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ABSTRACT

General Circulation Models (GCMs) are indispensable tools to project future 
climate. It is not realistic or necessary to use all GCM datasets when assessing cli-
mate risks and building adaptive capacity. Thus, a rational procedure for selecting 
GCM datasets is needed. It is also required to classify weather stations into climate 
zones and then suggest a suitable list of GCM datasets to avoid weather stations with 
similar climate patterns but using different GCM datasets. The purpose of this study 
is to establish a process for selecting GCM datasets for a region. The process consists 
of climate zonation, applicability ranking, and a model similarity check. Principal 
component analysis (PCA) and cluster analysis are used to classify regional weather 
stations into climate zones. The weighted average ranking (WAR) method and de-
merit point system (DPS) are then used to rank the GCM performance using CMIP5 
(Coupled Model Intercomparison Project Phase 5) datasets. The GCM family tree is 
then applied to screen out highly similar GCMs before generating a GCM suggestion 
list. Taiwan is chosen as the study area for this investigation. Taiwan receives monthly 
mean precipitation data from 25 weather stations. The weather stations were clustered 
into ten climate zones with different GCM datasets suggested for each zone. The top 
five GCM datasets suggested for Taiwan by the WAR method are HadGEM2-AO, 
CESM1-CAM5, CCSM4, MIROC5, and GISS-E2-R while those suggested by the 
DPS method are CSIRO-Mk3-6-0, HadGEM2-AO, CESM1-CAM5, MIROC5, and 
CCSM4. The GCM selection process presented in this study is applicable to other 
regions to assist users in finding GCM datasets suitable for their research.
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1. INTRODUCTION

The increasing number of disasters resulting in sig-
nificant loss of life and wealth has drawn much attention in 
recent years. Climate change is predicted to bring more ex-
treme weather events and natural disasters, making climate 
risk assessment, and adaptive capacity building crucial in 
reducing the adverse effects of future climate change. Cli-
mate risk assessment depends heavily on General Circula-
tion Models (GCMs) predictions to predict future climate. 
There are many GCM datasets available; however, it is not 
realistic or necessary to use all available datasets in climate 
risk assessments.

Numerous GCMs have been developed, continuously 
improved and their outputs have been provided in CMIP5 
(Coupled Model Intercomparison Project Phase 5). Howev-
er, many unanswered questions such as “Which GCM is the 

most suitable?” or “How should a proper GCM be select-
ed?” remain as the complicated mechanism behind GCMs 
increases the understanding gap for the majority of end us-
ers. GCM outputs are widely used in climate risk assess-
ment studies although using the outputs from inappropriate 
GCMs may not only lead to diverse results, but also increase 
the uncertainty in developing adaptation strategies. With the 
large number of datasets available in CMIP5, selecting ap-
propriate GCM datasets has become an important task.

While GCMs are developed for global scale simula-
tions and provide outputs for grid points, climate risk assess-
ment studies on hydrology, agriculture, and environmental 
sectors, etc. are mostly at a basin scale and may have several 
weather stations present in a study site. Risk assessment of-
ten uses GCM projections to derive climate scenarios, af-
ter which weather data at a finer temporal scale is used for 
model assessment. Researchers often select GCM outputs 
from the nearest grid point for their study areas (Wilby and 
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Wigley 1997; Schmidli et al. 2006). If weather stations in a 
site are within the same climate pattern but use GCM outputs 
from different grids, the rationality of the risk assessment 
may be questioned. Therefore, it is better to classify weather 
stations into climate zones ensuring that weather stations in 
the same zone use the same GCM output datasets.

The Köppen climate classification (Köppen 1936) 
was the first quantitative climate classification system. The 
Köppen climate classification divides the world’s climate 
into five main clusters, with each cluster containing several 
subtypes (Peel et al. 2007). Kottek et al. (2006) presented a 
digital Köppen-Geiger world map, an update of the Köppen-
Geiger world map released in 1961. The Trewartha method 
(Trewartha 1954) is also a climate classification system, 
based on a modified version of the Köppen climate clas-
sification. Wan (1973) classified Taiwan and its associated 
islands into 12 climate zones using the Köppen climate clas-
sification. Chiou et al. (2004) applied the Trewartha climate 
classification to Taiwan, also describing 12 climate zones. 
Baker et al. (2010) used the Trewartha classification to quan-
tify the magnitude of change between historical and future 
ecoregions in China. Principal component analysis (PCA) is 
often used in climate classification research (Lorenz 1956; 
Kutzbach 1967) and was used by Wu and Chen (1993) to 
classify climate patterns for Taiwan. Monthly mean temper-
ature and precipitation collected from 16 weather stations 
for the period 1942 - 1991 were used. According to Wu and 
Chen’s research, the climate pattern in Taiwan can be di-
vided into seven zones (Wu and Chen 1993). Liu (2010) 
also used PCA to determine climate zonation for Taiwan. 
With a smaller dataset of monthly mean precipitation from 
18 weather stations for the period of 1961 - 1990, he divided 
Taiwan’s climate into nine climate zones.

