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ABSTRACT

A single-porosity model is developed to deal with a fracture zone slug test in a large dip angle by assuming the fracture zone 
causes a downward regional flow. For the oscillatory response, a larger dip angle causes larger amplitude while introduces little 
impact on period. The effective water length, an important parameter necessary for analyzing the oscillatory response, is proven 
to be independent of the dip angle and can be evaluated using the available horizontal formation methods. The dip angle effect is 
more pronounced for a larger storage coefficient. An empirical relationship is developed to evaluate the limiting dip angle, below 
which the dip angle effect is negligible. Field data analysis of a slug test in a 47° dip angle fracture zone indicates that neglecting 
the dip angle can result in a 27% transmissivity over estimation and a 53% storage coefficient under estimation.
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1. INTRODUTION

The slug test is a relatively simple field method for es-
timating pertinent hydrogeologic parameters. Slug testing 
has been widely used in either granular aquifers or fractured 
formations. There are many studies for the slug test under 
various hydrogeological test conditions. It is well recog-
nized (e.g., Van der Kamp 1976; Kipp 1985; Butler 1998; 
Zurbuchen et al. 2002; and so on) that the slug test response 
is oscillatory under a relatively high permeable condition 
while non-oscillatory under a relatively low permeable con-
dition. Most of the works prior to 1998 can be found in But-
ler (1998), and those after 1998 include; e.g., McElwee and 
Zenner (1998); Zlotnik and McGuire (1998); Zurbuchen 
et al. (2002); Butler et al. (2003); Butler and Zhan (2004); 
Ostendorf et al. (2005); Chen (2006); Ross and McElwee 
(2007); Alexander et al. (2011); Rozos et al. (2015); and so 
on. Cooper et al. (1967) conducted one pioneering work in 
slug testing. There are double-porosity models, specifically 
for fractured formations, that take into account the interac-
tive flow between the fracture and adjacent porous matri-
ces based on various flow mechanism assumptions (e.g., 
Barker and Black 1983; Dougherty and Babu 1984; Mateen 

and Ramey 1984; Moench 1984; Black 1985; Sageev and 
Ramey 1986; Grader and Ramey 1988; Barker et al. 2000), 
and the fractal geometry models of a fractional flow dimen-
sionality between 1 and 3 (e.g., Barker 1988; Novakowski 
and Bickerton 1997; Audouin and Bodin 2008). All of these 
models assume that the aquifer or formation being investi-
gated is horizontal with little or no dip angle effect, in which 
the flow field caused by the slug test is assumed to be radi-
ally symmetric with respect to the test well.

However, field investigations conducted in a Cenozoic 
folded sandstone formation revealed that the dip angle of 
a fracture zone is as large as 47°. For a large dip angle, a 
uniform regional flow prevails through the sloping fracture 
zone and its presence will cause the flow field due to the 
slug test to be asymmetrical with respect to the test well. 
This asymmetric flow is similar to that of a regional flow 
superimposed onto a radial flow; e.g., see McWhorter and 
Sunada (1981, Figs. 4 - 12) for the steady-state condition. 
As shown by these figures, the asymmertic flow is char-
acteristic of a “groundwater divide” that consists of all the 
points of a zero hydraulic gradient because of the balance 
of the radial flow caused by the pumping well and the uni-
form regional flow. This divide extends to infinity up gra-
dient of the pumping well while terminates at a stagnant 
point somewhere down gradient of the pumping well. All 
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the groundwater within the divide can be withdrawn by the 
pumping well. All the groundwater outside the divide; how-
ever, bypasses the pumping well. Clearly, all of the current-
ly available slug test models are not suitable for such a flow 
field, and thus how the large dip angle will influence the 
slug test response warrants study. It is important to have ap-
propriate data analysis methods for both the oscillatory and 
non-oscillatory test responses with the dip angle effect, and 
to know when the dip angle effect can be neglected (more 
specifically, the limiting dip angle smaller than which the 
dip angle effect can be neglected.) Therefore, the purpose 
of this paper is to develop a slug test model that takes into 
account the dip angle effects and investigates the dip angle 
influence on the oscillatory and non-oscillatory slug test re-
sponse. The test response solution and analysis in nearby 
observation wells will be presented elsewhere.

