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ABSTRACT

The reliable estimation of lag time and its association with meteorological 
drought is very important for early mitigation of hydrological drought. The rela-
tionship between meteorological and hydrological droughts is very complex because 
it depends on watershed characteristics as well as climatic factors. The objective 
of this study is to figure out probabilistic relationships of weekly lag time between 
the hydrological drought defined by Standardized Runoff Index (SRI) and the me-
teorological drought defined by Standardized Precipitation Index (SPI) and Stan-
dardized Evapotranspiration Index (SPEI) using a Bayesian network model. The re-
sults showed that the lag time varied spatially with the intensity of meteorological 
droughts. The results also revealed the probabilistic relationships that meteorological 
droughts with moderate intensity resulted in a higher probability of longer lag time, 
whereas meteorological droughts with severe intensity led to a lower probability of 
longer lag time. The probability of lag time also varied with meteorological drought 
indices; at the same intensity, the probability of lag time occurring is higher in the 
case of SPI and lower in the case of SPEI. These results will be very helpful for early 
mitigating hydrological drought hazard and making strategies to cope with losses 
from hydrological droughts.
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1. INTRODUCTION

Incredible variations have been perceived in the world 
climate and environment such as global warming, which 
has resulted in the occurrence of numerous drought events 
(Kunkel 2003; Beniston and Stephenson 2004; Christensen 
and Christensen 2004; Sen Roy and Balling 2004; Leng 
et al. 2015). A drought event is defined as a succession of 
consecutive periods in which the availability of water re-
mains below the threshold level defined by a drought in-
dex. According to different states of the hydrological cycle 
progression, a drought is further categorized into different 
types such as meteorological, hydrological and agricultural 
drought (Tallaksen and Van Lanen 2004). Manifestation of 
meteorological drought starts very quickly, as it only de-
pends on the deficiency of precipitation. Due to the onset 
condition of the hydrological cycle, however, hydrological 
drought lags behind meteorological drought. This property 
of lagging revealed that there is strong linkage between hy-

drological and meteorological droughts (Dracup et al. 1980; 
Wilhite 2000). Even though the lagging property can be il-
lustrated in the conceptual diagram using lag time, which 
is defined as the time required by meteorological drought 
to propagate hydrological drought within the process of the 
hydrological cycle, presently, there are very limited stud-
ies on drought propagation (Vicente-Serrano and López-
Moreno 2005; Van Loon and Laaha 2015; Barker et al. 
2016; Shin et al. 2018) and the estimation of lag time due 
to the complex mechanism of the underlying conditions and 
climatic variables (Mo 2008; Mishra and Cherkauer 2010; 
Mishra et al. 2010).

Some researchers investigated the impact of meteoro-
logical drought in terms of the time scale to respond to hy-
drological drought and propagation to hydrological drought. 
Vicente-Serrano and López-Moreno (2005) and Zhao et al. 
(2014) have found that the Standardized Runoff Index (SRI) 
responded well to the four-month time scale of the Stan-
dardized Precipitation Index (SPI) and the two-month time 
scale of the Standardized Evapotranspiration Index (SPEI). 
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Similarly, Shin et al. (2018) found the Palmer Hydrologi-
cal Drought Index (PHDI) responded better to the 3- and 
6-month time scale of SPI. In terms of the propagation of 
drought events, Zhao et al. (2014) found nine out of 11 me-
teorological drought events were propagated to streamflow 
droughts. Zhao et al. (2016) estimated that an average of 
75.4% of drought events were propagated to streamflow 
droughts. There were 33 and 48% of meteorological drought 
events that propagated to hydrological drought under the 
3- and 6-month time scale of SPI, respectively (Shin et al. 
2018).

A few studies focused on the estimation of lag time. Wu 
et al. (2016) and Huang et al. (2017) found seasonal varia-
tion in lag time from SPI to the Standardized Streamflow 
Index (SSI). Specifically, a lag time of 127 days was found 
in comparison between SPI and SRI in the Jinghe River ba-
sin of China (Zhao et al. 2014). A seven-month lag time was 
also found in the Awash River basin of Ethiopia between 
SPI and SRI (Edossa et al. 2010). At a small drought-prone 
basin in Oklahoma of the USA, two-month lag time was 
found between SPI and SRI (Liu et al. 2012).