PCA is used in zonal classification and also in seasonal 
classification. Sadiq (2011) applied PCA to Karachi City in 
Pakistan. By analyzing diurnal data from 1981 - 2010 for 
precipitation, temperature, relative humidity, cloud amount, 
and wind speed, Sadiq classified this region’s climate into 
six seasons. In this study, PCA is used to classify the climate 
patterns of a region.

Four criteria have been suggested for determining which 
GCM outputs should be used in climate risk assessment: vin-
tage, resolution, validity, and results representations (Feen-
stra et al. 1998). The Intergovernmental Panel on Climate 
Change (IPCC 2001) further refined this definition:
(1)  Vintage: with new knowledge and more complete pro-

cedures and feedbacks, recent GCMs tend to have better 
reliability.

(2)  Resolution: enhanced GCM spatial resolution is likely to 
increase climate representation performance.

(3)  Validity: Based on the assumption that CGMs simulate 
the present-day climate most faithfully, a consistent ex-
emplification of future climate can also be produced.

(4)  Results representation: choose GCMs with diverse key 

variable output that can demonstrate a range of climate 
change.

Of the above-mentioned criteria, emphasis on vintage 
means that outputs new GCMs are often used as a refer-
ence for most climate risk assessment studies. In addition 
to this, new models tend to have higher resolution. For ex-
ample, while half of the average atmospheric model resolu-
tion is finer than 1.3° in CMIP5, only one model in CMIP3 
meets the same standard. In contrast, more than half of the 
CMIP3 models have a resolution coarser than 1° while only 
2 CMIP5 models have a latitudinal resolution greater than 
this criterion (Taylor et al. 2012). Although there is process-
ing cost associated with high-resolution climate simulation, 
these models are definitely ideal tools for climate system 
study (Gibelin and Déqué 2003).

Along with vintage and resolution, validity is com-
monly used as GCM dataset selection criterion. Suppiah et 
al. (2007) calculated the root mean square error (RMSE) and 
correlation coefficient between observations and model pro-
jections for the 1961 - 1990 period for temperature, rainfall, 
and sea level pressure. They also applied the demerit point 
system (DPS) as the basis for GCM selection (Whetton et 
al. 2005; Suppiah et al. 2007; Collier et al. 2011; Evans et 
al. 2014). In their study of the Xindian River Basin, Dahan 
River Basin, and Touchien River Basin in Taiwan, Lien et 
al. (2013) applied the DPS and weighted average ranking 
method (WAR) (Bentley and Wakefield 1998). Lien et al. 
(2013) also used the RMSE and the rainfall correlation co-
efficient as the evaluation criteria for suitable GCMs. How-
ever, as their research did not consider differences in cli-
matic zonation, different weather stations within the same 
watershed may use different GCM datasets.

Masson and Knutti (2011) proposed the family tree 
concept for GCMs to ensure that they are representative. 
Their study indicated that some GCMs are similar for the 
following reasons: they originated from the same research 
institution; they consider the same atmospheric component, 
or they pass on source code in the process of producing a 
new model version. Their study used Kullback-Leibler di-
vergence (KL divergence) (Kullback 1968) to quantify the 
divergence between each GCM. They generated the family 
tree from different models using hierarchical clustering anal-
ysis. Knutti et al. (2013) also used KL divergence to analyze 
CMIP3 and CMIP5 models and constructed a GCM family 
tree from the CMIP3 and CMIP5 datasets. They used the 
MSE (mean squared error) of the average temperature and 
average rainfall as a measure of similarity between the mod-
els. In the GCM family tree, models in the same branch are 
more similar than models on different branches. In this study, 
the family tree developed by Knutti et al. (2013) is used to 
screen out some GCMs with high similarity as a means of 
increasing the GCM suggestion list representation.

The purpose of this study is to propose a procedure for 
selecting GCM projection datasets based on four steps: (1) 
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Climate zonation - using the PCA and hierarchical cluster 
analysis to divide a region into several climate zones. (2) 
GCM ranking for a single weather station using the WAR 
method and DPS separately to rank all GCMs available for 
a given weather station. (3) GCM ranking for climate zones, 
which combines the results from steps 1 and 2 to calculate 
ranks of GCMs for each climate zone (zonal rank). (4) The 
zonal GCM suggestion list determination, which further 
uses the GCM family tree to remove highly similar models. 
Detailed methodology and results of a case study for Tai-
wan are described in the following sections.

