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AbstrAct

Reference evapotranspiration (ETo) is an agrometeorological variable widely 
used in hydrology and agriculture. The FAO-56 Penman-Monteith combination 
method (PM method) is a standard for computing ETo for water management. How-
ever, this scheme is limited to areas where climatic data with good quality are avail-
able. Maps of 10-day averaged ETo at 5 km × 5 km grid spacing for the Taiwan region 
were produced by multiplying pan evaporation (Epan), derived from ground solar ra-
diation (GSR) retrieved from satellite images using the Heliosat-3 method, by a fixed 
pan coefficient (Kp). Validation results indicated that the overall mean absolute per-
centage error (MAPE) and normalized root-mean-square deviation (NRMSD) were 
6.2 and 7.7%, respectively, when compared with ETo computed by the PM method 
using spatially interpolated 10-day averaged daily maximum and minimum tempera-
ture datasets and GSR derived from satellite inputs. Land coefficient (KL) values 
based on the derived ETo estimates and long term latent heat flux measurements, 
were determined for the following landscapes: Paddy rice (Oryza sativa), subtropi-
cal cypress forest (Chamaecyparis obtusa var. formosana and Chamaecyparis for-
mosensis), warm-to-temperate mixed rainforest (Cryptocarya chinensis, Engelhard-
tia roxburghiana, Tutcheria shinkoensis, and Helicia formosana), and grass marsh 
(Brachiaria mutica and Phragmites australis). The determined land coefficients are 
indispensable to scale ETo in estimating regional evapotranspiration.
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1. IntroductIon

Fresh water is vital to terrestrial life forms. However, 
96.5% of the water on Earth is salt water found in the oceans, 
and less than 0.5% of the world’s water resources are avail-
able to provide the freshwater needs for human activities 
and terrestrial ecosystems (Shiklomanov and Rodda 2004). 
Evapotranspiration (ET), which includes water evaporation 
from land and water surfaces and transpiration from vegeta-
tions, play an essential role in energy and mass exchanges 
between the hydrosphere, atmosphere and biosphere (Brut-
saert 1982). On global basis, the mean ET accounts for more 
than half of the total precipitation fallen on land surfaces 

(Chahine 1992; Oki and Kanae 2006). ET is also the major 
irrigation water and precipitation use on agricultural lands 
(Gowda et al. 2008). ET rates are affected by many factors, 
such as ground solar radiation (GSR), wind speed, air tem-
perature and humidity, soil water content, vegetation type, 
growth stage, planting density, and management practices, 
etc. (Rosenberg et al. 1983; Monteith and Unsworth 1990), 
which make precise regional evaporative loss quantification 
rather difficult.

Pressures on water resources are increasing due to pop-
ulation growth, increased living standards, competition for 
water between agricultural and other sectors, and water pollu-
tion. Climate change further aggravates this rapidly decreas-
ing freshwater availability worldwide (Jiménez Cisneros et 
al. 2014). Although increasing water stocks in natural and  
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artificial reservoirs are helpful in increasing the available 
freshwater resources for human necessities, Oki and Kanae 
(2006) pointed out that the flow of water should be the main 
focus in water resources assessments because water is a natu-
rally circulating resource that is constantly recharged. Reli-
able ET quantification is very important and valuable, par-
ticularly for freshwater resources planning and management.

A substantial number of remote sensing algorithms, 
varied greatly in main assumptions and input requirements, 
have been proposed over the past few decades to provide ET 
mapping at different time and spatial scales (Jiang and Islam 
2003; Gowda et al. 2008; Kalma et al. 2008; Li et al. 2009; 
Jiménez et al. 2011; Liou and Kar 2014). Remote sensed 
land surface temperature (LST) is the most critical input for 
many of those proposed algorithms. However, accuracies 
in retrieving LST under cloudy conditions still needs to be 
improved (Jiang et al. 2004; Jiménez-Muñoz et al. 2009; Yu 
et al. 2009; Benmecheta et al. 2013; Li et al. 2013). In ad-
dition, many physically-based approaches require auxiliary 
ground and atmospheric observations that cannot readily be 
measured by remote sensing techniques (e.g., Anderson et 
al. 1997; Bastiaanssen et al. 1998; Mecikalski et al. 1999; 
Su 2002; Allen et al. 2007).

The FAO Irrigation and Drainage Paper No. 56 “Crop 
Evapotranspiration” (Allen et al. 1998) is the guidelines for 
most irrigation engineers to compute crop water require-
ments. It estimates ET from a specific crop field by first 
calculating reference evapotranspiration (ETo) using local 
weather data to represent the weather effect on water con-
sumption. To account for the influences of crop characteris-
tics on ET, a crop specific coefficient (Kc) is used to scale 
ETo for crops grown under excellently managed and well-
watered standard conditions. Under non-standard condi-
tions, a stress factor (Ks) is applied to account for the water 
and environmental stresses that may be imposed on the crop 
field. Therefore, ET = Ks × Kc × ETo.

