
doi: 10.3319/TAO.2015.09.14.01(Hy)

* Corresponding author 
E-mail: gyeh@ncu.edu.tw

Terr. Atmos. Ocean. Sci., Vol. 27, No. 1, 139-152, February 2016

An Automatic Method for Complete Triangular Mesh Conversion into  
Quadrilateral Mesh for Multiple Domain Geometry

Lu Sun1, 2, Gour-Tsyh Yeh1, *, Fang-Pang Lin 3, and Guoqun Zhao 2

1 Institute of Applied Geology, National Central University, Taoyuan, Taiwan, R.O.C. 
2 Engineering Research Center for Mould and Die Technologies, Shandong University, Shandong Province, P. R. China 

3 Data Computing Division, National Center for High-Performance Computing, Hsinchu, Taiwan, R.O.C.

Received 16 January 2015, revised 24 August 2015, accepted 14 September 2015

ABSTRACT

This research developed an automatic two-dimensional finite element meshing system to resolve practical engineering 
problems in the fields of geology, hydrology, and water resources. This system first used the Delaunay triangulation method to 
create reasonable-density triangular mesh and then converted it into quadrilateral mesh by combining proper pairs of adjacent 
triangles. A series of combination patterns aiming at three cases were established. The effect of the number of boundary edges 
on the subsequent meshing procedures were studied and summarized. For the geometry with multiple domains an adjustment 
method is proposed to completely eliminate the residual triangles during quadrilateral meshing through adjusting the number 
of boundary edges in each loop to be even. A special boundary loop identification method is proposed for priority treatment. 
Corresponding treatment methods aimed at three different situations are established for common boundary loops. For a cer-
tain boundary loop with an odd number of boundary edges, the appropriate edge for new point insertion is determined by the 
position properties and relative density errors. Practical applications confirm that the method proposed in this paper could 
successfully implement the full conversion from the triangular mesh to the quadrilateral mesh.
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1. INTRODUCTION

To study complex problems in practical applications of 
water flow, thermal transport, salinity, sediment, and pol-
lutant transport, numerical simulations have been employed 
for several decades. The finite element method was intro-
duced into engineering applications and gained popularity 
and effectiveness in dealing with various types of trouble-
some issues. The finite element method can approximate ir-
regular geometry more accurately because of its flexibility 
in choosing computational grid sizes.

The whole finite element simulation and numerical 
analysis process includes three major stages: pre-process, 
computation, and post-process. Finite element mesh genera-
tion is the essential aspect of preprocessing, which is still 
sometimes a bottleneck in the overall simulations.

Because of the explicit definition requirements for 

each nodal point and element connectivity, the finite ele-
ment meshing output preparation becomes very tedious as 
the computational geometry of a physical problem becomes 
very large and complicated. In practical applications, such 
as computational hydraulics, the numerical results are con-
verged in order to insure the computational grids should be 
refined globally or locally. An automatic mesh generator 
is required to ease the burden in the finite element com-
putations. This generator for finite element simulations 
should generate node coordinates and the connectivity of 
the elements with given specifications. The interaction 
and mapping relationships between one-dimensional river/
stream, junctions with or without storage and two-dimen-
sional overland flows (or surface runoff) are required as 
output data according to the users’ requirements. In view 
of these demands, key finite element meshing techniques 
are researched in detail in this paper to develop an effec-
tive generator to solve practical engineering applications in 
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geology, hydraulics, hydrology, water resources, fluid me-
chanics, and mechanics, etc.

The finite element mesh is divided into two categories, 
two-dimensional mesh, and three-dimensional mesh, ac-
cording to the solution space. The two-dimensional mesh 
further contains triangular mesh, quadrilateral mesh and hy-
brid mesh (Ito 2013).

Among the numerous kinds of triangular mesh gen-
eration methods, the Delaunay triangulation method is 
the most widely used method. It has two crucial criteria: 
maximum-minimum angle criterion and in-circle criterion. 
Sibson (1978) proved that the Delaunay triangulation result 
for an arbitrary set of given points in a common plane pos-
sessed the optimal advantage. The sum of minimal internal 
angles of all Delaunay triangles obtains the maximal value 
and the maximal internal angles will produce the minimal 
value. The maximum-minimum angle criterion is able to 
avoid producing long and thin elements with small internal 
angles automatically. The in-circle criterion signifies that 
the circum-circle of each Delaunay triangle will not contain 
any other points in the given set. Bowyer-Watson algorithm 
(Bowyer 1981; Watson 1981) just takes advantage of the 
in-circle criterion. In recent years, Delaunay triangulation 
algorithm has attracted many research scholars because of 
its excellent flexibility and extensibility (Žalik 2005; Ebeida 
et al. 2011). Therefore, this paper adopts Delaunay triangu-
lation method to generate triangular meshes, which are used 
as the background grid to create quadrilateral meshes.

The most extensively applied quadrilateral meshing 
methods are grouped into two main categories: direct meth-
od and indirect method (Ho-Le 1988). The direct method 
generates quadrilateral meshes directly based on the geo-
metric features of the analyzed geometry. Direct methods 
include the medial-axis method (Tam and Armstrong 1991), 
quad tree method (Yerry and Shephard 1983), and advanc-
ing front method (Blacker and Stephenson 1991), etc. The 
indirect method is also known as the triangle-to-quadrilater-
al conversion method. That is, triangular mesh is generated 
first and then converted into quadrilateral mesh (Shimada 
and Itoh 1995; Borouchaki et al. 1996).

The indirect method takes advantage of the benefits of 
triangle meshing, thus has more advantages than the direct 
method in controlling mesh density and element size, mesh-
ing efficiency and generation versatility, etc (Itoh and Shi-
mada 2002). There are two implementation styles for the in-
direct method: the first is the division method; the second is 
the combination method. The division method subdivides a 
single triangle into three quadrilaterals by adding three new 
points at the midpoints of the three edges and one point in 
the triangle centroid. This method is simple, easy to imple-
ment and very versatile. Because a large number of irregular 
nodes are not connected to four quadrilaterals, the element 
quality cannot be guaranteed. The addition of the new points 
and elements has a serious effect on the mesh density dis-

tribution, possibly leading to a generated mesh that cannot 
satisfy the meshing density requirements specified by the 
users. In addition, the insertion of the new points on curved 
boundaries might cause curvature errors and area loss.