2. MATeRIAlS AND MeThODS

Figure 1 outlines the proposed procedure for selecting 
the GCM datasets. Step 1 is data collection, including his-
torical weather records and GCM datasets. Step 2 is divided 
into 2 sections: (a) where a PCA and cluster analysis are 
used to classify climate zones; and (b) where the rank of 
the GCMs for each weather station is determined using the 
WAR method and DPS. Step 3 takes the climate zonation 
and GCM ranking results for a single weather station to de-
termine the GCM rank for each climate zone. In step 4, the 
GCM family tree is used as a similarity check to generate 
the final suggestion list for each climate zone. Detailed de-
scriptions of the application of these methods to our study 
are described sequentially below.
Step 1. Data Collection

Historical observed weather data and GCM projections 
were collected for the baseline period of 1986 - 2005. All of 
the weather data for the 25 weather stations shown in Fig. 2 
were obtained from the Taiwan Central Weather Bureau, in-
cluding monthly mean precipitation data. GCM outputs from 
CMIP5 were provided by TCCIP (Taiwan Climate Change 

Projection and Information Platform) with only GCMs that 
had outputs containing all four RCP (Representative Con-
centration Pathways) scenarios (Table 1) considered as suit-
able candidates for analysis.
Step 2a. Climate Zonation

Step 2a is climate zonation, which classifies weather 
stations into several climate zones using PCA (Pearson 
1901) and cluster analysis (Tryon 1939). Monthly mean 
precipitation from weather stations was used for PCA. Only 
the principal components where cumulative contribution 
rate exceeds 85% of each station were chosen. PC (principal 
component) scores of each station were then calculated. The 
PC scores of weather stations were used to determine the 
Euclidean distance between two stations. Cluster analysis 
was then applied to classify weather stations by distance. 
Weather stations were classified into several zones using 
a hierarchical clustering technique named Ward’s method 
(Ward 1963). Ward’s method uses a criterion based on the 
value of total within-cluster variance to select two clusters 
for merging.
Step 2b. GCM Ranking for Single Weather Station

Evaluation of the applicability of 20 GCMs was done 
using three criteria, correlation coefficient, and normalized 
root mean square error (NRMSE) for wet season and dry 
season. Generally, the higher the correlation coefficient 
value between GCM outputs and observed weather data, 
the better the monthly mean precipitation trend simulation. 
On the other hand, NRMSE represents deviation between 
GCM outputs and observations where lower NRMSE also 
means smaller bias. Only GCM outputs from the nearest 
grid point to the weather station were used in the correlation 
coefficient and NRMSE calculations. During the evaluation 
process, NRMSE for the wet (from November to April) and 

Fig. 1. Procedures to select GCM datasets.
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Fig. 2. Study area and spatial distributions of weather stations. (Color online only)

Modeling Center Model Institution

BCC BCC-CSM1.1
BCC-CSM1.1(m) Beijing Climate Center, China Meteorological Administration

CSIRO-QCCCE CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in collaboration with the 
Queensland Climate Change Centre of Excellence

FIO FIO-ESM The First Institute of Oceanography, SOA, China

IPSL IPSL-CM5A-LR
IPSL-CM5A-MR Institute Pierre-Simon Laplace

MIROC MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC MIROC-ESM
MIROC-ESM-CHEM

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and National Institute for Environmental Studies

MRI MRI-CGCM3 Meteorological Research Institute

NASA GISS GISS-E2-H
GISS-E2-R NASA Goddard Institute for Space Studies

NCAR CCSM4 National Center for Atmospheric Research

NCC NorESM1-M
NorESM1-ME Norwegian Climate Centre

NIMR/KMA HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration

NOAA GFDL
GFDL-CM3

GFDL-ESM2G
GFDL-ESM2M

Geophysical Fluid Dynamics Laboratory

NSF-DOE-NCAR CESM1-CAM5 National Science Foundation, Department of Energy, National Center for Atmospheric Research

Table 1. GCM datasets for analysis.
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dry season (from May to October) precipitation data were 
calculated individually. The NRMSE can be calculated us-
ing Eq. (1) as Lien et al. (2013).
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Where Xsim, i is the ith normalized data for simulated monthly 
mean precipitation, Xobs, i is the ith-normalized data for the 
observed precipitation, and N is the number of data.

Two methods were employed to rank GCMs in this 
study, WAR method and the DPS. In the WAR method, 
each GCM was sorted on three criteria. An average rank for 
each GCM was then calculated. All GCMs were then sorted 
according to the average rank calculated using Eq. (2).
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Where Rj is the average rank of the jth GCM, Ranki is the 
rank corresponding to the ith criterion, and N is the number 
of criteria. In this study, the range of j is one to twenty five, 
and N is equal to three.