The FAO Penman-Monteith combination method (PM 
method) for reference grass surface, Eq. (1) (Allen et al. 
1998), is now the standard method most commonly selected 
for ETo computation (Pereira et al. 2015).
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where ETo is reference evapotranspiration (mm day-1), Rn is 
net radiation at the crop surface (MJ m-2 day-1), G is soil heat 
flux density (MJ m-2 day-1), T is mean daily air temperature 
at 2 m height (°C), U2 is wind speed at 2 m height (m s-1), es 
is saturation vapor pressure (kPa), ea is actual vapor pressure 
(kPa), Δ is the slope of vapor pressure curve (kPa °C-1), c  
is psychrometric constant (kPa °C-1). This method requires 
daily data of maximum and minimum air temperatures, va-

por pressure, net radiation, soil heat flux, and wind speed 
at 2 m above ground level. However, the required inputs 
are available only at locations where fully equipped weather 
stations have been installed. For locations where part of the 
required inputs are missing, alternative procedures to es-
timate the missing climatic data are given in Allen et al. 
(1998), and daily maximum and minimum air temperatures 
are the minimum datasets required.

Since the evapotranspiration process is determined by 
the amount of energy available to vaporize water, ground 
solar radiation (GSR) is the primary driving force of evapo-
transpiration from ground surfaces, Jacobs et al. (2004), 
Bois et al. (2008), and de Bruin et al. (2010) applied daily 
solar radiation estimates derived from GOES and MeteoSat 
images as an input to the PM method, in conjunction with 
other ground measurements, to determine ETo. To avoid 
using remote sensed LST data and minimize the require-
ments on ground measurements, Syu et al. (2016) used GSR 
derived from geostationary satellite images by Heliosat-3 
method, in conjunction with monthly averaged surface tem-
peratures based on elevation and justified temperature lapse 
rates (TLR), to generate maps of 10-day averaged daily pan 
evaporation (Epan) for Taiwan region at grid spacing of 5 km 
× 5 km. Instead of computing by the PM method using local 
weather data as inputs, Allen et al. (1998) pointed out that 
the reference evapotranspiration (ETo) for periods of 10 days 
or longer can also be estimated by multiplying Epan with a 
properly determined pan coefficient (Kp).

ET K Eo p pan=  (2)

Therefore, the work by Syu et al. (2016) may serve as the 
basis for an approach to provide ETo using geostationary 
meteorological satellite images.

The ETo concept provides simple, reproducible means 
to estimate crop ET from weather-based ETo values and 
helped to enhance the transferability of the crop coeffi-
cients from one location to another. Therefore, the reference 
evapotranspiration concept has now been adopted to esti-
mate ET from many different landscapes, such as forests 
(Hou et al. 2010; Pereira et al. 2015), wet lands (Drexler 
et al. 2008; Zhou and Zhou 2009), turf grasses (Jia et al. 
2009; Wherley et al. 2015), and urban areas (Pannkuk et al. 
2010; Sun et al. 2012; Nouri et al. 2013). Landscape coef-
ficients (KL) are the term commonly used to substitute crop 
coefficients (Kc) in estimating evaporation from landscapes 
other than field crops. It is also defined as the ratio of actual 
evaporation (ET) over reference evapotranspiration (ETo) 
on corresponding landscape, i.e.,

K ET ETL o=  (3)

In essence, KL equals Ks × Kc at crop fields.
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The objective of this study is to develop and provide 
feasible remote sensing methods to estimate ETo, particu-
larly for areas where the PM method is inapplicable due to 
lacking of good quality local weather data. Specific aims are 
(1) to derive the pan coefficient (Kp) suitable for generat-
ing reference evapotranspiration (ETo) from pan evapora-
tion (Epan) derived from geo-stationary satellite imageries 
by Syu et al. (2016), (2) to validate the accuracies of ETo 
derived from Epan by comparing with ETo computed by the 
PM method, and (3) to derive landscape coefficients (KL) 
at selected sites where long term latent heat flux measure-
ments data are available.

2. MAterIAls And Methods
2.1 study region and datasets used

Taiwan is an island located at the intersection of the 
Pacific Ocean and Asian continent and situated off the 
southeast coast of China by the Taiwan Strait. The north to 
south length of the island is about 400 km and about 150 km 
at its widest. The total area is close to 36000 km2. The cen-
tral mountain range, which has over 100 peaks higher than 
3000 m, runs from north to south and divides the island into 
eastern hills and western plains. About 70% of the island’s 
land area is mountains or slope land while the remaining 
30% is plains (Fig. 1). The climate is controlled mainly by 
orographic relief and by the alternation between the sum-
mer southwest monsoon and winter northeast monsoon. To 
serve as the basis for further analysis and comparisons, the 
entire study region was divided into 49 × 84 grids with each 
grid of an area 5 × 5 km2. Average elevation above sea level 
of each grid was derived from a 40-m resolution digital el-
evation model (DEM).

