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AbSTRACT

The annual daily maximum precipitation (rx1day) is widely used to represent extreme events and is an important param-
eter in climate change studies. However, the climate variability in rx1day is sensitive to outliers and has difficulty represent-
ing the characteristics of large areas. We propose to use the probability index (PI), based on the cumulative density function 
(CDF) of a generalized extreme value (GEV) distribution to fit and standardize the rx1day to represent extreme event records 
in this study. A good correlation between the area-averaged PIs of the observed stations and those of the gridded dataset can 
be found over Taiwan. From the past PI records, there is no distinct trend in western Taiwan before the end of the 20th century, 
but a climate regime change happened during 2002 - 2003. The dual change effects from both the variance and linear trend of 
extreme events are identified over the northeastern and southern parts of Taiwan, along with the island’s central and southern 
regions, showing different abrupt changing trends and intensity. The PI can also be calculated using climate projection data to 
represent the characteristics of future extreme changes. The climate variability of PIs on the present (ALL) and future (RCP4.5 
and RCP8.5) scenarios were evaluated using the 16 Couple Model Intercomparison Projects Phase-5 models (CMIP5). The 
simulated present fluctuations in PIs are smaller than those of actual observations. In the 21st century, the RCP8.5 scenario 
shows that the PI significantly increases by 10% during the first half of the century, and 14% by the end of the century.
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1. InTRodUCTIon

Taiwan features a complex topography characterized 
by mountainous regions and rugged terrain, where rivers 
are short, valleys are narrow and geological features are 
fragile. Taiwan is also frequently attacked by North-West 
Pacific (NWP) typhoons. Thus, the ability to accurately as-
sess extreme rainfall variations is important to better miti-
gate typhoon damage (ex: Typhoon Morakot in 2008) and 
manage water resources. Previous studies have verified that 
the annual maximum precipitation is highly related to the 
contribution from typhoon rainfall (Chen and Lu 2007; Lu 
et al. 2007). The annual extreme rainfall events recorded by 
observation stations are often viewed as independent cases 

(Chen and Lu 2007; Lu et al. 2007; Su et al. 2012) when 
calculating the return values and periods during flood man-
agement analysis and modelling (Chu et al. 2013). Despite 
the increase in available satellite and radar data, the lack of 
high spatial density in long-term observed records makes 
it difficult to validate the variation in extreme events over 
Taiwan (Lu et al. 2007). Consequently, it is necessary to 
use a parameter that is able to represent a complete dataset 
regarding the long-term changes in the frequency and in-
tensity of unexpected extreme rainfall events (Meehl et al. 
2000; Kharin et al. 2013).

Extreme rainfall changes in Asia have been a key re-
search topic in many studies. Many researches on heavy 
rainfall variance are based on observed station records dat-
ing from the 1950s to the 2000s. In global warming experi-
ments, Freychet et al. (2015) stated that the heavy rainfall 
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induced by the summer monsoon in East Asia exhibited 
more frequently extreme precipitation due to the moisture 
flux change. Significant positive trends in precipitation ex-
treme events have been observed over the Yangtze River 
basin and northwestern China (Endo et al. 2005; Zhai et al. 
2005). Endo et al. (2009) showed that there was an increas-
ing trend in the extreme precipitation indices of stations lo-
cated in south Asia (southern Vietnam, north Myanmar, and 
northern islands in the Philippines). The observation data 
used in these researches employs reanalysis, satellite or low 
density stations datasets. Unfortunately, up until now, there 
has been only a few studies (Lu et al. 2007; Shiu et al. 2009; 
Su et al. 2012) regarding the extreme rainfall change using 
observation stations over Taiwan. In order to validate the 
extreme rainfall variance over complicated Taiwan terrain 
in a time scale of more than 10 years, high density (or grid) 
and long records of observation are necessary.