The combination method generates quadrilateral mesh-
es through combining each appropriate pair of adjacent tri-
angles into a single quadrilateral. This method is relatively 
difficult in algorithms because the choice of triangle pairs 
has a great impact on the conversion effect and mesh quality. 
However, the combination method is able to produce reason-
able quality meshes that can accurately capture the geometric 
features of the input geometry. Since there is no new point 
to be inserted, the density control of users for mesh elements 
and nodes can be fully satisfied. As a result this paper uses 
the combination method to produce quadrilateral meshes.

The implementation procedures for quadrilateral mesh 
generation using the combination method are often trouble-
some and time-consuming for complex geometries, espe-
cially multiple-domain geometries. The complete conver-
sion from triangles into quadrilaterals for each sub-domain 
has become a challenging research issue. The conformity 
of mesh elements and nodes between two adjacent sub-do-
mains must be perfectly ensured. Until now, most literatures 
focused mainly on research on conversion strategies for tri-
angles and resulting mesh quality optimization. Few papers 
have been published that pay attention to the number con-
trol of mesh elements and nodes for complicated geometries 
with multiple sub-domains.

This research conducted an intense examination of 
the key techniques and treatment strategies in the triangle 
and quadrilateral meshing procedures, containing Voronoi 
diagram construction, boundary point generation, the inser-
tion of new points, the conversion from triangles into quad-
rilaterals and the treatment of residual triangles. The odd 
and even parity properties and changing rules between the 
numbers of boundary edges and mesh elements in each sub-
domain were studied and summarized through numerous 
practical examples. An adjustment method is proposed for 
controlling the number of mesh elements and triangle con-
version pairs by controlling the number of boundary edges 
in each loop. Corresponding treatment methods for adjust-
ing the number of boundary edges for special and common 
loops are established. The relative density error concept is 
proposed to determine the appropriate boundary edge where 
the new point is inserted. The reliability and effectiveness of 
the methods presented in this paper are demonstrated using 
several practical examples.

2. KEY TECHNIQUES IN TWO-DIMENSIONAL 
MESH GENERATION

The two-dimensional finite element meshing system 
developed in this paper adopts the Delaunay triangulation 
method to generate density-controlled triangular meshes. 
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Based on the Delaunay meshes an improved conversion 
method is applied to further generate quadrilateral meshes 
by combining appropriate pairs of adjacent triangles.

2.1 Theoretical Foundation

The Delaunay triangle meshing program was devel-
oped based on the Voronoi diagram. The curved input ge-
ometry boundaries are constructed using B-splines accord-
ing to the point spacing specified by the users.

2.1.1 The Voronoi Diagram

Suppose that a set of points S in a two-dimensional 
plane are given, with n distinct points in all. For each point 
Pi, its Voronoi territory, labeled as V(Pi), is defined as the 
locus of points in the common plane whose distance is clos-
er to Pi than to any other points of S. V(Pi) is expressed as 
(Bowyer 1981):

( ) ( , ) ( , ) , , ,V P P d P P d P P P P S j ii i j i j !# != " ,  (1)

The Voronoi cell of each point in set S can be expressed 
as a convex polygon using Eq. (1). As a result, the whole 
plane where S is located is divided into n Voronoi poly-
gons, each of which is associated with a unique point. The n 
convex polygons form the Voronoi diagram of the point set 
S. The straight line duality of the Voronoi diagram creates 
Delaunay triangles. Each Voronoi vertex corresponds to a 
unique Delaunay triangle and vice versa.

2.1.2 B-Spline

B-spline is short for basis spline, first proposed by 
Schoenberg (1946). It possesses strong adaptability and 
flexibility, and is widely used in the fields of computer-aid-
ed design and manufacturing.

Assuming that P(u) represents the position vector of an 
arbitrary point on a curved boundary, the k-th order B-spline 
along variable u is defined by:
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where Bi indicates the position vectors of the control points. 
Ni, k(u) denotes the normalized B-spline blending functions. 
While constructing a k-th order B-spline, the Cox-de Boor 
formula (Cox 1972; De Boor 1972) of the i-th blending 
function is defined as:
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where ui represents the knots of the B-splines, with ui ≤ ui + 1. 
Note that the entire value of any term in Eq. (4) is assigned 
zero when the denominator is zero.

2.2 The Geometric Features of the Input Model
2.2.1 Input Data

The meshing system developed in this paper requires 
two input data aspects, the formed points, and the boundary 
edges of the geometry.

2.2.1.1 The Formed Points

Assume there are np points in total in the set S to de-
scribe the boundary features of the input geometry. First of 
all the position coordinates in the x- and y- axes of the Car-
tesian coordinate system for each point are required to be 
given, as Pi(xi, yi) ! S, i = 1, 2, 3, …, np.

In addition, users usually put forward different require-
ments for the density distribution of mesh elements. Some 
geometric features that need particular analysis and simula-
tion require a large density to ensure computation accuracy, 
such as the large-curvature boundaries, slight-size features, 
and the domains of particular interest to users. The geomet-
ric features that do not need focus require a relatively small 
density to save computation time and storage space, such 
as the boundaries with a smooth curvature or the domains 
of no interest to users. The density of mesh elements and 
points should therefore be specified previously by users. To 
facilitate computation the mesh density is controlled by the 
point spacing. The point spacing in this paper is defined as 
the lengths of the edges connected to the point.

2.2.1.2 Boundary Edges

The data information stored for each boundary edge is 
composed of the serial numbers of its two endpoints as well 
as its curved or straight status. Suppose that there are nb 
boundary edges, then each edge is denoted as bi(e0, e1), i = 1, 
2, 3, …, nb, where e0 and e1 are the two endpoints.

It should be noted that in order to ensure successful De-
launay triangulation performance the input boundary edges 
for each meshed region must follow such a rule: the outer 
edges are arranged in counterclockwise order and the inner 
edges are arranged in clockwise order. Therefore, the bound-
ary edges on the intersecting lines between two connected 
geometric sub-domains are overlapped. If a boundary edge in 
a sub-domain is bi(e0, e1), then its corresponding overlapped 
edge in the neighboring sub-domain is bj(e1, e0), j ≠ i.