Images from geostationary satellites MTSAT-1R and 
MTSAT-2 from 2008 - 2013 archived by the Meteorologi-
cal Satellite Center of CWB were also retrieved and used 
for derivation of GSR and Epan at each grid of within the 
study region as described in section 2.2. Daily maximum 
and minimum temperatures collected from 2008 - 2013 
at 26 standard weather stations and up to 325 automated 
temperature/rainfall stations managed by Central Weather 
Bureau (CWB), Taiwan, were retrieved from databases ar-
chived and maintained by the Data Processing Branch of 
CWB. Before being archived, these temperature data were 
screened by the Data Processing Branch of CWB to ensure 
their quality and integrity. Averages of daily maximum 
(Tmax) and minimum (Tmin) temperatures for days 1 - 10, 11 - 
20, and 21 - 30 (28 or 29 for February) of every month from 
2008 - 2013 were computed from the retrieved CWB daily 
temperature datasets and used for computing ETo by the PM 
method as described in section 2.3.

Latent heat flux data measured at an agricultural site 
(SK), two forest sites (CLM and LHC), and a wetland site 

(GDP) were used in this study for derivation of landscape 
coefficients (KL). Paddy rice (Oryza sativa) was the crop 
planted at SK site. The vegetation at the CLM site is mainly 
a subtropical cypress forest (Chamaecyparis obtusa var. 
formosana and Chamaecyparis formosensis) with average 
height about 10 m. Warm-to-temperate mountainous rain-
forest of mixed evergreens and hardwoods (including Cryp-
tocarya chinensis, Engelhardtia roxburghiana, Tutcheria 
shinkoensis, and Helicia formosana) with averaged height 
about 17 m were vegetations at LHC site. The vegetations 
at GDP site, a wetland situated at the junction of Tamshui 
River and Jilong River, are mainly comprised by para grass 
(Brachiaria mutica) and reed (Phragmites australis).

Flux data at all four sites were measured using the 
Eddy Covariance (EC) method. Brief summaries about the 
sites and instrumentations used are listed in Table 1. More 
detailed information regarding the site characteristics and 
the flux data processing and quality control are given in 
Mildenberger et al. (2009), Yao et al. (2009), Chen et al. 
(2012), and Lee et al. (2015) for SK, CLM, LHC, and GDP 
sites, respectively. Flux data collected at the SK site for 

Fig. 1. Topography and locations of selected temperature stations and 
flux tower sites distributed within the study region. The red lines rep-
resent borderlines of geographical climatic regions for land surface 
temperature estimation using the empirical formulas of temperature 
lapse rate (TLR) provide by Chiu et al. (2014). NWr: Northwest re-
gion, WWr: Windward region, LWr: Leeward region, Er: East region. 
(Color online only)
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wind vectors between 270 and 30 degrees (c.a. W to NE) 
were rejected because of inadequate fetch. The flux data 
quality used for analysis and comparison in this study was 
controlled by following the standard procedures adopted by 
FluxNet and AsiaFlux. Therefore, interferences from the 
surrounding landscapes were minimal.

Standard MODIS (MODerate-resolution Imaging Spec-
troradiometer) 8-day composite surface reflectance product 
at 500 m resolution (MOD09A1 collection 051), from 2008 
- 2013, were downloaded from the Earth Observing System 
Data Gateway. MODIS Reprojection Tool (MRT) software 
(Release 4.0) was used to re-project from native Sinusoi-
dal (SIN) projection to the UTM-WGS84 reference system 
used in this study. Normalized Difference Vegetation Index 
(NDVI) values were then computed to monitor changes in 
vegetation at all four flux measurement sites. For each flux 
tower site, only one pixel with its center closest to the flux 
tower location was used because it covers the majority of 
the fetch in most cases.

2.2 derivation of remote sensed Pan evaporation 
(epan)

Ten-day averaged daily pan evaporation estimates 
(Epan) at each 5 × 5 km2 grid within the studied region were 
derived from MTSAT images following procedures given 
by Syu et al. (2016). However, due to changes of satellites in 
operation, MTSAT-1R and MTSAT-2 images were used for 
the period from 1st January 2008 to 30th June 2010 and from 
1st July 2010 to 31st December 2013, respectively. Since the 
stationary orbital positions of the two satellites were differ-
ent (140.25°E for MTSAT-1R, 145°E for MTSAT-2), the 
third-order polynomial functions required for representa-
tive reference albedos computation under clear and thick 
cloud conditions at various sun-satellite configurations for 

each pixel were re-derived for MTSAT-1R images using all 
the available MTSAT-1R daytime images. For MTSAT-2 
images, the required third-order polynomial functions fol-
lowed those derived by Syu et al. (2016).

Ten-day averaged daily solar irradiance (Rs) maps, 
from 2008 - 2013, were first produced following procedures 
for image preprocessing, retrieval of GSR, and integration 
for daily global irradiance as described in Syu et al. (2016). 
Corresponding Epan maps were then derived by applying the 
Hansen type empirical model, shown as Eq. (4), given by 
Syu et al. (2016).

0.7516E R
pan

s

c mD
D= +  (4)

Values of Δ and c  were computed using Eqs. (7a) - (7e) 
using monthly mean temperatures estimated from height 
above sea level and corresponding regional monthly TLR 
functions provided by Chiu et al. (2014).

2.3 computation of reference evapotranspiration 
(eto)

Procedures recommended by Allen et al. (1998) were 
used to estimate the required inputs for Eq. (1) using only the 
10-day averaged daily maximum (Tmax) and minimum (Tmin) 
air temperatures from CWB ground observations and solar 
irradiance (Rs) retrieved from MTSAT images as follows.