The current general consensus regarding climate 
change is that as the temperature continues to rise, vapor 
will also increase in proportion (Liu et al. 2009). To analyse 
the probability of increases in extreme events, such as floods 
or droughts, a viable approach is to study the changes in the 
mean precipitation state and variance (Meehl et al. 2000; 
Kharin et al. 2013; Fischer and Knutti 2015). However, it 
should be noted that the extreme rainfall events simulated 
by models are influenced by many local complex factors 
(ex: deep convection schemes, heat contract, large-scale 
circulation, etc.). The annual maximum daily precipitation 
index (rx1day) is frequently used to measure extreme rain-
fall events year by year. The global rx1day of land-based 
observation stations have validated a 7.2% K-1 increase in 
the period 1960 - 2009 (Westra et al. 2013), as well as a 
6% K-1 in the late 20th century from 1986 - 2005 in Couple 
Model Intercomparison Projects Phase 5 (CMIP5) multi-
model experiments (Kharin et al. 2013). These studies rep-
resent global-scale information, but the data are considered 
too rough for downstream applications in Taiwan.

The precipitation criterion definition for extreme rain-
fall (ex: the 95th, 99th percentile or 200 mm day-1 etc.) is 
often used to measure the intensity and frequency of ex-
treme events. Shiu et al. (2009) analysed the observed sta-
tion measurement dataset in Taiwan, revealing that rela-
tively wet and dry regions were becoming wetter and drier 
respectively in the recent decade. Chen and Lu (2007) used 
the fixed-percentile method to estimate the extreme rainfall 
frequency in Eastern Taiwan, but this method is sensitive to 
the climatology record length and whether the observation 
stations are located on the windward side or not. Many dif-
ficulties need to be overcome in validating both the spatial 
and temporal extreme rainfall variance over Taiwan. When 
studying the changes in extreme rainfall and properly esti-
mating the area-mean to represent regional characteristics, 
a unified index that is not sensitive to topography is pre-
ferred. Furthermore, this unified index can be used to show 

the climate variability and regime-change from the annual 
fluctuation in extreme events in space-time.

This study also used projections of the state-of-the-
art CMIP5 models to evaluate future changes in extreme 
rainfall in Taiwan. The best assessment for explaining the 
uncertainty and confidence in multi-models comes from 
methods that collect the best-models or calculate unequal-
weighting multi-models to ensemble the mean (MME) to 
assess the present climate phenomena (Kitoh and Uchiyama 
2006; Miao et al. 2014), and also the future climate projec-
tions (Jiang and Tian 2013; Lee and Wang 2014). Knutti et 
al. (2010) presented that those methods that performed well 
for present-day climate projecting may not be good for fu-
ture climate projections, due to the indefinite contributions 
of individual imperfect models. The uncertainty stems from 
the limited theoretical understanding (aerosols affect cloud 
formation), parameterizations (many small-scale processes 
integrated in a model could affect large-scale results), and 
model structural problems. These unknown factors and the 
systematic biases of models are still not well understood. 
Nevertheless, the results show that using equal-weighting 
MME is considered better than using projections from indi-
vidual models. The assessment from multiple models gen-
erates a realizable range of spread, which results in many 
different types of future climate projections.

We propose a method that can effectively validate the 
extreme rainfall variance and trend over Taiwan, and reduce 
the impact of outliers associated with complicated topogra-
phy. These methodologies, the high-resolution observation 
data, and the multi-model projection datasets, are described 
in section 2. The climate variability of the observation vali-
dation is shown in section 3.1 - 3.2. The simulation path-
ways from the present climate to future projections are dis-
cussed in section 3.3.

2. dATA And mEThod
2.1 observation and models

The annual maximum daily precipitation (rx1day, re-
ferred to as the extreme precipitation index hereafter) of 
Taiwan is highly related to orographic precipitation, ty-
phoons and mesoscale convective systems (MCS). A high 
spatial-temporal resolution dataset, the TCCIP-I (National 
Science and Technology Center for Disaster Reduction 
/ Taiwan Climate Change Production and Information 
Platform phase I) gridded 5 km × 5 km and daily spatial-
temporal resolution data (TCCIP_5km) from 1960 - 2009 
(Weng and Yang 2012), is used as the observation dataset 
to calculate the rx1day for Taiwan. This dataset collected 
precipitation data records from the Central Weather Bureau 
(CWB), Water Resource Agency, the Irrigation Associa-
tion and Taiwan Power Company (TPC). In addition to the 
gridded TCCIP_5km data, daily measurement of 23 stations 
(TW_STN) operated by the CWB covering the same period 
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is also analysed for comparison.
Considering the data availability, projections of 16 

models in CMIP5 were selected (Table 1). When present-
day (1960 - 2009) climate is considered, projections of all 
16 models (ALL) were used, and shown good consistence 
with observations. For future climate projections, the data 
of weaker warming scenario RCP4.5 (indicated as RCP45) 
and the stronger warming scenario RCP8.5 (indicated as 
RCP85) were employed for comparison. The rx1day data 
is available from the dataset for Climate Extreme Indices 
(CLIMDEX) (Sillmann et al. 2013a, b), of the model outputs 
of the Canadian Centre for Climate Modeling and Analysis 
(CCCMA) archive.