The majority of these works have focused on the esti-
mation of suitable time scales of meteorological drought to 
respond to hydrological drought, and few have focused on 
the estimation of lag time. However, no study has been con-
ducted that explains the relationship of hydrological drought 
lag time with the characteristics of meteorological drought. 
This research is novel in the sense that it finds the relation-
ship of lag time on a weekly time scale with the intensity 
of meteorological drought using probabilistic approaches. 
The relationship of lag time and meteorological drought in-
tensity is not linear, so it can be explained better by some 
probabilistic approaches as meteorological drought con-
tains probability information of the successive hydrological 

drought events (Wong et al. 2013). The main objectives of 
this study are to identify the best weekly time scale of SPI 
and SPEI which has a significant relation with SRI, and to 
figure out the probabilistic relationships of weekly lag time 
between hydrological drought (SRI) and the meteorological 
droughts (SPI and SPEI) using a Bayesian network model as 
well as the spatial distribution of the weekly lag time.

2. METHODOLOGY
2.1 Study Area and Data

The Han River provides main sources of water for 
drinking, industry, irrigation, and hydropower generation. 
The mean annual precipitation in this basin is approximately 
1300 mm with seasonal variations (Chang and Kwon 2007). 
It has 24 subbasins and here we selected four subbasins for 
our study as shown in Fig. 1.

The daily precipitation data were obtained from the 
Korea Meteorological Administration. The daily runoff and 
evapotranspiration for each subbasin were calculated using 
the widely adopted TANK model. The daily data were ag-
gregated into the weekly data and then used to estimate the 
hydrological and meteorological drought in this study.

2.2 Standardized Precipitation Index (SPI)

According to the World Meteorological Organization, 
the SPI is a universal reference drought index to indicate the 
precipitation conditions in a specific period within a long 
time series (Hayes et al. 2011). The core advantage of the 
SPI is the simplicity to calculate drought severity at multiple 
time scales with only precipitation data. It can be used to 
monitor short- and long-term water supplies, which can be 
used for monitoring agricultural and hydrological drought. 

(a) (b)

Fig. 1. Location of the Han River basin with subbasins and weather stations.
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To calculate the SPI, first, the precipitation data are fitted to 
a suitable probability distribution, and then transformed into 
standard normal distribution having mean zero and standard 
deviation one. In our study, we considered six available dis-
tributions such as gamma, generalized extreme value (GEV), 
exponential, lognormal, and weibull distribution, employed 
the Akaike information criterion (AIC) to find the best fitted 
distribution. After estimating distribution parameters using 
maximum likelihood method (MLE), according to AIC test 
as shown in Table 1, two parameters gamma distribution 
provided the lowest AIC value for the SPI.

2.3 Standardized Precipitation Evapotranspiration 
Index (SPEI)

The SPEI is also used for estimating the meteorologi-
cal drought. The difference between SPEI and SPI is that the 
SPEI captures the impact of temperature on water demand 
through combining temperature into the model to estimate 
the potential evapotranspiration (PET) (Vicente-Serrano et 
al. 2010; Kim et al. 2014). A simple water balance equa-
tion is used to assess the difference (D) between precipita-
tion (P) and PET, i.e., D = P – PET, for a given time scale. 
The calculation procedure of the SPEI is quite similar to the 
SPI. After estimating distribution parameters using MLE, 
according to AIC test as shown in Table 1, GEV distribution 

provided the lowest AIC value for the SPEI.

2.4 Standardized Runoff Index (SRI)

The SRI was used to characterize the hydrological 
drought in this study. The perception used to calculate the 
SPI was also employed to calculate the SRI in order to pres-
ent drought severity at various time scales. Similar to the 
SPI and SPEI, after estimating distribution parameters using 
MLE, according to AIC test as shown in Table 1, lognormal 
distribution provided the lowest AIC value for the SRI.

Table 2 provides four major classifications of drought 
based on the SPI, SPEI, and SRI.

2.5 Response Rate

The response rate was employed in this study to un-
derstand the connection between meteorological and hy-
drological droughts. The response rate was defined as the 
percentage of meteorological droughts that propagated to 
hydrological drought through hydrological cycle. If the 
percentage of propagation is high, this means that hydro-
logical drought is more sensitive to meteorological drought, 
whereas a lower percentage indicates that the relationship 
is weak. The mathematical expression of the response rate 
is given as:

Distribution AIC Value
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Exponential ( ) expf x xm m= -^ h 20780 34590 28100

Table 1. AIC values for available distributions for drought indices.