Figure 1 shows a geometric model that requires 
meshing, containing two domains with different types of  
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materials, the outer domain A and the inner domain B. These 
two domains should be meshed separately and compatibly. 
P1, P2, …, P12 represent the data points of the geometry, with 
np = 12. These 12 data points create 16 boundary edges,  
nb = 16. Since the input geometry includes two connected 
sub-domains, four pairs of overlapped edges are present on 
the intersecting boundaries, as P9 - P10, P10 - P11, P11 - P12, P12 
- P9 in sub-domain A and P10 - P9, P11 - P10, P12 - P11, P9 - P12 
in sub-domain B. The decimal in the parentheses after the 
label for each point indicates its required point spacing. If 
the specified spacing of a point is less than the actual length 
of the boundary edge connected to it, new points should be 
generated on this edge.

2.2.2 The Identification of the Geometric Features

In order to achieve effective finite element mesh gen-
eration, identifying the boundary loops, characteristic points 
and boundary segments of the geometric model must be ac-
complished first.

The boundary loop is defined as the closed ring made up 
with end-to-end boundary edges. Each geometric model sub-
domain is bounded by one or more boundary loops. For exam-
ple, the geometric model as shown in Fig. 1 has two boundary 
loops, the outer loop L1 and the inner loop L2. The outer sub-
domain A is bounded by both of these two loops and the inner 
sub-domain B is formed only by the inner loop L2.

The characteristic point of the geometry is defined in 
this paper as the point that is shared by three or more bound-
ary edges. In general, the characteristic point is connected to 
more than two sub-domains.

Based on the characteristic point concept this paper es-
tablishes a segmentation rule for the geometric boundaries 
as follows: (1) The straight edge is considered a single seg-
ment itself; (2) The end-to-end curved edges are integrated 
to form a whole segment; (3) If a characteristic point is en-
countered, its connected edges are regarded as belonging to 
different segments. For the geometric model in Fig. 1, all of 
the edges on loop L1 are curved and form a whole segment, 
while the edges on loop L2 are straight and each is treated as 
an individual segment.

2.3 Key Techniques in Delaunay Triangular Mesh 
Generation

Figure 2 shows the flow chart for describing the whole 
Delaunay triangulation process, including a total of nine 
steps. The techniques for generating boundary points and 
inserting new nodes are two key research aspects.

2.3.1 The Generation of Boundary Points

The boundary points are generated according to the 
required point spacing specified by users. For an arbitrary 

edge bi (i= 1, 2, …, nb), suppose that its two endpoints are Pa 
and Pb with the required point spacing as ps(Pa) and ps(Pb).

First, find the midpoint of bi, denoted as Pm. If bi is a 
straight edge, Pm is just the midpoint of P Pa b . If bi belongs 
to a curved segment, Pm is obtained by interpolation at um = 
(ua + ub)/2 using Eqs. (2), (3), and (4).

Second, compute the practical point spacing at Pm us-
ing:

( )ps P P P P P2
1

m a m m b= +l ^ h (5)

Third, determine the lower value between ps(Pa) and 
ps(Pb), denoted as ps(min).

Next, check whether psl (Pm) is larger than ps(min). If 
yes, accept Pm. If no, reject it. If Pm is accepted, a required 

Fig. 1. The boundary features of the input geometry.

Fig. 2. The procedures of Delaunay triangular mesh generation.
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point spacing, ps(Pm), needs to be assigned to it using the 
following interpolation equation:

( )
( ) ( )

ps P P P P P
ps P P P ps P P P

m
a m m b

a m b b a m
a= +

+
 (6)

The method stated above is used to generate boundary 
points for the geometry shown in Fig. 1 (Fig. 3a). The num-
ber of the boundary points is increased to 67 and the number 
of boundary edges is increased to 78. Figure 3b provides the 
current boundary contour of the geometry, where the black 
points represent the boundary points on loop L2.

2.3.2 The Insertion of New Points

Since each Voronoi vertex corresponds to a Delaunay 
triangle, a new point insertion can be realized through the 
destruction and reconstruction of the Voronoi structures. 
The whole process is divided into the following four steps 
(Bowyer 1981):
(1)  Identify the Delaunay triangle containing the new point 

using the right-hand rule. For an arbitrary Delaunay tri-
angle the introduced point forms three new triangles with 
its three edges. Next, check whether these three new tri-
angles have the same orientations. If yes, the introduced 
point is inside the selected triangle. If no, the introduced 
point is outside the selected triangle and located on the 
side with the different orientation.

(2)  Determine the Voronoi vertices to be deleted. Accord-
ing to the in-circle criterion the Voronoi vertices whose 
circum-circles contain the newly inserted point should 
be deleted.

(3)  Construct a local Voronoi diagram and Delaunay tri-
angles. When the Voronoi vertices identified in step (2) 
are deleted, an empty convex polygon appears in the de-
leted region. The edges forming the empty polygon are 
the residual edges of deleted triangles in practice. Every 
residual edge gives rise to a new Voronoi vertex with the 
introduced point.

(4)  Merge the local Voronoi diagram into the global dia-
gram.

Figure 3c shows the resulting mesh after inserting all 
of the boundary points into the Voronoi diagram. Figure 3d 
shows the final mesh after generating and smoothing the 
interior points, which is used as the background grid to pro-
duce quadrilateral mesh in the subsequent procedures.

2.4 Key Techniques in Quadrilateral Mesh Generation

The quadrilateral mesh is generated indirectly by com-
bining adjacent pairs of triangles. Figure 4 shows the whole 
quadrilateral mesh generation process, consisting mainly of 
four aspects: the initial combination of triangles, the treat-

ment of residual triangles, topological optimization, and 
node smooth.

2.4.1 The Initial Combination of Triangles

In order to ensure that there are as many triangles com-
bined into quadrilaterals, this paper employed the searching 
advancing-front edges method to create quadrilaterals layer 
by layer (Owen et al. 1998, 1999).

The inherent boundaries of the input geometry are re-
garded as the first layer of advancing-front edges for quadri-
lateral creation. Each appropriate pair of adjacent triangles is 
combined into a quadrilateral by taking the advancing-front 
edge as the base. The possible combination patterns based 
on each advancing-front edge provide two options: between 
the two connected triangles sharing the other two edges of 
the base triangle, select one to form a quadrilateral.