The second appraisal method used is the DPS where 
a threshold is set on whether to accept a given GCM. If the 
performance does not exceed the threshold, the GCM will 
incur demerit points. All models are sorted by total demerit 
points after demerit points are summed for each GCM where 
the lower the total demerit points of a GCM, the better the 
model’s performance. In this study, total demerit points of 
each GCM were calculated using the following equations:
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Where Dj is total number of demerit points for the jth GCM 
and Ci(x) is the number of demerit points for the ith crite-
rion. Where there is only a single weather station, a GCM is 
suggested only if its total number of demerit points is zero. 
However, the DPS analysis results are strongly influenced 
by the threshold settings, which may be adjusted accord-
ing to the research of Whetton et al. (2005), Suppiah et al. 
(2007), and Lien et al. (2013).
Step 3. GCM Ranking for Climate Zones

GCM ranking for climate zones can be seen as the 
joint application of climate zonation and GCM ranking for a 
single weather station. Using cluster analysis procedures, a 
region can be divided into different climate zones with each 
zone containing one or multiple weather stations. For cli-
mate zones having a single weather station, the zonal GCM 
ranking will be the same as the weather station ranking lo-
cated within this zone. However, if multiple weather sta-
tions are situated within a climate zone, the average GCM 
rank for all weather stations in the zone will be calculated 
using Eq. (6). All GCMs are then sorted based on their aver-
age ranks to determine the zonal rank.
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Where ZRj, k is the average rank of the jth GCM in the kth 
climate zone, Nk is the number of weather stations in the kth 
climate zone, Rj, i is the rank of jth GCM corresponding to 
the ith weather station in the kth climate zonation.

DPS can also be used to directly determine the zonal 
GCM ranking by summing the number of demerits for all 
weather stations within a climate zone and then sorting us-
ing the average number of demerit points.
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Where ZDj, k is the average number of demerit points for the 
jth GCM in the kth climate zone, Nk is the number of weath-
er stations in kth climate zone, and Dj, i is the number of de-
merit points for jth GCM at the ith weather station in the kth 
climate zonation. For a climate zone with multiple weather 
stations, the average number of demerits for a GCM is not 
likely to be zero. Thus, if the average number of demerit 
points for a GCM in a climate zone is less than 1, the GCM 
will be retained in the suggestion list.
Step 4. GCM Similarity Check by Family Tree

The zonal GCM ranking results using the WAR or 
DPS analysis are used to produce a GCM suggestion list for 
each climate zone. However, a suggestion list may not be 
entirely representative as some of the GCMs may be similar 
in their projections or different GCMs may be derived from 
the same parent model. To check the similarity of GCMs 
in the initial suggestion list the GCM family tree in Fig. 3 
(simplified and redrawn by this research based on Knutti 
et al. 2013) is applied to identify the relationship between 
GCMs in the list. Figure 3 shows that for each GCM, there 
is a value for “divergence” or “D number”. A GCM located 
on a branch with a larger value for D means it may be a 
derivative version of the GCM located on a branch with a 
smaller D number. Additionally, a GCM may be removed 
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from the suggestion list if there is another GCM with a low-
er rank on the same branch of the family tree.

3. ReSUlTS AND DISCUSSION

This study suggests a procedure that consists of climate 
zonation, applicability ranking, and a model similarity check 
proposed to produce the GCM selection lists for a region. 
To test the applicability of this procedure, the technique was 
applied to data from the area of Taiwan. Taiwan is an island 
in East Asia, covering an area of 36197 km2. The average 
annual precipitation for Taiwan is around 2510 mm with 
78% of the precipitation falling during the wet season from 
May to October. As an initial check, this study calculated 
the correlation coefficients of monthly mean temperature 
and precipitation between observed weather data and GCM 
baseline projections to determine the temperature and pre-
cipitation applicability as selection criteria. The baseline pe-
riod was chosen as the years 1986 through 2005. The results 
showed that GCMs’ performance at projecting temperature 
is much better than projecting precipitation. The correlation 
coefficients for monthly mean temperature are higher than 
0.99, and the difference in performance between GCMs was 
quite small compared to the large differences in projecting 
mean precipitation. As we are seeking to separate GCMs 
based on predictive performance, the GCM projections for 
precipitation were regarded as the criterion for initial GCM 
selection.

3.1 Climate Zonation of Taiwan

In the climate zonation analysis for Taiwan, the month-
ly mean precipitation for the period of 1986 - 2005 was used. 
Table 2 lists the eigenvalue, percent variance and cumulative 
percentage given by the first three principal components. 
The PCA result shows that the first three principal compo-
nents explain 96% of the variation in the data. Table 3 lists 
the eigenvectors for the first three principal components of 
data from January to December. PC scores of the first three 
PCs of 25 weather possible stations can be calculated using 
the monthly mean precipitation and eigenvectors. The Eu-
clidean distance between stations was calculated using the 
PC scores from the 25 weather stations. Figure 3 is a cluster 
dendrogram of the weather stations using Ward’s method. 
Taiwan was classified into 7 to 9 climate zones by Wu and 
Chen (1993) and Liu (2010) but since the total number of 
weather stations used in this research is greater than those 
used in previous studies, the maximal number (z) of 10 cli-
mate zones was considered.