SPI/SPEI/SRI Classification

Greater than 0 No drought

-1 to 0 Mild drought

-1.5 to -1 Moderate drought

-2 to -1.5 Severe drought

Less than -2 Extreme drought

Table 2. Classification of drought severity according to standardized 
indices.
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(%)R m
n 100r #=  (1)

where Rr is the response rate in percentage, m is the number 
of meteorological droughts during 1967 - 2013, while n is 
the number hydrological droughts responded to meteoro-
logical droughts.

2.6 Bayesian Network Model

A Bayesian network (BN) is among a family of proba-
bilistic graphical models, incorporating the concept of condi-
tional dependencies on random variables to estimate the re-
lationship between them. It has two parts as shown in Fig. 2:  
(1) the qualitative part, also called the network structure 
represented by an arc, and (2) the quantitative part, which 
incorporates the probability concept associated with each 
random variable represented by a circle. Based on Bayes’ 
theorem, the relationship among a set of random variables is 
defined by conditional probabilities, which depend on prior 
knowledge of random variables. In our study, we have two 
random variables: a weekly lag time and an intensity of me-
teorological drought, as shown in Fig. 2. The weekly lag 
time (‘LT’ in Fig. 2) is a dependent variable, whereas the 
intensity of drought (‘I’ in Fig. 2) is an independent vari-
able. Thus, the weekly lag time depends on the intensity of 
drought. The probability of weekly lag time conditioned on 
the intensity of meteorological drought is given as:

, ,
LT I I

I LT
I

I LT
P P

P
P

C
= =^ ^
^

^
^h h

h
h
h  (2)

where P(I) and P(LT) is the probabilities of the intensity of 
drought and the weekly lag time, respectively. P(I, LT) is 
the joint probability between the weekly lag time and the 

intensity of drought, which can be estimated using a copula 
function as C(I, LT).

3. RESULTS AND DISCUSSION
3.1 Identification of Meteorological and Hydrological 

Droughts

Meteorological droughts were evaluated on the ba-
sis of SPI and SPEI at different weekly time scales in four 
subbasins of the Han River basin. Most previous studies 
evaluated the drought events on monthly scales; however, 
we calculated the SPI and SPEI on 1-, 4-, 8-, 12-, 16-, and 
24-week time scale in this study. Being similar to the SPI 
and SPEI, the SRI was here calculated at 4-week time scale 
to indicate hydrological drought events in the study area. 
It is necessary to select a relevant time scale of meteoro-
logical drought in order to explain the relationship between 
meteorological and hydrological droughts. The surface flow 
(runoff) responded to a short time scale of meteorological 
drought, while streamflow responded to a long time scale 
(Zhao et al. 2014). Therefore, Pearson correlation analysis 
was performed between the different time scales of meteo-
rological drought identified by the SPI and SPEI (1, 4, 8, 
12, 16, and 24 weeks) with the hydrological drought identi-
fied by the 4-week SRI. As shown in Fig. 3, the correlation 
coefficient increased significantly from the 1-week to the 
8-week time scale, and with higher time scales more than 

Fig. 2. Schematic representation of a Bayesian Network model.

Fig. 3 Correlation coefficients between meteorological and hydrological droughts at different time scales.
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the 8-week, the correlation coefficient decreased gradually. 
Consequently, in this study, the 8-week time scale of me-
teorological drought was selected as appropriate to define 
hydrological drought.

The basic characteristics of meteorological droughts 
calculated on the 8-week time scale for all subbasins are 
shown in Table 3. There are many minor droughts identified 
in both SPI and SPEI time series, so we applied a smooth-
ing approach to pool out these minor droughts (Zhao et al. 
2014). The number of drought events identified by the SPEI 
was higher than those by the SPI, however, the average du-
ration and intensity of the SPEI were less than those of the 
SPI, except in subbasin #1003, where the average intensity 
was more in the case of the SPEI. The reason that a higher 
number of droughts appeared in the case of SPEI is the in-
volvement of the temperature factor affecting on the change 
of hydrological balance through evapotranspiration. The 
distributions of the average intensity in all subbasins esti-
mated by the SPI and SPEI are shown in Fig. 4. Similarly, 
the characteristics of hydrological drought on the basis of 
the 4-week SRI are given in Table 3.

3.2 Relationship Between Meteorological and  
Hydrological Drought

The response of hydrological drought to meteorologi-
cal drought can be explained by the propagation of drought. 
We used the response rate to describe the percentage of me-
teorological drought propagated to hydrological drought. 
Figure 5 shows response rates in percentage for both SPI 
and SPEI. For SPI, in subbasin #1003, 86.53% of meteo-
rological drought events were propagated to hydrologi-
cal drought, which is very a significant value. In the case 
of subabsins #1012, #1018, and #1022, the probability of 

propagation was also very high, and response rates were 
82.14, 86.79, and 92.15%, respectively. In the case of SPEI, 
the probability of meteorological drought propagation was 
also very high. The estimated maximum response rate was 
82.45% in subbasin #1022, and in subbasins #1003, #1012, 
and #1018, the response rates were 67.16, 73.01, and 75.40, 
respectively.