2.2 Probability Index and data Processing

The outlier extreme rainfall recorded by observation 
stations or grids at the windward side, as well as models 
with different horizontal resolutions (see below section 3) 
can cause large errors in estimating changing extreme pre-
cipitation index trends. Moreover, it may not be a proper pa-
rameter to represent the changing characteristics of extreme 
events. Min et al. (2011, 2013) rendered the annual extreme 
indices by fitting its cumulative distribution function (CDF) 
with the generalized extreme value (GEV) distribution  
[Eq. (1)], which is a function of three parameters, the shapes 
( )p , the skewness ( )v , and the location ( )n . Following the 
CDF curve, these three parameters converted the annual ex-

treme indices (rx1day) into a probability index (PI) as seen 
in Fig. 1.
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Take in Fig. 1, the rx1days of 120 (mm day-1) is con-
verted to a PI of 0.74. This method transfers rx1day to PI 
using the CDF of GEV distributions to standardize the data. 
The benefits of using PI instead of rx1day include: the influ-
ence of outliers is minimized, the area-mean of PI will not be 
dominated by the local maximums, and data from different 
sources (station observation, satellite retrieval, model pro-
jection of different resolutions) can be compared together.

To compare projection data with gridded observation 
data, the rx1day on original grid points of 16 Couple General  
Circulation Model (CGCM) were transferred to PIs first. 
Because PI is a standardized index, we can interpolate PI 
to the same 0.5° × 0.5° grid-mesh as in TCCIP_5km. Addi-
tional details regarding the validation are in section 3.1.

2.3 Change-Point Analysis method

We are concerned with the abrupt changes in the obser-
vation rx1day (and the associated PI) in the mean statement 
and variance fluctuation. The early Moving T-test method 

no. model Id modeling Center / Country Resolution

1 ACCESS1-0 Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology (CSIRO-BOM), 
Australia 192 × 145

2 bcc-csm1-1 Beijing Climate Center (BCC), China Meteorological Administration, China 128 × 64

3 BNU-ESM College of Global Change and Earth System Science (GCESS), Beijing Normal University, China 128 × 64

4 CanESM2 Canadian Centre for Climate Modelling and Analysis (CCCMA), Canada 128 × 64

5 CCSM4 National Center for Atmospheric Research (NCAR), USA 288 × 192

6 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC), Germany 480 × 240

7 CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en 
Calcul Scientifique (CNRM-CERFACS), France 256 × 128

8 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate 
Change Centre of Excellence (CSIRO-QCCCE), Australia 192 × 96

9 FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University 
(LASG-CESS), China 128 × 60

10 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL), USA 144 × 90

11 HadGEM2-ES Met Office Hadley Centre (MOHC), UK 192 × 145

12 IPSL-CM5A-LR Institut Pierre-Simon Laplace (IPSL), France 96 × 96

13 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for Environmental Studies (MIROC), Japan

128 × 64

14 MIROC-ESM-CHEM 128 × 64

15 MRI-CGCM3 Meteorological Research Institute (MRI), Japan 320 × 160

16 NorESM1-M Norwegian Climate Centre (NCC), norway 144 × 96

Table 1. The 16 CMIP5 models list used in this study. The different short name, maintain center/country and resolution are also displayed.
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(Ducré-Robitaille et al. 2003) is sensitive to the sample de-
tection window size, but the change-point analysis method 
(CPT) is more straightforward and reasonable. The linear 
CPT (Killick and Eckley 2014) is used to analyse abrupt 
changes and shift points (time step) in mean and variance 
in one-dimension signals. While the PIs detect the change 
point using CPT, the null hypothesis was rejected, and we 
have 99% confidence in this result. We define the change 
point position as the change time step between two climate 
regimes at the same time.