There are many factors affecting the selection of com-
bination patterns, such as the priority levels of the elements, 
the number and positions of advancing-front edges, etc. 
This paper made an intensive research on the various types 
of connection relationships among connected triangles. Five 
combination patterns aimed at three cases were established 
(Fig. 5) (Sun et al. 2015). The first case (Fig. 5a) is suit-
able for the triangle with two advancing-front edges. Since 
the base triangle fit for this case has only one combination 
candidate, it possesses the highest priority level. This case 
should be identified and converted first so as to avoid omis-
sion during combination. The second case (Fig. 5b) aims 
at the situation where two adjacent triangles contain two 
connected advancing-front edges. The third case (Fig. 5c) 
is suitable for the common base triangle with only one ad-
vancing-front edge.

2.4.2 The Movement of Residual Triangles

In the resulting mesh after initial combination, some 
residual triangles scattered in the quadrilaterals always re-
main. These residual triangles are treated and eliminated 
through movement and recombination. For an arbitrary re-
sidual triangle, the movement process includes the follow-
ing three steps (Sun et al. 2015):
(1)  Find the moving target of the residual triangle, that is, 

the residual triangle whose position is closest to it. Com-
pute the center of the target triangle, labeled as Pm.

(2)  Determine the movement path of the residual triangle. 
This paper introduced the determinant value of the nor-
malized Jacobian matrix (the scaled Jacobian) (Knupp 
2003; Garimella et al. 2004) to determine the movement 
path of the residual triangle.

Three new triangles with rotation directions are created 
first by the three edges of the residual triangle and the center 
of the target triangle, Pm.

Then, compute the scaled Jacobians of these three new 
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triangles at point Pm by:

A
x x
x x

y y
y yP
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P 1

0
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-
-c m (7)

( )detJacobian A=  (8)

where (xp, yp) represent the coordinates of Pm, (x0, y0) and 
(x1, y1) represent the starting and ending points of the three 
edges of the residual triangle.

Compare the three values of the scaled Jacobians com-
puted using Eqs. (7) and (8). The edge that forms the tri-
angle with the smallest negative value is specified as the 
movement path.
(3)  Move and recombine the residual triangles. This opera-

tion is carried out through the destruction and recon-
struction of adjacent quadrilaterals (Heighway 1983).

First, find the connected triangle that shares the move-
ment path determined in step (2).

Second, identify the quadrilateral in which the con-
nected triangle belongs. In this case, there are two ways to 

combine the residual triangle: one is its connected triangle 
sharing the movement path, the other is the new triangle 
derived from the common-edge exchanging of the identified 
quadrilateral. Suppose that these two ways are both applied 
and compute the distances from the new residual triangle 
to Pm respectively. Accept the way that yields the smaller 
value.

The movement process is repeated until two residual 
triangles are connected with a common edge and thus com-
bined into a quadrilateral.

3. THE ODD AND EVEN PARITY CONTROL ON 
THE NUMBER OF RESIDUAL TRIANGLES

In theory, every two residual triangles in the same 
meshed domain are able to be recombined into a quadri-
lateral through moving to each other along an appropriate 
path. However, in practical applications, the specific prob-
lems are more complicated. The number of residual trian-
gles and the boundary features of the geometric domains 
both play an important role in the feasibility and integrity of 
quadrilateral conversion.

(a) (b) (c) (d)

Fig. 3. Delaunay triangular mesh generation (a) all the generated boundary points, (b) the boundary contour after generating boundary points, (c) the 
resulting mesh after inserting boundary points, (d) the final Delaunay triangular mesh.

Fig. 4. The procedures for quadrilateral mesh generation.
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3.1 The Treatment Strategies of Residual Triangles

Due to the diversity of the boundary features for the 
geometry, the complexity in treatment strategies of residual 
triangles has different degrees. In general, the number and 
distribution of the sub-domains have a considerable affect 
on the ways to handle residual triangles.

3.1.1 The Situation for the Geometric Model with One 
Sub-Domain

If the geometric model to be analyzed contains only 
one single domain, there will be no overlapped edge on the 
input boundaries. In this situation, a full conversion from 
triangles into quadrilaterals is able to be achieved regardless 
whether an odd or even number of triangles is generated in 
the Delaunay mesh.

When the Delaunay triangular mesh consists of an even 
number of triangles, the resulting mesh after adjacent tri-
angle combination still contains an even number of residual 
triangles. After movement, all of the residual triangles are 
recombined in pairs and there is no residual triangle left in 
the final quadrilateral mesh

When the Delaunay triangular mesh contains an odd 

number of triangles, the resulting mesh after initial com-
bination still contains an odd number of residual triangles. 
With the movement and recombination of residual triangles, 
one and only one residual triangle will remain in the finally 
generated mesh. In this case, the only residual triangle can 
be treated using three stages: (1) Move it onto the nearest 
boundary edge of the geometry. (2) Insert a new point on 
the nearest boundary edge. If this edge belongs to a curved 
segment, B-splines should be constructed first. (3) Convert 
the only residual triangle into quadrilaterals according to the 
transformation template (see Fig. 6). In this way the complete 
conversion from triangles into quadrilaterals is realized.

3.1.2 The Situation for the Geometric Model with  
Multiple Sub-Domains

If the meshed geometry contains two or more sub-
domains, then the edges lying on the intersecting bound-
aries between neighboring sub-domains are overlapped. As 
proper pairs of adjacent triangles are combined into quad-
rilaterals, the integrity of the combination is determined to 
the maximum extent by the number of the triangles in each 
sub-domain.

After the geometry is triangulated, some sub-domains 

(a)

(b)

(c)

Fig. 5. Combination patterns for three cases. Thick real lines represent the advancing-front edges (a) a triangle with two advancing-front edges, (b) 
two triangles with two connected advancing-front edges, (c) a common base triangle with only one advancing-front edge.
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may contain even numbers of triangles and some may con-
tain odd numbers. Since the triangles are combined in pairs, 
the number of the triangles that have been converted is cer-
tainly even. If a sub-domain contains an even number of 
Delaunay triangles, it will leave an even number of residual 
triangles in the resulting mesh after preliminary combina-
tion. All of the residual triangles in this sub-domain are able 
to be eliminated using pairwise movement and recombina-
tion. However, if a sub-domain contains an odd number of 
Delaunay triangles, there will be an odd number of residual 
triangles left in this meshed region after preliminary com-
bination. It should be noted that the movement of each re-
sidual triangle is only restricted to the sub-domain that it 
belongs to. Thus, a single residual triangle will remain in 
this sub-domain after treatment. If this sub-domain is lo-
cated on the boundaries of the geometry, the single residual 
triangle can be moved to the nearest outer edge and con-
verted into quadrilaterals using the transformation template 
in Fig. 6. If this sub-domain is inside the geometric model, 
all of the boundary edges surrounding it are overlapped. In 
this case, while the single residual triangle is moved to the 
nearest overlapped edge and topologically handled, it will 
lead to an incompatible meshing result. This is because of 
new point insertion on the overlapped edge during applying 
the conversion template in Fig. 6. The newly inserted point 
cannot be simultaneously compatible with the elements in 
both connected sub-domains and will thereby produce un-
qualified meshes.