2. MATHEMATICAL MODEL AND SOLUTIONS
2.1 Model Development

The problem of interest is schematically illustrated in 
Fig. 1a, where a double-packer slug test is conducted in a 
sloping fracture zone with a dip angle a  and aperture bcosa ,  
b being the vertical uniform thickness of the fracture zone. 
Groundwater in the fracture zone can enter or leave the 
borehole only through the test section between the packers. 
The borehole radius is rw. The test response H(t) is measured 
using a pressure transducer submerged in the riser pipe of 
radius rc. The model is developed based on the single-poros-
ity approach, considering that a double-porosity character-
istic is usually evident only at large times where the test re-
sponse is too small to be practically useful (Butler 1998). As 
a result, the fracture zone is assumed to be a homogeneous 
and isotropic continuous porous medium under the confined 
condition, where Darcy’s law is applicable. It is understood 
that the flow in close vicinity of the test well can be larger 
than non-Darcian flow (e.g., Wu 2002). This possible con-
dition is not taken into account in the current model.

Owing to the dip angle, the elevation head Z(x, y) of the 
fracture zone varies as tanZ x2 2 a= , where cosx l a=  is 
the horizontal projection of l. Accordingly the piezometric 
head can be expressed as

( , , ) ( , , ) tanh x y t P x y t x a= +  (1)

where P(x, y, t) represents the pressure head. It is assumed 
that the dipping angle induces a downward regional flow 
of uniform hydraulic gradient tanZ x2 2 a=  in the fracture 
zone. The problem associated with an upward regional flow 
in the fracture zone will be presented elsewhere.

Note that the current model is unavailable for a ver-
tical fracture zone because 2a r=  leads to an infinity 
hydraulic gradient for the downward regional flow [i.e., 

( )tan 2 "3r ]. As shown in Fig. 1b, it is further assumed 
that the streamlines in the fracture zone are nearly parallel 
to the sloping bed (Boussinesq 1877). Applying the mass 
balance principle to the control volume gives

0cosl
q

y
q

S t
hl y

2
2

2

2

2
2a+ + =  (2)

where S is the storage coefficient of the fracture zone. The 
symbol ql [L2/T] represents the Darcy flow rate per unit frac-
ture zone width along the l-direction, as defined by
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The symbol qy[L2/T] represents the Darcy flow rate per unit 
fracture zone width along the y-direction, as defined by
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The flow equation in the fracture zone is formulated on 
the horizontal x - y plane. This is done by first introducing 

cosP l P x2 2 2 2a=  and cosx l2 2 a=  to Eq. (3). Substi-
tuting the resultant equation for ql along with Eq. (4) into 
Eq. (2) yields the desired flow equation
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which can be written as
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where v = S/T with T = Kb.
Since the regional flow in the fracture zone has a uni-

form hydraulic gradient tanZ x2 2 a= , it is known from 
Eq. (1) that the pressure head before the test does not change 
in space ( P x P y 02 2 2 2= = ); that is P(x, y, 0) = constant. 
Without loss of generality, the initial condition for Eq. (5) 
can thus be appropriately prescribed as

( , , )P x y 0 0=  (6)

The fracture zone is modeled as having an infinite ex-
tent. This assumption is invoked based on the consideration 
that the slug test is initiated by limiting the initial water level 
drop H0 less than 0.5 m in order to secure a hydrostatic wa-
ter pressure response of H(t); e.g., see Butler et al. (2003), 
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Chen et al. (2012). For H0 < 0.5 m, the radius of influence 
of the slug testing flow may not reach any of the hydro-
geological boundaries of the finite fracture zone, and thus 
the fracture zone can be assumed to have an infinite extent. 
However, if H(t) measured exhibits the interference from 
a hydrogeological boundary, the well-known image well 
method can be applied to deal with the boundary effect. The 
outer boundary conditions for Eq. (5) are set forth as