3. RESUlTS And dISCUSSIon
3.1 PI Validation

Figure 2 shows the rx1day and the associated PI anom-
aly curve for Alishan, Kaohsiung, Taipei, and Hualien sta-
tions. These stations in four different geographical regions 
show a large discrepancy in fluctuations and intensities 
for the rx1day (grey solid lines and refer left y-axis). The 
TW_STN trends over south-west Taiwan (Figs. 2a, b) are 
larger than those in the north-east (Figs. 2c, d). For example, 
the mountainous station, Alishan (Fig. 2a), in Central Tai-
wan displays a large amplitude, as well as the 50-year linear 
trend (2.92 mm day-1 year-1), compared to the other stations 
of plains. This phenomenon can be found for other stations 
located at the prevailing windward side of the mountains 
in south-western Taiwan. Thus, before conducting climate 
change assessment, we believe it is necessary to evaluate 
the area mean trends in both the observational and model 
data with the uniformed parameter, PI (red dashed lines and 
refer right y-axis in Fig. 2). It can be seen that the fluctua-
tion of rx1day anomaly of Taipei is the smallest among 4 

stations, but the PI anomaly fluctuation of Taipei is compa-
rable to others. The largest rx1day trend happened in Alishan  
(2.92 mm day-1 year-1), but the largest PI trend happened in 
Kaohsiung (0.47% year-1) among these four stations. These 
results distinct a previous study (Lu et al. 2007), and imply 
a spatial consistency in the variability of rx1day.

The spatial PI trends of station TW_STN and grid-
ded TCCIP_5km datasets shown in Fig. 3 present the local 
extreme index variances. The trends of southwest Taiwan 
range from 0.7 - 0.9% year-1, more significant than those of 
central and northern (from -0.15 to 0.15% year-1) Taiwan 
(Fig. 3a). We also verified the TW_STN to TCCIP_5km lo-
cations where similar trend values imply that these two data-
sets are coherent. The rx1day clustered effect by geographic 
and typhoon attacked tracks but the specific station record 
analysis individually (Chen and Lu 2007; Lu et al. 2007). 
The gridded TCCIP_5km (Fig. 3b) can show an overall 
view of climate variability for the whole island, which can-
not be displayed using station data TW_STN. More spatial 
trend distribution details are described in section 3.2.

The PI can be used to represent the annual area-mean 
climate variability (Min et al. 2011). We demonstrate the 
consistency between the area-average rx1day and the asso-
ciated PIs by comparing two observed datasets (TW_STN 
and TCCIP_5km). The scatter plot in Fig. 4a shows a strong 
statistical relationship in the annual anomaly from 1960 
- 2009 over Taiwan. The straight lines represent the least 
square regression slope, and the plus sign shows the rela-
tionship between rx1day and PI. The high correlation coef-
ficients of these two specific datasets (TCCIP_5km is 0.96; 
TW_STN is 0.94) demonstrate that the PI can represent the 
rx1day raw performance. The regression slopes show the 
linear relationships (TCCIP_5km is 3.45 mm day-1 %-1 and 
TW_STN is 2.96 mm day-1 %-1), and the regressed standard 
deviations (TCCIP_5km is 0.15 mm day-1 and TW_STN is 
0.16 mm day-1) display the uncertainty range. The high re-
gression slopes imply large variations in rx1day and PIs, as 
well as the present day trend uncertainty. In contrast, the 
low regression slopes reveal a strong relationship. Figure 4b 
displays the annual time series PI anomalies on the two ob-
servations over Taiwan. The trend is 0.25% year-1 (two data-
sets are the same). The 5-year means display unclear trends 
before 2000, which is consistent with the TCCIP_5km di-
vided analysis. The inconsistent annual anomaly relation-
ship (correlation coefficient is 0.79) is attributed to different 
periods where the dividing line is 1987 (the correlation co-
efficient in 1960 - 1987 is 0.48; 1988 - 2010 is 0.9).

Overall, the variances in these two observations are 
significantly different before 1987. The lack records induc-
ing the most contribution to rx1day cannot be validated by 
inference. However, the gridded PI dataset is more reliable 
in geographic contract than the station records presented in 
Fig. 5 (refer to Fig. 2). We use TCCIP_5km as the reference 
observation to compare models in the following assessment. 