Figure 7a shows the resulting mesh after preliminary 
combination for the triangular mesh in Fig. 3d. The figure 
shows that there are 17 residual triangles in the outer domain 
A and 3 residual triangles in the inner domain B. The num-

bers of residual triangles in these two sub-domains are both 
odd. These residual triangles are then moved and recom-
bined within their own sub-domains. The resulting mesh is 
shown in Fig. 7b. It is obvious that there is only one residual 
triangle left in each sub-domain. The treatment method for 
the remaining residual triangle in domain A is as follows: 
(1) Move it onto the outer boundaries of the geometric mod-
el (Fig. 7c); (2) Covert it into quadrilaterals according to 
the conversion template (Figs. 7d, e). However, this treat-
ment method is not suitable for the only residual triangle in 
domain B. This is because the conversion template cannot 
ensure conformity for both sub-domains.

If the single residual triangle is located in the interior 
domain of the geometry, it cannot be converted into quad-
rilaterals using any topological optimization template under 
the premise of ensuring mesh conformity. For this reason, 
this problem is resolved by controlling the number of the 
residual triangles in the previous steps.

3.2 The Relationships Between the Number of  
Boundary Edges and the Number of Residual  
Triangles in Each Sub-Domain

Intensive research was conducted in this work on the 
relationships between the number of boundary edges and 
the number of mesh elements for a certain sub-domain us-
ing numerous triangle and quadrilateral meshing examples. 
Several crucial rules are summarized as follows:
(1)  If a sub-domain consists of an odd number of boundary 

edges it will generate an odd number of triangles dur-
ing Delaunay triangulation. Similarly, if a sub-domain 
consists of an even number of boundary edges, it will 

Fig. 6. The transformation template for the only residual triangle.

(a) (b) (c) (d) (e)

Fig. 7. Quadrilateral mesh generation (a) the initial conversion from triangles into quadrilaterals, (b) the movement and recombination of residual 
triangles, (c) the movement of the only remaining triangle, (d) topological optimization, (e) the final mesh after smooth.
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generate an even number of Delaunay triangles.
(2)  Once a new point is inserted to the current Voronoi dia-

gram using the method described in section 2.3.2, the 
number of the Delaunay triangles in this sub-domain 
will be changed by 2n (n is an integer). In other words, 
the odd and even parity of the number of the triangles 
in each domain will not be changed with the addition of 
new points, regardless whether boundary points or inte-
rior points are inserted.

(3)  If a sub-domain in the Delaunay triangular mesh con-
tains an odd number of triangles, the resulting mesh after 
initial combination also contains an odd number of re-
sidual triangles. After movement and recombination of 
residual triangles, a residual triangle still remains in this 
sub-domain. If a sub-domain contains an even number 
of triangles in the Delaunay triangular mesh, the number 
of residual triangles in the initially combined mesh will 
also be even. There will be no residual triangle left in the 
resulting mesh after moving and recombining residual 
triangles.

As a result the number of boundary edges for the given 
geometry has a straightforward affect on a series of subse-
quent meshing procedures. In summary, for a certain sub-
domain, an odd number of boundary edges will lead to the 
following results directly or indirectly: (1) This sub-domain 
contains an odd number of triangles in the resulting mesh af-
ter inserting boundary points; (2) This sub-domain contains 
an odd number of triangles after inserting interior points; 
(3) The number of residual triangles in the mesh after initial 
conversion is odd; (4) There will be one residual triangle 
left in this sub-domain after moving and recombining the 
residual triangles.

Similarly, for a certain sub-domain, an even number of 
the boundary edges will lead to the following results directly 
or indirectly: (1) This sub-domain contains an even number 
of triangles in the resulting mesh after inserting boundary 
points; (2) This sub-domain contains an even number of 
triangles after inserting interior points; (3) The number of 
residual triangles in the resulting mesh after initial conver-
sion is even; (4) There is no residual triangle left in this sub-
domain after treatment and all of the triangles are converted 
into quadrilaterals.

3.3 The Adjustment for the Number of Boundary Edges

Based on the rules summarized in section 3.2, this pa-
per proposed an adjustment method to control the number 
of the residual triangles appearing in quadrilateral conver-
sion through adjusting the number of boundary edges in the 
previous steps.

Since each sub-domain of the geometry may contain 
several boundary loops and each loop is probably shared by 
other sub-domains, the control on the number of boundary 
edges for different sub-domains may influence each other. 

In order to avoid this cross interaction, this paper proposes 
adjusting the number of the boundary edges on each loop 
to even. In this way there will always be an even number 
of boundary edges in each sub-domain and thus the number 
of generated triangles will be even as well. If the number of 
boundary edges in a loop is odd an additional point is re-
quired to be inserted and an appropriate edge for the insertion 
of the new point should be determined at the same time.

3.3.1 The Factors Affecting the Selection of Boundary 
Edge

For the geometric model with multiple domains, the 
intersecting boundary between two adjacent sub-domains is 
composed of a collection of overlapped edges. The selection 
of the boundary edge for new point insertion is an impor-
tant issue. If the boundary edge is not selected correctly, the 
conformity of the mesh between adjacent sub-domains will 
possibly be destroyed. The selection of the boundary edge is 
affected by two factors:
(1)  The position properties of boundary loops: The 

boundary loops for a complex geometric model sur-
round a sub-domain formed by chains of edges lying in 
different positions. Some edges may be located on the 
outer boundaries of the geometry and only belong to this 
sub-domain, while other edges may lie on the intersec-
tion boundaries between two connected sub-domains 
and are overlapped. As the new point is inserted on the 
overlapped boundary edge, it must be compatible with 
both connected sub-domains. Thus, the new point inser-
tion will impact the odd and even parity of the number of 
boundary edges in both of these sub-domains.