Tdew was estimated using Tmin and the quantities relate 
to vapor pressure differences, (es - ea), were calculated as

( ) ( )e e T e T
2

max min
s

0 0

= +  (5a)

Item sK clM lhc GdP

Location 23°34’55”N, 120°24’17”°E 24°35’18”N, 121°24’57”E 23°55’51”N, 120°53’39” E 25°07’00”N, 121°28’02”E

Elevation (m) 20 1600 770 4

Landscape Paddy rice Evergreen conifer forest Cypress 
forest Rainforest Grass marsh

Area (ha) 4.0 374 8.4 21

Vegetation height (m) < 1 12 15 1.2

Measurement height (m) 2.5 24 25 3.5

Fetch (m) 10 - 75 20 - 700 100 - 200 50 - 100

Sonic anemometer Young, 81000 CSI, CSAT3 CSI, CSAT3 Young, 81000

H2O analyzer LICOR, LI-7500 LICOR, LI-7500 CSI, EC150 LICOR, LI-7500

Sampling Frequency (Hz) 10 10 10 10

Averaging Period (min) 10 30 60 30

Data Period Used 2008 - 2009 2008 - 2010 2008 - 2010 2011 - 2012

Table 1. Summary of site characteristics and instrumentation for Eddy-Covariance method used at the four flux measurement sites.



Mapping ETo from Satellite Data and Applications 505

( )e e Ta dew
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where e0(T) is the saturation water pressure (kPa) at tem-
perature T (°C) and calculated as
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The quantities relate to net radiation (Rn) were calculated as

(1 )R R Rn s nla= - -  (6a)

where a  is the albedo and assumed to be 0.23, and
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where v  is Stefan-Boltzmann constant (= 4.903 × 10-9 MJ 
K-4 m-2 day-1), Rso is the clear sky radiation estimated from 
elevation (z) and extraterrestrial radiation (Ra) of the same 
10-day period and

.T T 273 16,max maxK = +  (6c)

.T T 273 16,min minK = +  (6d)
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where z (m) is the elevation above sea level, and
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where Gsc is solar constant (= 0.0820 MJ m-2 min-1), { is 
latitude (rad), D is relative Earth-Sun distance, s~  is sunset 
hour angle (rad), d  is solar declination (rad),

. cosD J1 0 033 365
2r= + ` j (6g)

. .sin J0 409 365
2 1 39d r= -` j (6h)

( ) ( )arccos tan tans~ { d= -6 @ (6i)

where J is Julian day of the year.
The slope of saturation vapor pressure curve (Δ), psy-

chrometric constant (c), and latent heat of vaporization (m) 

were calculated using formulas given by Allen et al. (1998).
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As suggested by Allen et al. (1998), soil heat flux was ig-
nored (G = 0), and U2 was set at constant wind speed of  
2 m s-1 for all the ETo computations.

2.4 spatial Interpolation of daily Maximum and  
Minimum temperatures

Temperature has large spatial and temporal variability 
but measurements at weather stations are only point esti-
mates. Thus, except for computing ETo at measuring weath-
er stations, temperatures have to be interpolated for each 5 
× 5 km2 grid from observations at nearby weather stations. 
Among numerous spatial interpolation methods, Residual 
Kriging was considered to be the best method for tempera-
ture estimation because of the complex relations between 
temperature and orography as well as the climate character-
istics of Taiwan (Chiu et al. 2009).

The spatial temperature trend with elevation was first 
removed by subtracting monthly reference temperature cal-
culated based on the site elevation and the regional monthly 
TLR functions given by Chiu et al. (2014). The residuals of 
Tmax and Tmin were then spatially interpolated by Ordinary 
Kriging method (Goovaerts 1997) on every 5 km × 5 km grid 
in the study region for each 10-day period. The semivariogram 
required for each interpolation was computed individually for 
a 150 km active lag distance using a uniform lag class inter-
val of 10 km. An isotropic Gaussian model was the preferred 
model in fitting the semivariogram because it was believed 
that strong spatial continuities should exist near the origin. 
However, occasionally, an isotropic Spherical or Exponen-
tial model was required for modeling the semivariogram. A 
search radius of 20 km with a maximum of 16 neighbors and 
2 × 2 local grid block Kriging scheme were then applied to 
conduct the interpolation. The final Tmax and Tmin estimates 
were then restored as the sum of the residual predicted and 
reference temperature subtracted. All of the semivariance 
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analysis, model fitting, spatial interpolation, and cross valida-
tion tests were executed using GS+ (Ver. 5.1.1, Gamma De-
sign Software). In order to provide representative samples for 
use in section 2.5 within limited time, the spatial interpolation 
on Tmax and Tmin within the study region were conducted only 
for the middle 10-day period of each month (i.e., day 11 to 
20) in the studied six years (2008 - 2013), i.e., a total of 144 
sets of spatial interpolation were conducted.