( , ),P x ty 0"" 33 =  (7)

Due to the dipping angle, both h(x, y, t) and its hydraulic 
gradient are asymmetric with respect to the test well during 
the slug test. Note that Eq. (5) is mathematically equivalent 
to the governing equation of groundwater flow in a homo-
geneous anisotropic aquifer under the confined condition 
when Tcos2a  is visualized as Tx and T as Ty. Hantush (1966) 
investigated the constant-rate pumping problem in a homo-
geneous and anisotropic leaky aquifer where the pumping 
well is assumed to be a line sink (i.e., r 0w " ), and indicated 
that the flux around the well varies with the flow directions 
because of aquifer anisotropy [e.g., see his Eq. (11)]. Simi-
larly, the flux around the well varies with the flow directions 
in the current problem and the mass flow rate continuity 
across the test well test section can be formulated as

r T r
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where r x y2 2 2= +  with cosx r i= , sinry i= , and 

( )tan y x1i = - . Writing Eq. (1) in terms of r and θ renders 
cos tanh r P r2 2 2 2 i a= + . Substituting this result into 

Eq. (8) yields
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where tan cosTr d 0w 0

2
a i i =r# , indicating that the net flow 

rate of the regional flow entering and leaving the test section 
is zero. As a result, the boundary condition of the testing 
well is

Tr r
P d r dt

dH
w
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Equations (5) - (7) and (9b) form the pressure head 
variation model in the fracture zone due to the slug test on 
the horizontal x - y plane. The model solution determination 
is made easier using an appropriate polar coordinate system, 
which is established through the following two steps. First, 
letting cosx x a=l  enables us to express Eq. (5) in its stan-
dard Laplacian form P x P y v P t2 2 2 22 2 2 2 2 2+ =l . Sec-
ond, this Lapacian equation for ( , , )P x y tl  is transformed to 
the typical radial flow equation as

r
P
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2

2

2
2

2
2

2
2+ =

l l l
 (10)

where r x y2 2 2= +l l , cosx r i=l l l, siny r i= l l, and 

(a)

(b)

Fig. 1. (a) Schematics of a double-packer slug test in a dip angle a  fracture zone, which induces a uniform regional flow in a 
constant hydraulic gradient of tana . (b) The control volume diagram for deriving the flow equation.
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( )tan y x1i = -l l . On the r i-l l plane, Eqs. (6) and (7) are

( , )P r 0 0=l  (11)

( , )P r t 0"3 =l  (12)

While the well geometry on the x - y plane is 
a circle ( x y rw

2 2 2+ = ), it is elongated into an el-
lipse ( cosx y rw

2 2 2 2a + =l ) on the x y-l  plane. As de-
rived in the Appendix, this ellipse on the r i-l l plane 
is described using the equation of ( )r rw m i=l l  with 

( ) cos cos sin2 2 2m i i a i= +l l l . Correspondingly the 
boundary condition of Eq. (9b) is modified to (see the ap-
pendix for a more detailed derivation)

( )
cosTr r

P d r dt
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r r
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m i=l l
l

l l
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As stated earlier, the dipping angle cannot be 
2r , so ( )m il  is finite for 0 2<# a r  and lies in 

0 ( ) 1cos< # #a m il . As a result, the integration for Eq. (13)  
exists for 0 2<# a r . For a horizontal fracture ( 0a = ), 

( ) 1m i =l  and the test well recovers its circular geometry. 
Eqs. (10) - (13) are used to determine the solution for the 
pressure head distribution.