(2)  The topological connections of boundary loops: If the 
geometric model contains several sub-domains, differ-
ent boundary loops usually contain different numbers of 
overlapped boundary edges and the complexity of their 
topological connections with adjacent sub-domains var-
ies. When the points belonging to a boundary loop have 
relatively complicated topological connections the num-
ber of control methods becomes more difficult. For ex-
ample, if a sub-domain is surrounded by boundary loops 
with one or more characteristic points, especially when 
they are inside the geometric model, the new point in-
sertion process will be hindered by the mutual influence 
among the sub-domains connected to the characteristic 
points. In order to resolve this problem the boundary loop 
types should be identified and adjusted preferentially.

3.3.2 The Identification of Special Boundary Loops and 
Common Boundary Loops

Certain boundary loops with special geometric topolo-
gies need to be identified and adjusted preferentially. Only 
when these special loops are adjusted to have an even number 
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of boundary edges should other common loops be checked.
(1)  The priority adjustment for special boundary loops: 

The special boundary loop required for priority adjust-
ment is identified as the loop that conforms to the fol-
lowing two conditions: (a) all of the boundary edges ly-
ing on it are overlapped; and (b) it includes at least one 
characteristic point. If a special boundary loop consists 
of an odd number of boundary edges, a new point must 
be preferentially inserted.

(2)  The adjustment of the common boundary loops: 
When the special boundary loops required for priority 
treatment have been identified and adjusted to contain 
an even number of boundary edges, the next step is to 
check the odd and even parity of the number of bound-
ary edges on the common loops. This paper proposes 
corresponding adjustment rules aimed at three different 
situations for the treatment of common boundary loops.

The first rule is suitable for the case where the boundary 
loop has no overlapped edges and lies on the outer boundar-
ies of the geometry. It should be noticed that, if a boundary 
loop contains no overlapped edge it will generally contain 
no characteristic point. If the boundary loop fit for this case 
consists of an odd number of boundary edges the new point 
can be inserted on any one of the edges belonging to it.

The second situation aims at the boundary loops whose 
boundary edges are all overlapped and have no character-
istic point. Such boundary loops are located in the interior 
of the geometry independently. The geometric meaning is 
expressed as the entire intersection lines between two ad-
jacent sub-domains. The odd and even parity control on the 
number of boundary edges for this type of boundary loop 
has an identical affect on its two connected sub-domains. 
If this type of boundary loop consists of an odd number of 
boundary edges, the new point can be inserted on any one of 
the edges belonging to it.

The third rule is fit for the situation where the bound-
ary loop contains overlapped edges and also non-overlapped 
edges. In this case, these two types of boundary edges have 
different priority for new point insertion. In order to avoid 
bringing adverse impact on the odd and even parity con-
trol of boundary edges in the adjacent sub-domain, the non-
overlapped boundary edges have a higher priority level for 
new point insertion.

3.3.3 The Further Determination of Boundary Edge for 
Inserting New Points

When a boundary loop is required for adjustment, re-
gardless whether it is a special loop or common loop, there 
is more than one option for the edge that is chosen for new 
point insertion. It is necessary to find the most appropriate 
edge from the candidate options.

In order to reduce the error between the practical point 
spacing and the required point spacing to the minimal level, 

this paper proposes a judgment method to determine the 
most appropriate edge for new point insertion based on the 
relative point spacing error. This method is realized using 
the following procedures:

First, find all of the candidate boundary edges that be-
long to the certain loop and are able to be selected for new 
point insertion. Those are all of the boundary edges on spe-
cial loops or the first two cases of common loops, and the 
non-overlapped edges in the third case of common loops.

When all of the candidate boundary edges are identified 
in the first step, compute their relative density errors. The 
relative density error of each edge is defined by the point 
spacing error of its two endpoints. Assuming the starting and 
ending points of an edge are labeled as e0 and e1, its relative 
density error is computed using the following equation:

( ) ( ) ( ) ( )
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where ps(e0) and ps(e1) represent the required point spac-
ing of points e0 and e1, and psl (e0) and psl (e1) represent 
their practical point spacing. |e0e1| indicates the length of the 
boundary edge.

Among all candidate edges sort out the one that obtains 
the smallest relative density error value. This edge is se-
lected as the edge where the new point is generated.

Figure 8 shows the flow chart for describing the whole 
boundary edge number control process for each loop, where 
i represents the current loop to be adjusted and nl represents 
the number of boundary loops. It can be seen that boundary 
point generation contains two aspects: the first is based on 
the required point spacing, and the second is based on the 
number control.

For the geologic model shown in Fig. 1, the outer loop 
L1 contains 8 boundary edges and the inner loop L2 contains 
4 boundary edges. After the boundary points are generated 
based on the required point spacing, the number of edges on 
loop L1 is increased to an even number, 56, and that on loop 
L2 is increased to an odd number, 11 (see Figs. 3a, b). That 
is to say, there are a total of 67 boundary edges in the outer 
sub-domain A (bounded by loops L1 and L2) and 11 bound-
ary edges in the inner sub-domain B (bounded by loop L2). 
Each of these two sub-domains consists of an odd number of 
boundary edges. In this case, a residual triangle will remain 
in each sub-domain of the resulting mesh with initial con-
version (Fig. 7b). The adjustment method proposed in this 
paper is applied to resolve this problem. Since loop L2 con-
tains an odd number of edges, a new point P is inserted on it 
to change the odd and even property (Fig. 9a). The number 
of the edges in loop L2 is increased to 12, an even number. A 
total of 68 boundary edges in sub-domain A and 12 bound-
ary edges in sub-domain B are produced. Both of these two 
sub-domains contain even numbers of boundary edges. The 
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Delaunay triangular mesh with number adjustment is shown 
in Fig. 9b. The resulting mesh after quadrilateral conversion 
is shown in Fig. 9c, with 18 residual triangles in sub-domain 
A and 2 residual triangles in sub-domain B. The numbers of 
residual triangles in these two sub-domains are both even 
and can be recombined. The residual triangles are handled 
and the mesh quality is improved (Figs. 9d, e). Neither of 
the sub-domains contains a residual triangle and all of the 
triangles are converted into quadrilaterals.

4. APPLICATIONS

The meshing generator developed in this work is used in 
this section to create quadrilateral meshes for complex geom-
etries using several practical engineering application sub-do-
mains. The adjustment method proposed is applied to imple-
ment full quadrilateral conversion by controlling the odd and 
even number parity of the boundary edges on each loop.

The interaction between one-dimensional river and 

Fig. 8. The odd and even parity control on the number of boundary edges.