2.5 derivation and Validation of Pan coefficient (Kp)

As shown in Eq. (2), good quality data pairs of Epan 
(from section 2.2) and ETo (from sections 2.3 and 2.4) are 
required to derive the pan coefficient (Kp) for converting 
the pan evaporation rate (Epan) into reference evaporation 
rate (ETo). Spatially interpolated Tmax and Tmin with great un-
certainty can produce erroneous estimates of ETo and thus 
severely affect the Kp value derived. Therefore, as discussed 
in section 3.2, the standard deviation of Tmax and Tmin es-
timates must be less than 0.5°C was set as the criteria to 
ensure qualified pairs of ETo and Epan were selected for Kp 
derivation.

Data pairs belonging to January, April, July, and Oc-
tober (i.e., month in the middle of each season) were used 
as the training dataset for Kp derivation. The data pairs from 
the rest 8 months were used to test the suitability of derived 
Kp against variations in seasons, geographical regions, and 
elevations.

2.6 derivation of landscape coefficients (Kl)

Data pairs of actual evaporative flux (ET) measured by 
EC method described in section 2.1 and corresponding ETo 
computed by Eq. (2), using Epan derived from MTSAT im-
ages (section 2.2) and Kp value to be derived in section 2.5, 
were assembled for derivation of landscape coefficient (KL). 
The KL of each landscape was derived, individually, by fit-
ting a linear model of ET = KL × ETo through the assembled 
data pairs of each site.

Apparent seasonal changes of NDVI, derived from the 
MODIS data described in section 2.1, were not observed 
at LHC, CLM, and GDP sites (to be shown in section 3.3). 
Significant variations of KL with seasons were also not de-
tected in the preliminary study (data not shown). Therefore, 
the landscape coefficients for LHC, CLM, and GDP sites 
were derived using all the data pairs available to each site, 
individually.

Changes in NDVI at the SK site revealed that the rice 
plantation followed a two-season cropping system com-
monly adopted in Taiwan. Other than the changes in leaf 
area index and vegetation vigilance, the soil water regime 
also varied significantly at different growth stages due to ir-
rigation practices. During the period from field preparation 
to active tillering stage (ca. 30 days after transplanting), the 

paddy fields are generally flooded with water to a depth of 
10 - 15 cm. In the middle of the growing season (ca. 30 - 90 
days after transplanting), fields are intermittently irrigated 
to a water depth of 1 - 2 cm at intervals of 7 - 10 days. Fields 
are not irrigated from the yellow-ripening stage (ca. 30 days 
before harvest) to harvest. During the fallowing period, the 
fields are usually left dry and covered with stubs, straw resi-
due and grasses.

NDVI of 0.6 can be used to divide the total paddy rice 
growing period (~120 days) into three stages that match 
the water management scheme described above (Su and 
Yang 1999). Therefore, to reduce the influences of changes 
in vegetation conditions and soil water regime on KL, the 
available data pairs at the SK site were subdivided into three 
stages as follows.
(1)  Early Stage: from initial flooding for field preparation 

to NDVI < 0.6.
(2)  Middle Stage: NDVI ≥ 0.6.
(3)  Late Stage: from NDVI < 0.6 to start of next flooding for 

field preparation.

2.7 error Analysis

In order to evaluate the derived pan coefficient (Kp) and 
landscape coefficient (KL) performances, the Coefficient of 
Determination (R2), Nash-Sutcliffe efficiency (E, Nash and 
Sutcliffe 1970) and revised Index of Agreement (dr, Will-
mott et al. 2012) were used as the statistical measures.
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where Oi is the ith measured value, Pi is ith simulated value, N 
is the total number of available data, and O  is the average of 
observations. R2 indicates how well the data fit a statistical 
model. An R2 of 1 indicates that the regression line perfectly 
fits the data, while an R2 of 0 indicates that the line does not 
fit the data at all. E measures the proportion of total variance 
in the observed data explained by the simulated data and 
should optimally be one. If E > 0, the modeling results are 
acceptable; if E ≤ 0, the model should be rejected. dr, with 
upper and lower bounds of 1 and -1, indicates the magnitude 
of differences between the model predication and observed 
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data relative to the average error in the observed data. If dr = 
1, it is a perfect fit; if dr = 0.5, the magnitude of predication 
error equals the average error in the observed data. At val-
ues of 0 and -0.5, the error magnitudes are twice or fourfold 
the average-error in the observed data, respectively. Values 
of dr near -1.0 can mean that the model is fitted very poorly; 
but, it also can mean that there simply is little observed vari-
ability.

The accuracy of Tmax and Tmin estimated using the Re-
sidual Kriging method and ETo derived from multiplying 
Epan by Kp were evaluated by statistical indices including: 
mean absolute error (MAE) and root-mean-square deviation 
(RMSD) as well as mean absolute percentage error (MAPE) 
and normalized root-mean-square deviation (NRMSD).

,MAE n X O MAPE MAE O1
i ii

N
1= - ==/  (9a)

( ) ,RMSD N X O RMSD ONRMSD1
i ii

N 2
1= - ==/  (9b)

where N is the number of data compared, Xi and Oi are esti-
mated and observed values, respectively. For temperatures, 
the observed Tmax and Tmin were those 10-day averages com-
puted from CWB daily temperature datasets. For ETo, the 
observed data were ETo derived using the FAO PM method 
at each effective grid. In order to explore the seasonal and 
geographical effects, the estimated ETo were further evalu-
ated for different seasons (spring: March to May, summer: 
June to August, autumn: September to November, winter: 
December to February) and regions of the TLR classifica-
tion. Small MAPE values indicate the estimates with few er-
rors, while small values of NRMSD indicate more accurate 
predictions on a point-by point basis.