Now we proceed to deal with the slug test model for 
H(t). It is recognized that for a relatively low-K condition, 
the water level in the riser pipe recovers slowly and H(t) is 
considered to be instantaneously equilibrated to hw(t), the 
averaged value of the pressure head in the aquifer around 
the wellbore of the test section. The solution obtained for 
hw(t) is therefore set equal to H(t). For a relatively high-K 
condition, however, the water level in the riser pipe recovers 
relatively fast and H(t) is oscillatory due to the significant 
inertial force. In this event, H(t) is not the same as hw(t), 
and they can be related to each other through the following 
linearized momentum equation (e.g., Van der Kamp 1976; 
Kipp 1985; Butler 1998)
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in which the averaged elevation head around the test section 
wellbore vanishes because of 0tan cosr d2

w 0
a i i =r# . The 

initial conditions for Eq. (14) are prescribed as

( )H t H0 0= =  (16)

dt
dH 0

t 0
=

=
 (17)

where H0 is the slug test initial head drop. The mathematical 
model of interest consists of Eqs. (10) - (17). As Eq. (14) 
is typical of free oscillation, it is valid for either the under-
damped condition where the solution is oscillatory or the 
over damped condition where the solution is non-oscillatory 
(e.g., see Wylie and Barrett 1982). That is, we use the above 
model for both the relatively high- and low-K conditions.

2.2 Model Solution

The model solution will be determined using appro-
priate dimensionless parameters. The dimensionless math-
ematical model is
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where ( )wh x  represents the dimensionless hw(t) defined as

( ) 2 ( )
[ ( ), ]cos d2

w
P

2

1

0
h x

r
a

m i

h m i x
i= r

-

l

l
l#  (25)

And Tt r2 c
2x =  is the dimensionless time, r rwt =l l  is 

the dimensionless rl , ( , ) ( , )P r t HP 0h t x =l l  is the dimen-
sionless pressure head in the fracture zone, 2r S r2

w c
2v =  

is the dimensionless storage coefficient, ( ) ( )w H t H0x =  
is the dimensionless test response, 2T L g re c

2z =  is the 
dimensionless transmissivity, and Le is the effective water 
column length in the test well.

Applying the Laplace transform with respect to x  to 
Eqs. (18) - (21) yields
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( , )s 0P 3h =  (27)
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where s is the Laplace transform variable and ( , )sPh tl  rep-
resents the dimensionless pressure head ( , )Ph t xl  after the 
Laplace transform is defined as ( , ) ( , )s e dP

s
P

0

h t h t x x=
3

x-l l#  
(e.g., see Kreyszig 1998). The solution to Eqs. (26) - (28) is
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and K0(x), K1(x) are the modified Bessel functions of the 
second order zero kind and one, respectively. Note that 

( ) ( )K s1
3v m i m il l6 @  remains finite for 0 2# #i rl , and 

the evaluation of f1(s) can be numerically carried out with-
out difficulty.

( )w x  is determined using Eqs. (22) - (24). The ( )wh x  
Laplace transform in Eq. (25) is obtained by substituting  
Eq. (29) into Eq. (25). In a straightforward manner the 
Laplace-domain solution for ( )w x  is then
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As ( )s 0!v m il , ( ) ( )K s1
2v m i m il l6 @  remain finite 

for 0 2# #i rl , and the f2(s) evaluation can be numeri-
cally carried out without difficulty. When 0a = , Eq. (31) 
becomes identical to its counterpart in a horizontal fracture 
zone [e.g., see Eq. (16) from Kipp (1985) while setting both 
the skin effect and water surface initial velocity to zero]. 
The Laplace inverse of Eq. (31) gives the solution for ( )w x . 
The Laplace inverse is numerically calculated using the De 
Hoog et al. (1982) method.

3. THEORETICAL ANALYSIS

The theoretical analysis focuses on how the dip angle 
a  influences the test response ( )w x  under various v  and 
z . Figure 2 pertains to the relatively low-K non-oscillatory 
response conditions and Fig. 3 to the relatively high-K oscil-
latory response conditions. For the set v  and z , the symbol 
*a  denotes the upper limit below which the dip angle effect 