Fig. 1. The rx1day (x-axis) illustration converts into the probability 
index (PI) (y-axis) from its cumulative distribution function (CDF) 
curve (blue line). Each rx1day (mm day-1) can find the corresponding 
uniformed PI (follow red arrow lines) which limited 0 to 1. This curve 
computed from the 50-year annual indices of each grid follow the gen-
eralized extreme value (GEV) distribution.
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(a) (b) (e)

(c) (d)

Fig. 2. The 50 years (1960 - 2009) annual rx1day (mm day-1) (gray solid lines, left y-axis) of CWB historical records and the associated PIs (%) 
(read dash line, right y-axis) are displayed. The particular linear trend slopes and correlation coefficient label top of each figure. Each annual curve 
represents the specific 4 regions of Taiwan, Alishan (a) is Center, Kaohsiung (b) is Southern, Taipei (c) represents Northern and Hualien (d) is 
Eastern. The topographic locations of 23 station records, which we sampled uniformly, are demonstrated in (e).

(a) (b)

Fig. 3. The linear trends (% year-1) spatial distribution of PI compared (a) TW_STN 23 stations and (b) TCCIP_5km.

We verified the PI performance in extreme rainfall (Fig. 4) 
and then applied it to the following analysis.

3.2 Climate Variability

We divided the geography and county boundary pa-
rameters of Taiwan into four regions: north (NOR), center 
(CEN), south (SOU), and east (EAS) (Fig. 5e) to represent 
the local climate variability features for the TCCIP_5km 
dataset. The annual and 5-year area means of PI anomaly 
are presented in Figs. 5a - c. There is no distinct linear trend 

for the decadal change in each sub-region before 2000, es-
pecially over NOR, CEN, and SOU. Tu et al. (2009) pre-
sented the abrupt change in the typhoon count in WNP at 
2000, which correlated to the weakening western North Pa-
cific subtropical high (WNPSH). The linear trend over the 
four regions (the area trends in Fig. 5) demonstrates that the 
rx1day intensity is related to the location distribution. The 
gridded data area mean is much better than the station data 
detection in understanding the extreme rainfall variance 
over Taiwan.

We tie the PI statistical regressions in 50-year annual 
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data linear trends over each grid to demonstrate the vari-
ability between rx1day and PI (Fig. 4a). Figure 6 represents 
the spatial distribution trend. The positive trends (cover 
82% land area of Taiwan) appear in southern, western, and 
east-northern Taiwan, which implies that the probability for 
extreme rainfall generally increases. These results are con-
sistent with the four region area-mean (refer to Figs. 5a - d).  
The larger regression slopes discovered over the eastern Tai-
wan and southwestern mountainous regions reveal that the 
rx1day of these areas own a large variation in regards to the 
PI variability in the changing climate (Meehl et al. 2000; 
Kharin et al. 2013).

Notable signals can be found while looking for the ob-
vious trends combining the low regression slopes areas in  
Fig. 6. The obvious positive trends (above 0.4 mm day-1 year-1)  
but low regression slopes (below 2 mm day-1 %-1) are found 
in the center-south plain (Changhua, Yunlin, and Tainan) and 
south coastal regions (Hengchun Peninsula) of Taiwan. The 
smaller variance of rx1day (low regression slope) along with 
the positive trends area reveal a significant extreme rainfall 
increase, which are related to typhoon occurrences (Chen and 
Lu 2007; Lu et al. 2007) and the associated southwesterly 
flows. Over northwest Taiwan, the positive trends represent 
the Taipei basin and the negative trends denote the coastal  

(a)
(b)

Fig. 4. The statistical relationship between rx1day and PI of TCCIP_5km and TW_STN over Taiwan. (a) displays the scatterplot of rx1day anomaly 
(mm day-1) and corresponding PI (%) on TCCIP_5km (blue) and TW_STN (red). The correlation coefficients (cor) and regression slopes [reg  
(mm day-1 %-1)] on the corners represent the relationship between rx1day and the associated PI. (b) presents the time series of these two datasets, the 
thin lines are annual anomaly and the thick are 5-year mean. The correlation coefficient in (b) represents the annual PIs anomaly between these two 
datasets and the linear trend (% year-1) only shows TCCIP_5km since the consistency.

(a) (b) (e)

(c) (d)

Fig. 5. The TCCIP spatial distribution 5 km resolution data divided into four regions (e), North (NOR), Center (CEN), South (SOU), and East (EAS). 
The anomalous PIs (%) represent the area mean of four regions [(a) - (d)]. The grey lines display annual anomaly and red lines are 5-year mean. The 
linear trends (% year-1) of these four regions also show on the up left side of each figure.
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areas. The positive and negative trend pairing over center-
south and north Taiwan imply that the typhoon track moves 
to the north-westerly vicinity as it passes though. However, as 
the heavy regression slopes further encompassed east Taiwan, 
it revealed larger rx1day variations and lower trends.