3. results And dIscussIons
3.1 spatial Interpolation of temperature for eto  

computation

Before deriving Kp for converting Epan into ETo, spatial 
interpolation of Tmax and Tmin between the measuring stations 
must be conducted to provide the required temperature data-
sets for ETo computation. Figure 2 depicts the typical omni-
directional semivariogram and fitted model for the residual 
values after removing the temperature variation trend with 
elevation, while Fig. 3 shows the corresponding cross vali-
dation test results. A Gaussian model was selected to ensure 
the weights assigned to nearby samples decreased rather 
slowly with increasing separation distances. The non-zero 
nugget accounted for the possible short scale variability and 
uncertainties in temperature measurement. Cross validation 
tests also indicated good agreements between the estimated 
and observed Tmax and Tmin values (Fig. 3). The MAPE and 

NRMSD were generally less than 8 and 10%, respectively, 
for Tmax and Tmin estimates.

The number and proximity of nearby samples are major 
factors related to the uncertainty of the Kriginged estimates. 
Typical variations of standard deviation (SD) of the Tmax 
and Tmin estimates against the number of nearby samples (n) 
were shown in Fig. 4. The standard deviations of the esti-
mates decreased with increasing number of nearby samples. 
At n = 3, the decreasing trend changed from rapid mode 
to more gradual mode. However, wide ranges of standard 
deviation, due to variations of samples’ proximity, were ob-
served particularly when the numbers of the nearby samples 
were small. Therefore, the number of nearby samples is not 
a good index for determining whether or not the Tmax and 
Tmin estimates are suitable for ETo computation. Instead, 
using SD ≤ 0.5°C as the criterion, only the estimates with 
small error would be selected. Sensitivity analysis indicated 
that a 0.5°C error in Tmax and Tmin estimates would cause less 
than 7% error in ETo estimation within the study region.

As shown in Fig. 5, the point measurements of Tmax and 
Tmin could be extended using the Residual Kriging method 
to cover nearly 90% of the studied region, except at remote 
areas where temperature data were not available within the 
search radius (20 km). However, due to sparsely distributed 
temperature measurement stations, the high SD of Tmax and 
Tmin estimates at coastal and plain areas in the southwest 
region have resulted in the exclusion of ETo estimation in 
these areas. Increasing search radius offered little help, if 
not worse, to expand the area to be covered for ETo com-
putation because the SD were also increased as results of 
incorporating more far away and irrelevant data. The above 
discussion illustrates several disadvantages in computing 
ETo by PM method. For example, its application is restricted 
only to regions that have good quality data available, and 
the value of computed ETo may be different using different 
spatial interpolation techniques and alternative methods to 
account for the missing data. Considering this, the Epan maps 
derived from satellite images may be a better data source for 
ETo estimation because of the ability to provide more com-
plete coverage and consistent computation scheme.

3.2 Pan coefficient (Kp)

For Kp derivation, the distribution of Epan derived from 
satellite images versus ETo calculated using the PM method 
is shown in Fig. 6. A 1:1 linear relation, Eq. (10), exists be-
tween ETo and Epan. This relation is statistically significant, 
with an overall coefficient of determination of 0.94.

ETo = 0.9976 Epan. (10)

By definition, the fitted parameter (0.9976) is Kp. Perfor-
mance tests indicated that the derived pan coefficient (Kp) 
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Fig. 2. Semivariograms for residuals of daily maximum (Tmax) and minimum (Tmin) temperatures for period from 11 to 20 January 2013. The dashed 
lines represent sample variances.

Fig. 3. Cross validation test results for daily maximum (Tmax) and minimum (Tmin) temperatures for the period from 11 to 20 January 2013 based on 
the semivarigrams given in Fig. 2.

Fig. 4. Relations between the standard deviation (σ) of estimates by Residual Kriging and the neighboring samples (n) for the period from 11 to 20 
January 2013. The lines represent the fitted trend.
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Fig. 5. Maps of spatial interpolated 10-day averaged daily maximum (Tmax) and minimum (Tmin) temperatures, standard deviation of estimates (Tmax 
SD, Tmin SD), neighboring samples used (n), and calculated reference evapotranspiration (ETo) for the period from 11 to 20 January 2013. Grids in 
white color indicate interpolation cannot be conducted due to the lack of valid data. (Color online only)

Fig. 6. Relations between remote sensed pan evaporation (Epan) and reference evapotranspiration calculated following FAO-56 Penman Monteith 
using spatially interpolated daily maximum and minimum temperatures and remote sensed incident solar radiation. (Color online only)
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is applicable in different geographic regions and seasons 
(Table 2).

The validation test indicated that the ETo derived from 
Epan by multiplying the derived Kp was good surrogate of 
the ETo computed by FAO PM method (Table 3). The sur-
rogates were effective not only at all four geographical re-
gions and seasons, but also at various heights in mountain-
ous areas. Overall MAPE and NRMSD were only 6.2 and 
7.7%, respectively.