can be neglected. For the same set v  and z , the test response 
recovers faster when the dip angle becomes larger, as shown 
in Fig. 2a. This is observed in the solid curves group associ-
ated with v  = 0.01 and z  = 0.05, where ( )w x  of a  = 85° 
recovers faster than does that of a  = 70° and ( )w x  of a  = 70° 
recovers faster than does that of a  = 34°. This faster recovery 
is attributed to the fact that the wellbore flow rate ( )q* x  asso-
ciated with the slug test increases as a  increases, as shown in 
Fig. 2b. The determination of ( )q dw d* x x=  is made by nu-
merically inverting its Laplace-domain counterpart, Eq. (28). 
When z  remains unchanged, *a  increases as v  decreases, as 
indicated by the group of dashed curves of z  = 0.05, which 
show *a  increases from 34 - 45° as v  = 0.01 decreases to 
10-4. When v  remains constant, *a  is not significantly influ-
enced by the variation of z . This is observed by noting *a  
remains as 45° for both the dashed curve (z  = 0.05) and the 
broken curve (z  = 0.5), when v  is kept to be 10-4.

For the relatively high-K conditions, the oscillation am-
plitude increases as a  increases while the period shows little 
change, as shown in Fig. 3, where the solid curve amplitude 
of a  = 85° is greater than that of a  = 70° and the solid curve 
amplitude of a  = 70° is greater than that of a  = 34°. This 
is because a larger dip angle causes smaller ( )wh x . Using an 
electric analog model, Bredehoeft et al. (1966) demonstrated 
that hw(t) functions as a frictional force to the oscillatory 
H(t). Below it further proves that hw(t) indeed introduces a 
damping force to H(t). As far as *a  is concerned, it decreases 
as v  increases and has little influence from the variation of 
z; the same as for the relatively low-K conditions.

We determine *a  for various values of v , and the 
results are plotted in Fig. 4. Using regression analysis an 
empirical relation for *a  (in radian) as a function of v  is 
determined as

1.95 2.36* .0 023a v= - +  (34)

As S is unknown a priori while a  is usually measured before 
the test, Eq. (34) is more useful to “predict” whether or not 
the test response would be influenced by the dip angle. Take 
the well field site in the Cenozoic folded sandstone formation 
for example. It is known that S of sandstone rock is approxi-
mately 10-4 - 10-2 (Singhal and Gupta 2010). As rw = 0.0508 m 
and rc = 0.0135 m, the values of ( )r S r2 w c

2 2v =  range from 
2.83 × 10-3 to 0.283. Equation (34) then gives 26° ≤ *a  ≤ 37°. 
That is, the dip angle effect can be quite safely neglected in 
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(a)

(b)

Fig. 2. Influence of a  on the test response for relatively low-K conditions: (a) the head recovers faster for a larger a ; (b) the wellbore flow rate 
increases with increasing a . The limiting angle *a  increases as v  decreases, while it remains relatively insensitive to z  for the same v .

Fig. 3. Influence of a  on the test response for a relatively high-K condition: oscillation amplitude increases with increasing a . The limiting angle 
*a  increases as v  decreases, while it remains relatively insensitive to z  for the same v .

Fig. 4. The empirical relationship for *a  as a function of v .
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the data analysis if a  measures less than 26°, and should be 
included if a  measures greater than 37°. When a  is mea-
sured between 37° and 26°, the dip angle effect may or may 
not be negligible. For practical purposes the dip angle effect 
should be considered in the data analysis when a  > 26°.

The above theoretical analysis focuses primarily on the 
test response in the test well. For a cross-borehole slug test, 
the test response can be transmitted from the test well to the 
nearby observation wells. The test response analysis in an 
observation well requires the response solution in an obser-
vation well and the momentum balance in the observation 
well (e.g., see Zhan and Butler 2003; Audouin and Bodin 
2008). The flow field complexity is primarily due to the fact 
that the test response in the fracture zone changes with dis-
tance as well as direction. Observation well response mod-
eling and data analysis will be presented elsewhere.

