated by the 
example application to irrigation water shortage risk as-
sessment example study in this study.
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