The zonation results from z = 6 to z = (10) are displayed 
in Fig. 4. Among the 25 weather stations, Keelung was al-
ways classified in a climate zone, as it is a unique station. 
Alishan is also a special station and was placed in the same 
zone as Yushan and Sun Moon Lake at z = 6. However, it 

was moved alone in a new climate zone after z increased 
from 6 - 7. When the number of climate zones increased 
from 7 - 8, Dongjidao and Penghu were separated to form a 
new zone. After z increased to 9, Dawu and Hengchun were 
further classified to form a new zone to better explain the 
effects of their geographic locations on the southern side 
of the central mountain range. Finally, when z increased to 
10, only Suao was moved from its original zone to form a 
new zone implying ten zones may not be necessary and nine 
climate zones may still be appropriate.

It was noticed that Lanyu weather station was classi-
fied as the same zone as Tamsui, Pengjiayu, Hsinchu, Wuqi, 
Taipei, and Taichung, which are all located in northern Tai-
wan, except for Lanyu (Fig. 2). Therefore, Lanyu station 
was manually moved to the tenth zone in this study. Table 4 
shows the climate zonation results and lists the weather sta-
tions in each zone.

3.2 GCM Ranking for Single Weather Station

The WAR method and DPS analysis were applied to 
evaluate the GCM applicability here based on three criteria, 
allowing the GCM suggestion list for a weather station to 
be produced. The ranks were further used to determine the 
zonal ranking in the next section.

3.2.1 Analysis of WAR Method

After the WAR method analysis, each GCM was as-
signed a rank in the range of 1 - 20. It is envisioned that even 
if a GCM is applicable for one weather station it does not 
imply that it will also perform well for another weather sta-
tion. Figure 5 gives an example of this situation, showing the 
ranking results from the WAR method for three weather sta-
tions, including Taipei, Tainan, and Taitung. The HadGEM-
AO model earned rank 1 at Taipei weather station (located 
in northern Taiwan), and also got rank 1 at Tainan weather 
station (located in southern Taiwan) however it only ranked 
11 at Taitung weather station (located in eastern Taiwan). 
The WAR method produce a GCM suggestion for a given 
weather station, but different weather stations may have dif-
ferent GCM suggestion lists.

The ranks for all weather stations can be further stati-
cally analyzed to select GCMs for a region, but it does not 
necessarily make it easier to identify which GCM is more 
applicable. When a given GCM was marked as ranks 1, 2, 
and 3, since 25 weather stations have been analyzed in this 
research, a GCM can gain rank 1 up to 25 times, as shown 
in Fig. 6. However, among the 20 GCMs that were analyzed 
in this study, only seven GCMs have earned rank 1. Had-
GEM2-AO earned rank 1 10 times, which means it has better 
performance than the other GCMs at most weather stations. 
The GISS-E2-R model received rank 1 five times, but re-
ceived no ranks 2 or 3. Based on the statistical analysis, the 
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Fig. 3. GCM family tree from CMIP5 (simplified and redrawn in this research based on Knutti et al. 2013). A GCM located on a branch with a larger 
“D (number of divergence)” means that it might be the derivative version of GCM located on a branch with a smaller D.

Comp. 1 Comp. 2 Comp. 3

Eigenvalue 1356 427 130

Percentage of Variance 68% 21% 7%

Cumulative Percentage 68% 89% 96%

Table 2. Eigenvalues and the proportion of variation ex-
plained by the first three principal components.

Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec

Comp. 1 -0.25 -0.22 -0.15 -0.09 -0.08 0.05 0.09 0.00 -0.39 -0.58 -0.50 -0.32

Comp. 2 -0.02 -0.01 0.01 0.10 0.26 0.45 0.56 0.59 0.20 0.02 -0.07 -0.03

Comp. 3 -0.26 -0.37 -0.39 -0.39 -0.39 -0.10 0.08 0.06 0.42 0.31 -0.05 -0.16

Table 3. Eigenvectors of the first three principal components.