This is a big breakthrough in providing ETo for areas 
where even the minimum weather datasets (Tmax and Tmin) 
are not available, either due to lack of nearby temperature 
measurement stations or high uncertainties in the interpo-
lated temperatures. ETo maps for the study region can now 
be easily generated from Epan maps that are derivable from 
meteorological satellite images.

3.3 et Fluxes at Four long term eddy covariance 
Flux Measurement sites

Temporal variations in vapor fluxes (ET) measured us-
ing the EC method and NDVI values derived from MODIS 
observations at the four long term ET flux observation sites 
are shown in Fig. 7. Corresponding reference evapotrans-
piration (ETo), generated by multiplying Epan maps with the 
Kp derived in section 3.3, for these four sites are also plotted 
in Fig. 7. As expected, the ETo was higher than actual ET at 
all four sites.

At the LHC, CLM, and GDP sites, the latent heat 
fluxes increased gradually from January, reached peak val-
ues in summer, and decreased gradually toward December. 
However, the NDVIs at LHC and CLM sites remained 
relatively stable (~0.8) year round, indicating the vegeta-
tions maintained fully covered and experienced no severe 
stresses during the studied 3 years. The NDVIs at GDP site 
were stably maintained at about 0.5 year round, which also 
indicated no major changes in percent cover and vigilance 
in the vegetation. The less dense wet land vegetation at the 
GDP site may have resulted in the relative low NDVI values 
compared with those at the LHC and CLM sites. Since no 

apparent changes in vegetation conditions were observed, 
the amount of energy available for evapotranspiration might 
be the major factor dominating the seasonal changes of the 
observed ET fluxes at LHC, CLM, and GDP sites.

At the SK site temporal variations in NDVI values 
revealed that the vegetation cover and growth conditions 
were under a generally adapted two-season rice cropping 
system in Taiwan (Fig. 7). The ET measured was modified 
by weather conditions at the time (as shown by the changes 
of ETo). Although parts of the flux data were missing due 
to inadequate fetch as the result of changes in wind direc-
tion, the ET fluxes still showed an observable general trend 
in the first crop season (i.e., the first half of the year). The 
ET increased gradually after transplanting (early Febru-
ary), reached a plateau in between maximum tillering (late 
March) to heading (late April), and then decreased gradu-
ally toward harvesting (mid June). A similar trend was not 
observable in the second cropping season due to huge gaps 
in missing data. However, a decreasing trend in ET from 
late September was still observable.

3.4 landscape coefficients (Kl) at test sites

To find KL, a linear model of ET = KL × ETo was fitted 
through all the available data pairs of ET and ETo at LHC, 
CLM, and GDP sites, individually (Fig. 8). The statistical 
measures for performance evaluation of the fitted linear re-
lations were shown in Table 4. All fitted models yielded an 
acceptable agreement between the simulated and observed 
ET fluxes.

At the SK site, data pairs of ET and ETo were first di-
vided into three stages, as described in section 2.6, to account 
for differences in soil water regime and vegetation conditions 
and then fitted with linear relations, individually (Fig. 8). The 
statistical measures for performance evaluation of the fitted 
linear relations are also shown in Table 4. The fitted model 
for the middle stage was acceptable. However, the less satis-
fied statistical measures for the early and late stages at SK 
site indicated that more ET flux measurements are required 
to improve the accuracy of the corresponding KL.

Month
R2 e dr

nWr WWr lWr er nWr WWr lWr er nWr WWr lWr er

JAN 0.96 0.84 0.84 0.88 0.56 0.61 0.73 0.33 0.68 0.67 0.74 0.57

APR 0.94 0.86 0.96 0.92 0.81 0.69 0.92 0.68 0.79 0.72 0.87 0.69

JUL 0.98 0.97 0.97 0.97 0.89 0.90 0.90 0.93 0.82 0.84 0.84 0.87

OCT 0.94 0.92 0.90 0.93 0.28 0.87 0.80 0.80 0.55 0.83 0.79 0.78

Table 2. Statistical measures [Coefficient of Determination (R2), Nash-Sutcliffe efficiency (E), and relative 
Index of Agreement (dr)] involved for performance evaluation of the fitted pan coefficient at different months 
and geographic regions (NWr: Northwest region, WWr: Windward region, LWr: Leeward region, Er: East 
region).
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Item Average (mm day-1) MAe (mm day-1) MAPe (%) rMsd (mm day-1) nrMsd (%)

region

NWr 2.73 0.14 5.2 0.19 6.9

WWr 2.59 0.20 7.7 0.24 9.3

LWr 2.92 0.16 5.4 0.20 6.8

Er 2.77 0.17 6.2 0.21 7.7

elevation (m)

0 - 100 3.05 0.16 5.1 0.20 6.5

100 - 500 2.90 0.18 6.4 0.23 7.9

500 - 1000 2.57 0.19 7.2 0.23 8.8

1000 - 2000 2.19 0.15 6.8 0.18 8.4

2000 - 4000 2.03 0.14 6.9 0.18 9.0

season

Spring 3.16 0.18 5.7 0.23 7.4

Summer 3.80 0.15 4.1 0.19 5.0

Autumn 2.92 0.16 5.6 0.20 6.9

Winter 1.68 0.17 10.4 0.21 12.7

Overall 2.75 0.17 6.2 0.21 7.7

Table 3. Error analysis between the reference evapotranspiration (ETo) derived from multiplying estimat-
ed pan evaporation (Epan) by pan coefficient (Kp) and those computed by FAO Penman-Monteith method 
among geographic regions (NWr: Northwest region, WWr: Windward region, LWr: Leeward region, Er: 
East region), elevations, and seasons.