The propagation of meteorological drought to hydro-
logical drought represented by both SPI and SPEI during 
1981 - 1983 and 1988 - 1989 are illustrated in Fig. 6. We 
can see that the hydrological drought responded well to prec-
edent meteorological drought in both cases. In case of SPI, 
two meteorological droughts pooled to one hydrological 
drought, while in case of SPEI three drought events pooled 
to one hydrological drought during 1981 - 1983. Similarly, 
it can be found that hydrological drought during 1988 - 
1989 has also coupled quite well, pooling of meteorological 
drought was also observed in this case. These results clari-
fied that the hydrological drought is highly dependent on the 
meteorological conditions of the basin, and drought events 
became fewer when propagated from 8-week SPI and SPEI 
to SRI. These drought properties have been also shown in 
various studies (Van Loon and Van Lanen 2012; Wong et 
al. 2013; Barker et al. 2016).

3.3 Weekly Lag Time and Its Spatial Distribution

As an indicator of drought propagation, in this study, 
the lag time was defined as the time taken by meteorological 
drought to propagate to hydrological drought through the ter-
restrial part of the hydrological cycle. In this section, the lag 
time between hydrological and meteorological droughts was 
estimated using the drought indices, e.g., SPI and SPEI for 
meteorological drought, and SRI for hydrological drought. 

Drought Index Characteristics
Subbasin #

1003 1012 1018 1022

8-week SPI

No. of drought events 52 56 53 51

Mean duration (week) 25.15 23.23 26.15 27.29

Mean magnitude -18.76 -17.24 -18.61 -19.10

Mean intensity -0.700 -0.673 -0.651 -0.656

8-week SPEI

No. of drought events 67 63 61 57

Mean duration (week) 20.58 23.21 23.61 25.86

Mean magnitude -21.92 -14.44 -15.12 -16.03

Mean intensity -1.266 -0.609 -0.572 -0.572

4-week SRI

No. of drought events 46 46 46 48

Mean duration (week) 27.56 28.85 28.43 27.37

Mean magnitude -17.08 -17.33 -17.49 -16.61

Mean intensity -0.582 -0.684 -0.580 -0.553

Table 3. Basic characteristics of drought in the study area.
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(a) (b)

Fig. 4 Average intensity of four subbasins. (a) SPI; (b) SPEI.

(a) (b)

Fig. 5 Response rate (%) of four subbasins. (a) SPI; (b) SPEI.

(a) (b)

Fig. 6 Example of drought propagation events at subbasin #1003 during 1981 - 1983 and 1988 -1989. (a) SPI vs SRI; (b) SPEI vs SRI.
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Figure 7 shows the clear concept of the lag time. According 
to the lag time definition, a meteorological drought may be 
propagated to hydrological drought whereas a hydrological 
drought must follow the previous one or more meteorologi-
cal droughts. We identified meteorological droughts through 
the SPI and SPEI and marked the time when they started. If 
a hydrological drought was identified through the SRI fol-
lowed the corresponding previous meteorological drought, 
then its starting time was also marked. The time difference 
was counted to estimate mathematically lag times. Accord-
ing to Zhao et al. (2014), the onset time of hydrological 
drought lags behind meteorological drought by a short dura-
tion and when the time duration increases, for example, in 
the case of 12-month SPI, the time of the onset of hydro-
logical drought tends to be earlier than the meteorological 
drought in most of the drought events. Thus, the long time 
scales of SPI and SPEI were unsuitable for early warning 
of hydrological drought since it happened after the start of 
hydrological drought or at the same time.

The temporal variations of the weekly lag time are 
shown in Fig. 8, in which the weekly lag times with respect 
to all drought events estimated from 1973 - 2013 using SPI 
and SPEI are illustrated. At subbasin #1003, the weekly 
lag time varied between 5 and 12 weeks in the case of SPI, 
while it varied from 4 and 11 weeks in SPEI. In subbasin 

#1012, the weekly lag time was from 4 to 11 weeks in both 
cases of SPI and SPEI. In subbasin #1018, it was observed 
that the minimum weekly lag time was 5 weeks and the 
maximum was 11 weeks in the case of SPI, while the mini-
mum weekly lag time was 5 weeks and the maximum was 
10 weeks in the case of SPEI. Lastly, in subbasin #1022, 
the maximum weekly time lag was observed as 14 weeks 
and the minimum was 5 weeks in the case of SPI, while 
the maximum and the minimum were observed as 12 and 5 

Fig. 7. Definition of drought characteristics.