Fig. 4. Cluster dendrogram and zonation results of 25 weather stations. Under a number of climate zones (for example: k = 6), GCMs of the same 
shade belong to the same climate zone.
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Climate Zone Weather station(s)

North Tamsui, Pengjiayu, Hsinchu, Wuqi, Taipei, Taichung

Northeast Keelung

East Yilan, Hualien, Chenggong, Taitung

Southwest Chiayi, Tainan, Kaohsiung

South Dawu, Hengchun

North mountain Anbu, Zhuzihu, Suao

Central Yushan, Sun Moon Lake

South mountain Alishan

West Island Dongjidao, Penghu

East Island Lanyu

Table 4. Climate zonation of Taiwan

Fig. 5. GCMs ranking results of Taipei, Tainan, and Taitung weather stations by the WAR method.

Fig. 6. Results of statistical analysis of frequency with GCMs marked as ranks 1, 2, and 3.
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HadGEM2-AO model has better performance for the Tai-
wan area than other GCMs.

3.2.2 Analysis of DPS

In the DPS analysis, the correlation coefficient thresh-
old was first set to 0.7, which means highly statistically cor-
related but after referring to previous studies, the NRMSE 
threshold was adjusted from 0.4 through 0.8. In the re-
search of Whetton et al. (2005) and Suppiah et al. (2007), 
the RMSE threshold was set to 2.0 for mean sea-level pres-
sure. Lien et al. (2013) set the precipitation threshold in the 
0.4 - 0.7 range. The RMSE values are normalized. If the 
threshold is set to 2.0, most GCMs are able to easily meet 
the standard, and the DPS results will lack discrimination. 
In order to avoid this situation, the calculated NRMSE value 
between weather stations and GCMs should be considered. 
Since the NRMSE range in this study is about 0.3 - 0.9, the 
NRMSE threshold tested was from 0.4 - 0.8. Note that for 
the majority of GCMs there is a bottleneck when the thresh-
old was set between 0.7 and 0.8. Setting the threshold to 0.7, 
most GCMs will not pass the test, making 0.8 the threshold 
to determine the number of GCMs that enter the suggestion 
list in this study. However, the threshold can be adjusted 
depending on the number of GCM datasets available or ap-
plicable to each climate zone.

While the WAR method produces a ranking for a single 
weather station, DPS will only exclude GCMs with a high 
number of demerit points. According to Eq. (3), if a GCM 
fails to pass the threshold for the three criteria, the model will 
incur demerit points. Figure 7 shows the demerit points for 
each GCM for Taipei, Tainan, and Taitung weather stations 
as examples. For Taipei station, only three GCMs (about 
12%) (CSIRO-Mk3-6-0, MIROC5, NorESM1-M) passed 
the three thresholds. For Taitung and Tainan weather sta-
tions, 9 (about 36%) and 8 (about 32%) GCMs respectively 
could satisfy the three thresholds.

A GCM with zero demerit points is considered viable 
to become a candidate for a suggested model for a given 
weather station. However, with the thresholds of R = 0.7 
and NRMSE = 0.8, most of GCMs at Anbu, Zhuzihu, and 
Suao weather stations (all located in the North mountain 
zone) obtained demerit points and did not pass the DPS 
test. Figure 8 shows the correlation coefficients between the 
GCM projections and observations from the above weather 
stations. It is clear that only the CESM-CAM5 model passes 
the correlation coefficient threshold at Anbu and Zhuzihu 
stations and in some cases the correlation coefficients for 
some GCMs are negative. The same situation occurs at Kee-
lung station, in the northeast zone. This situation shows that 
most GCMs cannot provide reasonable precipitation trends 
at some of the weather stations located in the mountainous 
northern and northeast area of Taiwan. On the other hand, 
stations such as Taitung and Tainan may have too many 

possible model candidates. Different values for thresholds 
may be considered in different climate zones.

3.3 GCM Ranking for Climate Zone

With the GCM ranking result for a single weather sta-
tion using the WAR method, the average rank of each GCM 
can be calculated using Eq. (6) to determine the zonal rank-
ing and produce the zonal GCM suggestion list. The recom-
mended GCMs for a climate zone should also reasonably 
reflect the characteristics and trend for the whole of Taiwan. 
Therefore, a GCM will be removed from the zonal GCM 
suggestion list if it has poor performance (rank greater than 
10) for the whole of Taiwan area. Table 4 lists the Top 5 
GCMs for each climate zone.

As shown in Table 5, HadGEM2-AO, CESM1-CAM5, 
and CCSM4 perform very well in most of the climate zones. 
According to the GCM ranks in different climate zones, 
it can be roughly observed that the behavior of the three 
GCMs may have some dissimilarity between areas in Tai-
wan. For instance, the HadGEM2-AO model performs well 
in the northern and southern zones, but does not have good 
performance in the eastern part of Taiwan. The CESM1-
CAM5 model is good in the mountain and island areas of 
Taiwan, but performs poorly in the southern part of Taiwan. 
The overall performance of the CCSM4 model is worse 
than that of HadGEM2-AO and CESM1-CAM5, except in 
the central and southern part of Taiwan. In addition to the 
above three models, the MIROC5 model does not rank well 
in every climate zone. In the South and Central zones, the 
MIROC5 model produces more accurate projections than 
the other GCMs. Based on these results, a perfect GCM for 
all climate zones in Taiwan does not exist and the most ap-
plicable GCMs may be different for different climate zones. 
This does not impact the WAR method ability to easily find 
the most appropriate GCM datasets for each zone.