4. DATA ANALYSIS

In data analysis, the effective water length Le is recom-
mended to be treated as a fitting parameter (e.g., Kabala et 
al. 1985; Butler et al. 2003; Chen 2006). For a horizontal 
formation Le is defined using the following equation

0.25
L g

e 2 2~ b
=

+
 (35)

where T 1~ -6 @ and T 1b -6 @ are the frequency and the damp-
ing coefficient of oscillation, respectively (Van der Kamp 
1976). Both ~  and b  can be estimated from the measured 
test response (Chen 2006; Chen and Wu 2006), and thus Le 
can be uniquely evaluated using the field data. Whether or 
not Le is so determined can be used for a sloping fracture 
zone depending on whether Eq. (35) is valid for a sloping 
formation. To this end, we start with the oscillatory response 
solution in a horizontal formation (e.g., Wylie and Barrett 
1982; Springer and Gelhar 1991)

( ) ( ) 2 ( )cos sinw
w t e t tt

0

2 ~
~
b

~= +b- ; E (36)

In terms of the dimensionless parameters used in this 
paper, the Laplace transform of Eq. (36) is

( )
(0.25 )

w s
s s

s
* * *

*

2 2 2b b ~

b=
+ + +

+  (37)

where r T2*
c
2b b=  as the dimensionless damping coef-

ficient, and r T2*
c
2~ ~=  as the dimensionless frequency. 

Comparing Eqs. (31) to (37) discloses the following two 
facts. First, the ( )g s 2z  term in Eq. (31) is equivalent to the 
damping coefficient *b  in Eq. (37). Given that ( )g s 2z  is 

from the Laplace transform of hw(t), the electric analog ob-
servation by Bredehoeft et al. (1966), as discussed above, is 
confirmed. Second, the constant term of 1 2z  in Eq. (31) is 
equal to the constant term of 0.25 * *2 2b ~+  in Eq. (37). The 
dimensional analysis of this equality proves Eq. (35) is also 
valid for a non-zero dip angle. Therefore, Le is evaluated us-
ing Eq. (35) with ~  and b  determined using the field data 
is applicable to the sloping fracture zone case. After Le is 
known the two parameters T and S can be determined using 
the least root mean square error fitting method.

There is a well field (Fig. 5) in a Cenozoic folded sand-
stone formation overlain by a weathered zone about 20 m 
in thickness in northern Taiwan. This site was about 15 m 
above a nearby stream and had seven wells (C, N, E, S, W, 
W1, and W2). The layout of the wells is shown in Fig. 5. 
All of the wells were 4-inch in diameter (rw = 0.0508 m) and 
cased in the weathered zone and uncased as an open bore-
hole from 20 - 50 m in sandstone. Wells W1 and W2 had not 
been in use due to certain construction problems. The im-
age taken by a borehole optical televiewer in a well reveals 
that at 31 m depth a fracture zone exists consisting of a set 
of fractures distributed over the 0.1 m packed interval and 
dipping to the northwest (344°) with a dip angle of 47°. The 
actual extent of this fracture zone is unknown. A double-
packer slug test was conducted at well C in the a  = 47° dip 
angle fracture zone. No response was observed in the four 
surrounding wells during the test. Therefore, it is appropri-
ate to assume the sloping fracture zone to be infinite in ex-
tent for the test. In general, the current model assumptions 
adequately satisfy the field conditions.

The slug test was initiated pneumatically with an initial 
head drop of H0 = 0.48 m. The pressure transducer for H(t) 
measurement is placed 0.5 m below the initial water level. 
The measured H(t) is nearly associated with hydrostatic wa-
ter pressure and the linear model of Eq. (14) is adequate 
(e.g., Butler et al. 2003; Chen et al. 2012). Since the dip 
angle is greater than the upper limit of *a  = 37°, as deter-
mined earlier, the data analysis needs to take into account 
the dip angle effect. The fracture zone thickness is b = 0.1 
m. The effective water column length Le is determined using 
the method given by (Chen 2006), as shown in Fig. 6. The 
frequency is determined as 2 ( )t tk k2~ r= -+ , where tk is 
the time corresponding to the occurrence of the kth extrem-
ity (peak or valley of the oscillation), where the subscript  
k =1, 2, …. As indicated in Fig. 6, tk + 2 - tk = 8.74 sec gives 
~  = 0.72 sec-1. The damping coefficient is calculated by 

4 ( ) ( )ln H H t t1k k k k2b = -+ + , where Hk denotes the kth ex-
tremity displacement. As Hk/Hk + 1 = 1.97, b  is 0.31 sec-1. As 
a result, Le = 18.2 m, as determined using Eq. (35). Using 
Eq. (32) and Le = 18.2 m, the best oscillatory test response 
fit, as shown by the solid curve, gives T = 4.12 × 10-4 m2 s-1 
and S = 5.34 × 10-4.