(a) (b) (c) (d) (e)

Fig. 9. The adjustment for the number of elements (a) the adjustment for the number of boundary edges, (b) Delaunay triangular mesh, (c) the initial 
conversion from triangles to quadrilaterals, (d) the moving and recombining of residual triangles, (e) the final mesh after quality improvement.
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two-dimensional overland flows involves two cases: the 
first occurs between overland and river nodes, and the sec-
ond between overland and junction nodes. Each river node 
is associated with two overland nodes. Each junction node 
is associated with several overland nodes. Two treatment 
strategies are used to handle this problem realized by estab-
lishing the mapping relationships between one-dimensional 
river and two-dimensional overland. The first treatment 
strategy (Fig. 10) locates the two mapping nodes belonging 
to two separate regions on the same position as the original 

river node. The second treatment (Fig. 11) locates the two 
mapping nodes for each river point on their practical posi-
tions on the connected overland.

Figure 10 shows an actual example to resolve realis-
tic geology and hydrology problems for the Kaoping River 
drainage basin in Taiwan. Figure 10a shows the boundary 
map of the analyzed district captured from satellite images. 
The meshed region consists of four domains separated by 
river reaches intersecting at two junctions, J1 and J2 (two 
characteristic points of the geometry). Each domain should 

(a) (b) (c) (d)

Fig. 10. Quadrilateral mesh generation for the Kaoping River of Taiwan (a) input geometric boundaries, (b) Delaunay triangular mesh, (c) resulting 
mesh after initial combination, (d) final quadrilateral mesh.

(a) (b) (c)

(d) (e)

Fig. 11. Quadrilateral mesh generation for the Choshui River of Taiwan (a) input boundaries, (b) Delaunay triangular mesh, (c) resulting mesh after 
initial combination, (d) quadrilateral mesh after treating residual triangles and quality improvement, (e) quadrilateral mesh after filling river and 
junction regions.
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be meshed separately and the points on the intersecting 
boundaries between adjacent domains must be conformal. 
As boundary points are generated, each loop is adjusted to 
have an even number of edges and the overlapped edges have 
the lower priority level for adding new points. Figure 10b 
provides the triangular mesh generated using the Delaunay 
triangulation method, containing 10186 nodes and 20071 
triangles. Appropriate pairs of adjacent triangles are com-
bined into quadrilaterals based on the conversion patterns 
in Fig. 5. Figure 10c shows the resulting mesh after initial 
combination. Each sub-domain contains an even number of 
residual triangles. In this case all of the residual triangles can 
be moved and recombined into quadrilaterals. Figure 10d 
provides the final mesh after treating residual triangles and 
quality improvement, consisting of 10222 nodes and 9823 
quadrilaterals in all. This mesh can accurately describe the 
boundary features of the input geometry and achieve the full 
conversion of quadrilaterals. It should be noted that each of 
the nodes on the river reaches is associated with two over-
land nodes.

Figure 11 provides a practical quadrilateral meshing 
problem for handling realistic geology, hydrology, and water 
resources for the Choshui River of Taiwan. The boundary 
map of the analyzed district is captured from satellite images 
(Fig. 11a), containing seven meshing regions with three river 
reaches intersecting at a junction. While generating bound-
ary points each loop is adjusted to have an even number of 
edges. Figure 11b shows the triangular mesh produced by the 
Delaunay triangulation method based on the specified point 
spacing, containing a total of 14109 nodes and 27480 trian-
gles. Note that each mesh domain consists of an even number 
of triangles. The quadrilateral mesh is created based on this 
triangular mesh by combining appropriate pairs of connected 
triangles in each domain (Fig. 11c). In each domain an even 
number of residual triangles remain. Figure 11d shows the 
final quadrilateral mesh after residual triangle treatment and 
quality improvement, consisting of 14133 nodes and 13430 
quadrilaterals in all. All of the elements in the finally ob-
tained mesh are quadrilaterals without any residual triangles 
left. If additional quadrilateral meshes are requested to be 
generated in the river and junction area, the resulting mesh 
as shown in Fig. 11e is achieved, where the amplified view 
shows the local mesh in the vicinity of the junction where 
three river reaches meet. This mesh includes 14283 nodes 
and 14070 elements, with all of the blank areas completely 
covered by quadrilaterals.

5. CONCLUSIONS

This paper developed an automatic mesh generation 
system for numerical simulations in the fields of geology, 
hydrology, and water resources using C++ and Fortran 
programming. The developed mesh generator serves as a 
preprocessor for finite element models in solving two-di-

mensional subsurface flow and water transport problems. It 
is designed to generate three-point triangular or four-point 
quadrilateral elements for two-dimensional domains.

The key techniques in the meshing procedures were 
studied in detail, such as the generation of boundary points, 
the insertion of new points, combination of triangles and the 
treatment of residual triangles, etc.
(1)  Five combination patterns aimed at three cases were 

proposed to convert a triangular mesh into a quadrilat-
eral mesh. The application of these patterns realized that 
there were as many triangles combined into quadrilater-
als during the initial conversion. The quality of the gen-
erated quadrilaterals was ensured well.

(2)  The treatment strategies for residual triangles for arbi-
trary types of geometric models were researched and 
presented. Intensive research was conducted on the ef-
fect for boundary edges surrounding each sub-domain 
on the subsequent meshing procedures.

(3)  For the geometry with several sub-domains, an adjust-
ment method was proposed to control the number of 
boundary edges on each loop to ensure that each sub-do-
main contained an even number of Delaunay triangles. 
This method was able to implement the full conversion 
from triangles into quadrilaterals.

(4)  The number of boundary edges on each loop was ad-
justed by inserting new points. The adjustment rules for 
special loops and three cases of common loops were pre-
sented. The most appropriate edge for new point inser-
tion was determined by the relative point spacing error. 
This treatment approach could ensure reasonable density 
distribution for mesh elements and nodes.

(5)  The two-dimensional triangular and quadrilateral mesh 
can be stretched along the z-coordinate axis into a three-
dimensional triangular prism and hexahedral mesh. The 
proposed program was also designed to accommodate the 
need for aquifers with heterogeneous systems by identi-
fying the type of material in each layer of elements.

Acknowledgements  This research is supported, in part, by 
National Science Council under contract Nos. NSC 101-
2116-M-008-002 and NSC 101-2811-M-008-067 with Na-
tional Central University and, in part, by National Central 
University under the 5/500 Fund.