Previous studies (Chen and Lu 2007; Su et al. 2012; 
Chu et al. 2013) analysed the extreme precipitation climate 
parameters using single station records over Taiwan. The lo-
cal dataset is so limited that it is difficult to represent the 
entire island of Taiwan for the climate change assessment. 
We evaluated climate regime variability using the mean 
state (CPT_Mean) and variance (CPT_Var) reasonably for 
the uniformed rx1day from each grid. The change position 
(year) is validated for the whole 50-year period and divided 
into distinct periods using CPT. The CPT_Mean intensity is 
the different climatology of two periods separated by change 
point, and CPT_Var is the variance. The CPT_Mean sepa-
rates at 2003 - 2004 implying the climatology state jumps 
from the first (1960 - 2003) into the second phase (2004 - 
2009) (Fig. 7a), and the intensity is 17.02 mm day-1, mea-
sured by the difference between two-phase means. For the 
variance change, the early period of 1960 - 1992 on CPT_
Var displays a weaker amplitude when compared to the late 
period of 1993 - 2009. The intensity computed using divided 
variances is 14.15 (mm day-1)2 (Fig. 7b). We believe the 
extended amplitude represents an increase in the intensity 
switching from drier to wetter, with the climate becoming 
more extreme after 1993.

To illustrate the local extreme parameters, we followed 
the CPT analysis processes on the 4 regions of Taiwan (re-
fer to Fig. 5e). Table 2 summarizes the CPT and PI analysis 
for this study on the TCCIP_5km dataset regionally. The 
CPT_Mean represents similar positions over western Tai-
wan (NOR: 2003; CEN: 2003; and SOU: 2004), excluding 
the eastern area (EAS: 1966). To measure the strength, we 
define the change between two periods, which are sepa-
rated by change positions (CPT_Mean computed by means 
and CPT_Var by variances) as the change intensity. The 
intensities increase southward [NOR: 17.18; CEN: 26.35; 
and SOU: 28.57 (mm day-1)] over western Taiwan, which 
is consistent with the regional detection of linear PI trends 
[NOR: 0.17; CEN: 0.3; and SOU: 0.43 (% year-1)] on 50-
year periods. In addition, CPT_Var also reveals the change 
signals at the time points of 2000 and 2004 over CEN and 
SOU separately, which pass the 99% confident statistics 
test. Noteworthy, CEN presents the strongest variance in-
tensity in Taiwan, which implies the combined probabil-
ity for flood and drought after 2000. The regional mean PI 
regression slope displays the highest sensitivity to climate 
change over EAS (4.57 mm day-1 %-1), and the largest vari-
ability over SOU (0.43% year-1). The extreme climate detec-
tors are also concerned with the associated 10-year return 
values (RV10), and the largest RV10 value is found over 
EAS (Table 2). The highest 10-year precipitation reappear-
ance is over EAS 441.89 mm day-1.

Although we mentioned the extreme rainfall (rx1day) 
climatology trend and variance, the attributions cannot ex-
plain clearly. In the metrology phenomena concept most 
of the rx1day in Taiwan is contributed by typhoon rain-
fall, while some are caused by annual Mei-Yu fronts, MCS 
and southwest flows. From a statistical standpoint, differ-
ent sample sizes are sensitive to the change-point analysis. 
These factors can affect the detected results if correlated to 
the typhoon frequency. The PI area-average on CPT over 
Taiwan provides information on the statistical abrupt-shift 
in climate variability, but not on the specific phenomena 
change. If we could extract the annual typhoon rainfall con-
tribution from the rx1day, it will be more consistent with the 
abrupt-shift result from previous research.

3.3 observed and modeled Trends

The PI parameter in spatial scale between datasets 
was calculated using the original grids of each CGCM. 
Afterwards, the area-mean over Taiwan was inserted into 
a 5 km × 5 km resolution. The same observation period 
(TCCIP_5km) was then fitted into 50-year historical (ALL) 
and 91-year future projections (RCP45 and RCP85). Since 
most ALL models are available at the end of 2005, we ex-
tended 2009 using RCP85 simulations to maintain consis-
tency with the observations.