Fig. 7. Temporal changes of latent heat flux (ET) measured by Eddy Covariance method, and calculate reference evapotranspiration (ETo) and 
Normalized Difference Vegetation Index (NDVI) derived from MODIS data at the four flux measurement sites. Less available data at SK site in the 
second crop season was mainly due to inappropriate wind directions.
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3.5 comments on the derived landscape coefficients 
(Kl)

Although different in vegetation type and canopy 
structure, the derived KL values (~0.6) were comparable at 
LHC and CLM sites. At CLM site, it is a subtropical mon-
tane cloud forest. Other than vegetation transpiration and 
soil evaporation, direct evaporation of fogs and rainfalls in-
tercepted by canopy also contributes to the ET measured. 
Therefore, the KL at CLM is slightly higher than that at 
LHC. However, constant KL throughout year at LHC and 
CLM sites indicated that the forests at these two sites have 
the ability to extract water from subsoil even when seasonal 
rainfall is reduced. However, the less than 1 value indicated 

that the evapotranspiration from these forests was limited 
by the boundary layer resistance and resistances due to xy-
lem flow and stomata opening.

Although soil is commonly saturated at the GDP site 
(wet land), a KL value around 0.66 indicated that the tall and 
dense vegetation of the para grass and reed also increased 
resistances of transpiration from vegetation and evaporation 
from the wet soil surface.

For paddy rice fields (SK site), a 5 - 10 cm of water 
inundation at early stage (starting from field preparation 
stage to active tillering stage) provided an open water sur-
face which yielded a KL around 1. In the middle stage (from 
maximum tillering stage to milking stage), soil water condi-
tion was controlled by the intermittent irrigation water man-
agement scheme commonly adopted in Taiwan. Therefore, 
the KL value (~0.75) was smaller than those commonly re-
ported values (~1) for actively growing crops with ample 
water supply (Allen et al. 1998). At the late stage (yellow-
ing stage to harvesting and fallowing before field prepara-
tion for the next crop season), the lower KL (~0.57) resulted 
from the limited soil water availability and increased resis-
tance due to wilting vegetation and plant residues left on 
the ground. Assuming a crop coefficient (Kc) of 1 if under 
well watered condition, the combined stress factor (Ks) for 
the middle and late growth stages were about 0.75 and 0.57, 
respectively, by definition (KL = Ks × Kc). These Ks values 
were within the range of those commonly reported (Allen 
et al. 1998).

Fig. 8. Linear regression between latent heat fluxes (ET) measured by Eddy Covariance method, and calculated reference evapotranspiration (ETo) 
at the four flux measurement sites. At SK site, three stages were divided based on observed NDVI values. No growth stages were further delineated 
at LHC, CLM, and GDP sites. Solid lines represent best-fitted relation between ET and ETo.

site Period R2 e dr

LHC Year Round 0.58 0.58 0.67

CLM Year Round 0.69 0.70 0.75

GDP Year Round 0.69 0.69 0.73

SK

Early Stage 0.37 0.37 0.56

Middle Stage 0.51 0.51 0.69

Late Stage 0.35 0.35 0.51

Table 4. Statistical measures [Coefficient of De-
termination (R2), Nash-Sutcliffe efficiency (E), 
and relative Index of Agreement (dr)] involved for 
performance evaluation of the fitted land coeffi-
cients (KL) at the four flux measurement sites.
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An objective of water resource management is to ob-
tain accurate estimates on water loss from crop evapotrans-
piration and distribute the available renewable freshwater 
resources accordingly. Since the derived KL for paddy rice 
used two years of field measurements, it may reflect the ac-
tual field conditions under the intermittent irrigation prac-
tices currently adopted by Taiwan rice farmers and are thus 
helpful for water resource management and paddy field ir-
rigation scheduling.

4. conclusIons

The above results confirmed that maps of 10-day aver-
aged ETo can be derived from meteorological satellite im-
ages. The estimated ETo was in good agreement with ETo 
derived from the FAO PM method. The proposed scheme 
simplified the algorithms for ETo derivation and removed 
the need for in situ climatic data as inputs for ETo compu-
tation. This is a particularly useful approach for locations 
where even the minimum datasets required for ETo compu-
tation by PM equations are not available.

Derivation of landscape coefficients (KL) at four dif-
ferent landscapes has been used to illustrate the potential 
usages of the ETo map generated. The proposed scheme can 
easily be applied to other locations where long term latent 
heat flux measurements data are available. More flux mea-
surements on the same landscapes but at other locations, or 
on different landscapes will provide data for validation and 
developing a more comprehensive KL database. Once the 
database has been established, more accurate estimation of 
actual ET from the region can be accomplished.
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