REFERENCES

Blacker, T. D. and M. B. Stephenson, 1991: Paving: A new 
approach to automated quadrilateral mesh genera-
tion. Int. J. Numer. Methods Eng., 32, 811-847, doi: 
10.1002/nme.1620320410. [Link]

Borouchaki, H., P. J. Frey, and P. L. George, 1996: Un-
structured triangular-quadrilateral mesh generation. 
Application to surface meshing. Proceedings of 5th 
International Meshing Roundtable, Sandia National 

http://dx.doi.org/10.1002/nme.1620320410


Sun et al.152

Laboratories, 229-242.
Bowyer, A., 1981: Computing Dirichlet tessellations. Com-

put. J., 24, 162-166, doi: 10.1093/comjnl/24.2.162. 
[Link]

Cox, M. G., 1972: The numerical evaluation of B-splines. 
IMA J. Appl. Math., 10, 134-149, doi: 10.1093/
imamat/10.2.134. [Link]

De Boor, C., 1972: On calculating with B-splines. J. Approx. 
Theory, 6, 50-62, doi: 10.1016/0021-9045(72)90080-9. 
[Link]

Ebeida, M. S., S. A. Mitchell, A. A. Davidson, A. Patney, 
P. M. Knupp, and J. D. Owens, 2011: Efficient and 
good Delaunay meshes from random points. Com-
put. Aided Design, 43, 1506-1515, doi: 10.1016/j.
cad.2011.08.012. [Link]

Garimella, R. V., M. J. Shashkov, and P. M. Knupp, 2004: 
Triangular and quadrilateral surface mesh quality op-
timization using local parametrization. Comput. Meth. 
Appl. Mech. Eng., 193, 913-928, doi: 10.1016/j.
cma.2003.08.004. [Link]

Heighway, E. A., 1983: A mesh generator for automati-
cally subdividing irregular polygons into quadrilater-
als. IEEE Trans. Magn., 19, 2535-2538, doi: 10.1109/
TMAG.1983.1062810. [Link]

Ho-Le, K., 1988: Finite element mesh generation methods: 
A review and classification. Comput. Aided Design, 20, 
27-38, doi: 10.1016/0010-4485(88)90138-8. [Link]

Ito, Y., 2013: Challenges in unstructured mesh generation 
for practical and efficient computational fluid dy-
namics simulations. Comput. Fluids, 85, 47-52, doi: 
10.1016/j.compfluid.2012.09.031. [Link]

Itoh, T. and K. Shimada, 2002: Automatic conversion of 
triangular meshes into quadrilateral meshes with direc-
tionality. Int. J. CAD/CAM, 1, 11-21.

Knupp, P. M., 2003: A method for hexahedral mesh shape 
optimization. Int. J. Numer. Methods Eng., 58, 319-
332, doi: 10.1002/nme.768. [Link]

Owen, S. J., M. L. Staten, S. A. Canann, and S. Saigal, 
1998: Advancing front quadrilateral meshing using tri-
angle transformations. Proceedings of 7th International 

Meshing Roundtable, 409-428.
Owen, S. J., M. L. Staten, S. A. Canann, and S. Saigal, 

1999: Q-morph: An indirect approach to advancing 
front quad meshing. Int. J. Numer. Methods Eng., 
44, 1317-1340, doi: 10.1002/(SICI)1097-0207-
(19990330)44:9<1317::AID-NME532>3.0.CO;2-N. 
[Link]

Schoenberg, I. J., 1946: Contributions to the problem of ap-
proximation of equidistant data by analytic functions. 
Part A: On the problem of smoothing of graduation, 
a first class of analytic approximation. Quart. Appl. 
Math., 4, 45-99.

Shimada, K. and T. Itoh, 1995: Automated conversion of 
2D triangular mesh into quadrilateral mesh. In: Atluri, 
S. N., G. Yagawa, and T. Cruse (Eds.), Computational 
Mechanics ‘95, Springer Berlin Heidelberg, 350-355, 
doi: 10.1007/978-3-642-79654-8_58. [Link]

Sibson, R., 1978: Locally equiangular triangulations. Com-
put. J., 21, 243-245, doi: 10.1093/comjnl/21.3.243. 
[Link]

Sun, L., G. T. Yeh, F. P. Lin, and G. Zhao, 2015: Automatic 
quadrilateral mesh generation and quality improve-
ment techniques for an improved combination method. 
Comput. Geosci., 19, 371-388, doi: 10.1007/s10596-
015-9473-z. [Link]

Tam, T. K. H. and C. G. Armstrong, 1991: 2D finite element 
mesh generation by medial axis subdivision. Adv. Eng. 
Softw. Workstations, 13, 313-324, doi: 10.1016/0961-
3552(91)90035-3. [Link]

Watson, D. F., 1981: Computing the n-dimensional Delau-
nay tessellation with application to Voronoi polytopes. 
Comput. J., 24, 167-172, doi: 10.1093/comjnl/24.2.167. 
[Link]

Yerry, M. A. and M. S. Shephard, 1983: A modified 
quadtree approach to finite element mesh generation. 
IEEE Comput. Graph. Appl., 3, 39-46, doi: 10.1109/
MCG.1983.262997. [Link]

Žalik, B., 2005: An efficient sweep-line Delaunay triangula-
tion algorithm. Comput. Aided Design, 37, 1027-1038, 
doi: 10.1016/j.cad.2004.10.004. [Link]

http://dx.doi.org/10.1093/comjnl/24.2.162
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1016/j.cad.2011.08.012
http://dx.doi.org/10.1016/j.cma.2003.08.004
http://dx.doi.org/10.1109/TMAG.1983.1062810
http://dx.doi.org/10.1016/0010-4485(88)90138-8
http://dx.doi.org/10.1016/j.compfluid.2012.09.031
http://dx.doi.org/10.1002/nme.768
http://dx.doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1317::AID-NME532>3.0.CO;2-N
http://dx.doi.org/10.1007/978-3-642-79654-8_58
http://dx.doi.org/10.1093/comjnl/21.3.243
http://dx.doi.org/10.1007/s10596-015-9473-z
http://dx.doi.org/10.1016/0961-3552(91)90035-3
http://dx.doi.org/10.1093/comjnl/24.2.167
http://dx.doi.org/10.1109/MCG.1983.262997
http://dx.doi.org/10.1016/j.cad.2004.10.004