In the present climate, anomaly fluctuations were  

Fig. 6. Spatial distributions of PI trends (% year-1) (contours) and the 
regression slopes (mm day-1 %-1) (shades) between rx1day and PI. The 
lower regression slops represent smaller rx1day variations. Blue con-
tour line reveals positive trend, red display negative trend area, and 
separated by the magenta line. The dot pattern highlights the trend 
above 0.4 mm day-1 year-1.
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demonstrated and the 1960 - 2009 period was treated as the 
base period. The increasing PIs were represented in the time 
series for future projections. The spread of 16 models in the 
20-year running mean on PIs (Fig. 8) displayed a smooth 
and slow trend in the long-term present climate pathway. 
The observation (TCCIP_5km) obviously revealed a posi-
tive trend, but contained a multi-models variance. The equal-
weight MMEs are displayed by thick-solid lines, while the 
associated model diffusions are shaded. The present climate 
observation shows a steeper curve with MME (ALL), yet, it 
is comprised of the diffused 16 models. This may be caused 
by the coarse resolution and missing precipitation contrib-
uted by typhoons, Mei-Yu fronts and southwest flows of 
CGCMs (Stocker et al. 2013; Tung et al. 2014). However, 
the increase observation trend is higher than ALL even in 
the RCP45 and RCP85 experiments. The variance in rx1day 
extracted using low-resolution CGCM simulations provide 
useful information. The high-resolution simulations can be 
used for consist the precipitation insensitive with the com-
plex terrain of Taiwan induces heavy rainfall in the future.

The 21st century was divided into three stages to exam-
ine the future time periods: early century (EC, 2016 - 2035), 
medium century (MC, 2046 - 2065), and late century (LC, 
2081 - 2100) in the long-term simulation. The PI time se-

ries follow the emission pathway in two distinct scenarios 
(RCP45 and RCP85). Since the climate sensitivities are 
similar (the regression slops are 1.17 and 1.07 mm day-1 %-1 
in RCP45 and RCP85 MME dividedly), the PIs can be in-
terpreted in the scenario pathways directly. In contrast to the 
present climate (ALL), the increasing PI discovers before 
MC linearly and attended 10% in the RCP45 scenario, then 
remains stable and decreases slightly at 8% in LC (Fig. 8). 
However, a similar trend was also found from EC to MC, 
where it continued to rise at LC (14%) in the RCP85 sce-
nario. Opposite to the global change pathways on rx5day 
(Stocker et al. 2013), the increasing rx1day trend over Tai-
wan is weaker, which represents the local and geographical 
uncertainty parameter in future projections. Recent studies 
(Murakami et al. 2011; Stocker et al. 2013) show the total 
annual tropical storm frequency drops at LC in WNP, which 
demonstrates the probability of tracks in the vicinity of Tai-
wan and the associated extreme rainfall being weaker than 
the global scale.

Figure 9 estimates the uncertainty in four periods in 
the present (ALL) and future (RCP45 and RCP85) scenarios 
using boxplot. The period means of 16 models are presented 
to demonstrate the confidence levels. In view of the consis-
tency for the entire time period; only 20-year (PC denotes 

(a) (b)

Fig. 7. Time series of TCCIP_5km area-averaged PI anomaly (black line) and result of change-point analysis (CPT, red lines). The mean state abrupt 
ship displays in (a) and (b) represent in variance from the divided periods. The divided year passed 99% significant test in whole time series.