The DPS results for single weather stations can also be 
applied to zonal GCM selection. The average number of de-
merit points for GCMs within a climate zone are calculated 
using Eq. (7) and only a GCM with an average number of 
demerit points lower than 1 are retained in the suggestion 
list. This method does lead to quite a variety in the numbers 
of GCMs retained in each climate zone. In the Northeast and 
North mountain zones, all GCMs were excluded because no 
GCM could satisfy the 1 demerit point threshold. The reason 
for this is that no GCMs are able to reproduce the reasonable 
historical trend for precipitation for weather stations within 
the climate zone (see Fig. 8). Conversely, in some climate 
zones such as the South and West, the threshold number of 
demerit points seems to be too low and thus almost half of 
the GCMs are retained.

For the Northeast mountainous zones, the easiest way 
to allow more GCMs to be recommended for inclusion is 
to raise value of the average number of demerit points used 
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Fig. 7. Total demerit points of GCMs for Taipei, Tainan, and Taitung weather stations.

Fig. 8. Correlation analysis of GCMs for weather stations located in the North mountain zone. Only CESM-CAM5 model passes the threshold of 
correlation coefficient (0.7) at Anbu (0.77) and Zhuzihu (0.82) stations.

Rank
Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

North HadGEM2-AO NorESM1-ME CSIRO-Mk3-6-0 CCSM4 bcc-csm1.1m

Northeast MRI-CGCM3 bcc-csm1.1 CESM1-CAM5 HadGEM2-AO NorESM1-ME

East CESM1-CAM5 GISS-E2-R CCSM4 bcc-csm1.1 CSIRO-Mk3-6-0

Southwest HadGEM2-AO MIROC5 bcc-csm1.1m CCSM4 CESM1-CAM5

South MIROC5 GISS-E2-R CCSM4 CSIRO-Mk3-6-0 HadGEM2-AO

North mountain bcc-csm1.1 CESM1-CAM5 NorESM1-ME HadGEM2-AO MRI-CGCM3

Central MIROC5 CCSM4 HadGEM2-AO CESM1-CAM5 MRI-CGCM3

South mountain HadGEM2-AO CESM1-CAM5 MIROC5 MRI-CGCM3 CCSM4

West island HadGEM2-AO MIROC5 CESM1-CAM5 bcc-csm1.1m CCSM4

East island GISS-E2-R CSIRO-Mk3-6-0 CESM1-CAM5 CCSM4 bcc-csm1.1m

Taiwan HadGEM2-AO CESM1-CAM5 CCSM4 MIROC5 GISS-E2-R

Table 5. Top five GCMs of each climate zonation of Taiwan by WAR method.
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for exclusion. Even if a GCM passes into the recommenda-
tion list because of lowering the threshold standard, the real 
GCM performance does not change. On the other hand, for 
a climate zone with more than 5 recommended GCMs, an 
additional criterion is needed to maintain less than 5 GCMs 
in the suggestion list. The regional correlation coefficient for 
precipitation in this study was used as the additional criterion 
to screen out part of the GCMs. Table 6 lists the GCMs rec-
ommended for use in each climate zone based on the DPS.

Comparison between the zonal GCMs suggested by the 
WAR method (Table 5) and DPS (Table 6) shows that most 
recommended GCMs by DPS also earn good ranks using the 
WAR analysis. The major advantage of the WAR method is 
that it identifies relatively better models, even if the absolute 
GCM performance may not be optimal. Conversely, the DPS 
analysis excludes unsuitable GCMs but it may leave no pos-
sible GCMs for the suggestion list. Setting an appropriate 
threshold for each criterion in DPS a critical task.

3.4 Similarity Check Between Zonal GCM in the  
Suggestion list

In the previous section, two zonal GCM suggestion 
lists were produced using the WAR method and the DPS 

analysis, respectively. In this section, the criteria for “repre-
sentativeness” proposed by Feenstra et al. (1998) are further 
considered by checking the similarity of suggested GCMs. 
The GCM family tree presented by Knutti et al. (2013) was 
employed to determine the GCM positions although the two 
GCMs used in this study were not included in the family 
tree allowing it to be simplified and presented as Fig. 3. Two 
GCMs are considered similar if they appear in the same 
branch of the family tree meaning that only one should be 
chosen as a GCM dataset for risk assessment study. Twenty 
GCM datasets were used in this study to generate the GCM 
suggestion list for weather stations in Taiwan. The pre-
liminary suggestion lists containing 10 GCMs are shown in 
Tables 5 and 6. These 10 GCMs in the suggestion lists were 
further confirmed in the GCM family tree.