Now we proceed to investigate the effect of neglecting 
the dip angle in data analysis. This is done by setting a  = 0° 
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in Eq. (31) when analyzing the field data. As a result, the best 
fit represented by the dashed curve in Fig. 6 is associated 
with T = 5.24 × 10-4 m2 s-1 and S = 2.53 × 10-4. Although the 
solid and dashed curves are nearly coincident, the T and S 
estimates are quite different. The calculated dip angle negli-
gence causes a 27% transmissivity over estimation and a 53% 
storage coefficient under estimation. Furthermore, we used  
S = 5.34 × 10-4 and Eq. (34) to obtain *a  = 34°, which is 
indeed less than 47°, supporting using the current model to 
analyze the field data.

The sensitivity of the current model to T (for a given 
a  and a given S) is demonstrated in Fig. 7a, where three 
T values, 5.24 × 10-4 m2 s-1, 4.1 × 10-4 and 3.0 × 10-4 m2 s-1 
are used to represent a ±27% change in transmissivity from 
4.1 × 10-4 m2 s-1. A ±27% change in T causes a significant 
variation in the calculated test response. Figure 7b shows 
the model solution sensitivity to S, where three values for  
S = 8.15 × 10-4, 5.3 × 10-4, and 2.53 × 10-4 are used to rep-
resent a ±53% variation in the storage coefficient from the 
one of 5.3 × 10-4. In comparison to Fig. 7a it is clear that the 
current model is less sensitive to S.

5. CONCLUSIONS

Slug test models in the literature assume a horizontal 
formation. This research developed a new slug test model 
that takes the dip angle effects into account. The dip angle 

is assumed to cause a downward regional flow in the frac-
ture zone. The problems associated with an upward regional 
flow will be presented elsewhere. The Laplace-domain so-
lution was determined for both the oscillatory and non-os-
cillatory test response. When the fracture zone transmissiv-
ity is relatively low (i.e., T < 1.0 × 10-4 m2 s-1), a larger dip 
angle causes a faster non-oscillatory test response recovery. 
When the fracture zone transmissivity is relatively high (i.e.,  
T > 1.0 × 10-4 m2 s-1), a larger dip angle causes an increase 
in oscillatory test response amplitude. It is proven that the 
effective water length, an important parameter necessary 
for oscillatory test response analysis, is independent of the 
dip angle and can be evaluated using the methods currently 
available for horizontal formations.

In general, neglecting the dip angle may lead to hy-
draulic conductivity over estimation and storage coefficient 
under estimation. The dip angle effect is more pronounced 
for a larger storage coefficient, being less sensitive to the 
change in transmissivity. An empirical relationship as a 
function of the dimensionless storage coefficient is devel-
oped for the limiting dip angle, below which the dip angle 
effect is negligible. A number of cross-borehole slug tests 
were conducted in a Cenozoic folded sandstone formation, 
where a dip angle fracture zone as large as 47° was mea-
sured. The slug test data in the 47° dip angle fracture zone 
was analyzed using the current model. Neglecting the dip 
angle can result in a 27% transmissivity over estimation and 

Fig. 5. Schematics of the well field in northern Taiwan, which 
has seven wells (C, N, E, S, W, W1, and W2).