noR CEn SoU EAS TW

CPT mean
Position (year) 2003 2003 2004 1966 2003

Intensity (mm day-1) 17.18 26.35 28.57 10.34 17.02

CPT Variance
Position (year) nA 2000 2004 nA 1992

Intensity [(mm day-1)2] nA 50.20 17.32 nA 14.15

Regression slope [(mm day-1)%-1] 2.31 2.26 3.10 4.57 2.96

Trend (% year-1) 0.17 0.30 0.43 0.13 0.25

10 years RV (mm day-1) 253.08 259.50 328.08 441.89 331.39

Table 2. Summary for the area time series of change-point analysis (CPT) in mean 
state and variance, 10-year return value, regression slope and linear trend over four 
divided regions (NOR, CEN, SOU, EAS) and whole area mean (TW).
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1990 - 2009) of ALL in the end 20th to early 21st century are 
used. The performance follows the 20-year running mean 
anomaly time series (Fig. 8) that weakly amplifies from -2 
to 2% for the historical simulations. Although TCCIP_5km 
(OBS) cannot be accommodated to the contrast interval 
(from 25 to 75 percentile) of ALL, the coarse CGCMs dis-
play a strong performance (between 5 to 95 percentile) to 
simulate the extreme rainfall intensity over Taiwan. In the 
RCP45 scenario, the models represent extended uncertainty 
in EC; then produce consistent signals and decreasing trend 
after MC. RCP85 presents an increasing trend after MC and 
expends the uncertainty in LC in contrast, which implies 
that MC is the key stage in different pathways. We are also 
concerned about whether MMEs display statistical signifi-
cance. Each specific box is divided into two parts by 50 per-
centile, which implies statistical multi-model concentrated 

deviation. The MME locations in RCP45 lie in the upper 
part of the boxes in all time periods. This is indicative of the 
MMEs being overestimated for most multi-models, but will 
at least accommodate a contrast interval. The MMEs of the 
RCP85 show more significance before MC.

In the uncertainty analysis, increasing PI trends are 
seen in all scenarios from EC to MC. Although the heavy 
RCP85 emission scenario shows a large uncertainty at LC, 
a higher confidence level is presented from EC to MC than 
RCP45 in the increasing pathway trend.

4. ConClUSIon

This study used a statistical methodology to standardize 
the rx1day using the PI, validated with observation data, ap-
plying it to detect past climate variability in the Taiwan area, 

Fig. 8. Twenty-year PI anomaly running mean of ALL (black line) in present climate (1960 - 2009) of 16 CMIP5 models, RCP 45 (light blue line) 
and RCP85 (red line) scenarios represent the future projection (2010 - 2100). The OBS (purple line) represents TCCIP_5km area mean time series. 
The future projection period is divided into three stages in early 21st century (EC, 2016 - 2035), medium 21st century (MC, 2046 - 2065), and late 
21st century (LC, 2081 - 2100). The shaded of time series represents the spreads of 16 models in each time step over Taiwan.

Fig. 9. The boxplot implies the uncertainty of PI anomaly on multi-model. Three scenarios represent ALL (black), RCP45 (blue), and RCP85 (red) 
on the period means of 1990 - 2009 (PC), 2016 - 2035 (EC), 2046 - 2065 (MC), and 2081 - 2100 (LC). The whiskers represent the range 5 - 95% 
ranges and the boxes denote 25, 50, and 75 percentiles on 16 models. The solid-dots display the period means of observation (TCCIP_5km) and 
MMEs.
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and finally evaluated future projections in different climate 
change pathways.

The incomparable fluctuation amplitudes of rx1day 
anomalies at different stations make it difficult to represent 
the averaged characteristics of large areas. On the other 
hand, fluctuation in the PI anomaly, a standardized vari-
able, from different stations or grid points are comparable, 
allowing the area-averaged PIs to properly present the fea-
tures of extreme events over large areas. The high correla-
tion coefficients (0.79) between the two observed datasets 
(TW_STN and TCCIP_5km) demonstrate that the PI can 
not only represent the initial performance of the rx1day, but 
also denote the area-mean climate change over Taiwan. In 
climate variability detection, there is no distinct linear trend 
for the 5-year mean at each sub-region before the end of 20th 
century. CPT analysis over Taiwan detects the change-mean 
location, which passes the significant test and changes to 
a different climate regime in 2002 - 2003, the intensity is 
17.02 mm day-1. The center-south alpines and southern Tai-
wan present positive trends exceeding 0.4% year-1.

The PI projections from 16 CMIP5 CGCMs over Tai-
wan were evaluated to examine the climate variability and 
changes in extreme precipitation events. At the end of the 
20th century the variation in simulated PIs is smaller than the 
observed one, probably caused by the low GCM resolution 
and lack of typhoon rainfall contributions. In the future pro-
jection, PIs for all scenarios show similar increasing trends 
in the early and mid-21st century, reaching 10% by 2065 
with higher confidence level in the RCP8.5 scenario. How-
ever, after 2065, PIs keep rising in the RCP85 scenario and 
reach 14% at the end of 21st century, but showing insignifi-
cant trends in RCP4.5 scenario.
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