During the similarity check process, the numbers of di-
vergence (D) in Fig. 3 is the index to classify similar GCMs 
in the family tree. For example, if D = 4 is used, then GCMs 
where D > 4 in Fig. 3 are considered to be a group with high 
similarity (Fig. 9). Table 7 shows the GCM similarity check 
results using divergence numbers (D) from 7 - 9. Note that 
the group number of similar GCMs increases with the layer 
number. Under D = 7, 10 GCMs listed in Table 5 are clustered 
into 5 groups, with the biggest group containing 5 GCMs. 

Climate Zonation Recommend GCMs

North CSIRO-Mk3-6-0, HadGEM2-AO

Northeast none

East CESM1-CAM5

Southwest CESM1-CAM5, HadGEM2-AO, MIROC5, MRI-CGCM3

South HadGEM2-AO

North mountain none

Central MIROC5, HadGEM2-AO, GFDL-ESM2G, NorESM-ME, CCSM4

South mountain MIROC5, GFDL-ESM2M, HadGEM2-AO, MRI-CGCM3, GFDL-ESM2G

West island MIROC5, GFDL-ESM2G, HadGEM2-AO, GFDL-ESM2G, CESM1-CAM5

East island CCSM4, CSIRO-Mk3-6-0

Taiwan CSIRO-Mk3-6-0, HadGEM2-AO, CESM1-CAM5, MIROC5, CCSM4

Table 6. Recommended GCMs of each climate zonation of Taiwan by DPS.

Fig. 9. Result of GCM similarity check with the GCM family tree in Fig. 3, and numbers of divergence (D) used as an index. In this example,  
D = 4, and GCMs with D > 4 in Fig. 3 are considered as a group with high similarity.
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The group number reaches maximum (8) under D = 9 leaving 
only two groups containing more than one GCM.

Based on these results, if both CCSM4 and CESM-
CAM5 are recommended in a specific climate zone it is 
possible to screen out GCMs with lower ranks leaving the 
GCM with the highest rank in the suggestion list. The results 
shown in Table 7 can also be used to reduce the number 
of GCMs suggested by DPS. Of the five GCMs suggested 
in the West island zone, two GCMs in the suggestion lists 
(CESM1-CAM5 and CCSM4) are marked as having high 
similarity. Under this situation, the user can determine to 
use only CESM1-CAM5 or CCSM4.

4. CONClUSION

Climate risk assessment often requires GCM projec-
tions to derive climate scenarios. However, it is not real-
istic to use all datasets although many GCM datasets are 
available. It may also not be reasonable to randomly choose 
GCM datasets. This study proposed a procedure using cli-
mate zonation, applicability ranking and a model similarity 
check to select required GCM datasets. Taiwan was chosen 
as the study area to test the proposed procedure.

PCA and hierarchical cluster analysis are suitable tools 
to classify weather stations into several climate zones show-
ing similar results as previous studies. However, as Fig. 4 
shows, by placing the Lanyu station in the North zone, the 
combination of PCA and hierarchical cluster analysis can-
not properly take into account the weather station location. 
To overcome this problem, other weather parameters, such 
as temperature, may be used to improve climate zonation.

The WAR method and DPS analysis were used to rank 
the applicability of GCMs. The results show that the WAR 
method can produce a GCM suggestion list for each climate 
zone. Nevertheless, for some specific weather stations lo-
cated in Northeast Taiwan, some GCMs receive good ranks 
even if they cannot reasonably reproduce the historical 
monthly mean precipitation trend. On the other hand, the 

DPS analysis removes non-applicable GCMs, but may re-
sult in an empty GCM suggestion list for a given climate 
zone. Using the same threshold of 1 demerit point for exclu-
sion, some zones have 6 to 7 suggested GCMs while other 
zones have none. It is not easy to assign different demerit 
point thresholds for different climate zones. Thus, both sug-
gestion lists from the WAR method and DPS analysis may 
be considered together in the future.

The procedure proposed in this study can be easily ap-
plied to other regions that contain a sufficient number of 
weather stations with adequate historical observations. The 
proposed procedure can help users’ select suitable GCM data-
sets for their study areas. Additionally, the GCM family tree 
is a useful tool to check the similarity of GCMs and choose 
GCM datasets that are more representative. Unfortunately, 
new GCM versions may not be included in the GCM family 
tree developed by Knutti et al. (2013), indicating that an up-
dated family tree would be very helpful for future study.
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