Fig. 6. Analysis of the slug test data in a dip angle equal to 47° with a 
fracture zone, where tk and Hk are used for the effective water length 
determination Le. The solid (a  = 47°) and dashed curves (a  = 0°) are 
nearly coincident while the T and S estimates are different.
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a 53% storage coefficient under estimation.
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APPENDIX A

Derivation of Eq. (13) from Eq. (9b). The well circular 
geometry on the x - y plane needs to be expressed on the 
r i-l l plane. By substituting cosx r i=  and sinry i=  into 

cosr x y x y2 2 2 2 2 2a= + = +l l  gives

( )cos cos sinr r2 2 2 2 2i a i= +l  (A1)

which after rearranging terms can be expressed as

1 tan
cos tan

r r
12 2

2

2 2

i

a i
=

+
+

l  (A2)

Using the definitions of i  and il, it is known that 
tan tan cosi i a= l . Substituting this relationship into  
Eq. (A2) yields

1
cos tan

tanr r2 2
2 2

2

a i
i=

+
+l

l
l  (A3)
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Multiplying cos2il to both sides of Eq. (A3) and rearrang-
ing terms results in the desired relationship

( )
r r2

2

2

m i
=l

l
 (A4)

Where ( ) cos cos sin2 2 2m i i a i= +l l l  is as shown earlier 
in the text.

Now the relationship for d di il is derived by taking the 
first derivative with respect to i  (or il for the same result) of 
both sides of tan tan cosi i a= l . This calculation yields

(1 )
1

cos tan
tan

d
d

2

2

i
i

a i
i=

+
+

l
l  (A5)

Substituting tan tan cosi i a= l  in Eq. (A5) and rearrang-

ing terms results in

( )cos tan cos
tan cos

d
d 1

2

2

2i
i

a i a
i

m i
a= + =

+l l
l

l
 (A6)

With Eqs. (A4) and (A6) the integral of Eq. (9b) in terms of 
il is changed to
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 (A7)

which is the integral appeared in Eq. (13).

b thickness of fracture zone [L]

g gravitational constant [L/T2]

H(t) test response [L]

H0 initial head of the slug test [L]

h(x, y, t) = P(x, y, t) + xtana , piezometric head response in the fracture [L]

hw(t) the averaged head around the wellbore [L]

K hydraulic conductivity [L/T]

K0(x) modified Bessel function of the second kind of order 0

K1(x) modified Bessel function of the second kind of order 1

l distance along the direction paralleling to the sloping bed [L]

Le effective water length of the slug test [L]

P(x, y, t) pressure head response in the fracture [L]

ql(t) Darcy flow rate per unit fracture zone width along the l-direction [L2/T]

qy(t) the Darcy flow rate per unit fracture zone width along the y-direction [L2/T]

( )q* x dimensionless wellbore flow rate [-]

r distance from the test well [L]

rc radius of the riser pipe [L]

rw radius of the borehole [L]

( )r il l ( )r r m i=l l [L]

S storage coefficient [-]

s Laplace transform parameter of x [-]

T transmissivity [L2/T]

t test time [T]

( )w x ( )H t H0= , dimensionless test response [-]

x cosl a= , the horizontal projection of l [L]

xl cosx a= [L]

Z(x, y) elevation head in the fracture zone [L]

a dipping angle [-]
*a the upper limit below which the dipping angle effect can be neglected [-]

Appendix B.
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b damping coefficient of oscillation [T-1]
*b r T2c

2b= , dimensionless b [-]

( , )Ph t xl ( , )P r t H0= l , dimensionless pressure head within aquifer [-]

( )wh x = hw(t) /H0, dimensionless hw(t) [-]

i ( )tan y x1= - [-]

il ( )tan y x1= - l [-]

( )m il cos cos sin2 2 2i a i= +l l [-]

v = S/T [T/L2]

tl r rw= l , dimensionless rl [-]

v r S r2 w c
2 2= , dimensionless storage coefficient [-]

x Tt r2 c
2= , dimensionless time [-]

{ 2T L g re c
2= , dimensionless transmissivity [-]

~ frequency of oscillation [T-1]
*~ r T2c

2~= , dimensionless ~ [-]

Appendix B. (Continued)