(a) (b)

(c) (d)

Fig. 8. Temporal variation of lag time with the progression of drought events (a) #1003 (b) #1012 (c) #1018 (d) #1022.
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weeks, respectively, in the case of SPEI. The reason for spa-
tial distribution in the weekly lag time is the variation in an-
nual average precipitation and seasonal distribution of run-
off from each subbasin. The annual average precipitation of 
some subbasins located in the western and central regions, 
such as #1018 and #1022 have high annual average precipi-
tation of 1291 and 1292 mm, respectively, as compared to 
subbasin #1012 and #1003, which are located on the eastern 
and south-eastern side of the Han River basin (Yoon et al. 
2013). Other important factors for this spatial variation is 
the seasonal distribution of runoff generated from each sub-
basin. In subasin #1003 and #1012, the runoff generated is 
high in spring season, while in the case of subbasin #1018 
and # 1022, the runoff generated have high percentage in the 
summer season.

The variations of weekly lag time are illustrated with 
the intensity of meteorological drought in Fig. 9. These re-
sults showed that the longer weekly lag time was observed 
when the intensity of meteorological drought was low, and 
vice versa. In addition, the intensity of drought events repre-
sented by the SPEI was less as compared with the SPI. The 
reason behind this is that the SPEI incorporates precipita-
tion and evapotranspiration, while the SPI only considers the 
precipitation factor. It is clearly observed from Fig. 9 that 
even though the weekly lag times were same for both the 

SPI and SPEI, the intensity of drought was quite different. In 
other words, the SPEI calculated a lower intensity drought, 
while the SPI has higher intensity droughts. The other pos-
sible reasons for the weekly lag time variation is the season-
ality factor, water demands for drinking and irrigation, and 
climate change. Additionally, the intensity of meteorologi-
cal drought for all drought events was in the range of mild 
drought as shown in Fig. 9, because it became weak through 
averaging the SPI and SPEI values in the pooling proce-
dure. However, in the case of raw meteorological droughts 
as shown in Fig. 6, many drought events were classified as 
‘moderate drought’, ‘severe drought’ or ‘extreme drought’.

3.4 Probabilistic Relationship

A Bayesian network model was used here to model the 
probability between random variables. We have two random 
variables: the weekly lag time and the intensity of metro-
logical drought. Thus, we used Eq. (2) to calculate the prob-
ability of the weekly lag time conditioned on the intensity 
of meteorological drought for both indices. Since we have 
event-based data from 1967 - 2013, so we applied a Poisson 
distribution to find the marginal probability of the weekly lag 
time and the intensity of drought. To calculate the joint prob-
ability of the weekly lag time and the intensity of drought, 

(a) (b)

(c) (d)

Fig. 9. Relations between the lag time and the intensity of SPI and SPEI (a) #1003 (b) #1012 (c) #1018 (d) #1022.
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four types of copula functions, Gaussian, T, Gumbel, and 
Clayton were investigated. Based on the p-value of Kolm-
ogorov-Smirov test, Gaussian copula was chosen as the best 
among other, as shown in Table 4.

For a clear understanding of the probabilistic rela-
tionship, we took four values of intensities ranging be-
tween -1.0 to -0.9, -0.9 to -0.8, -0.8 to -0.7, and -0.7 to 
-0.6 and assigned them as I1, I2, I3, and I4, respectively.  
Figures 10 and 11 showed the probabilistic curves of inten-
sities calculated from the SPI and SPEI conditioned on the 
weekly lag time, respectively. These figures clearly indicate 
that the probability of occurrence of the same weekly lag 
time increases as the intensity decreases. For example, in 
subbasin #1003, if the intensity of meteorological drought 
is I1, as shown in Fig. 10a, the probability that a weekly lag 
time becomes 10 weeks is about 87%, and this probability 
increases from 97 - 100% when the intensity decreases from 
I2 to I4, respectively. In subbasin #1012, if the intensity is 
I1, then the probability that a weekly lag time becomes 10 
weeks is 67%, and increases to 80, 91, and 98% at intensi-
ties of I2, I3, I4, respectively. In subbasins #1018 and #1022, 
the weekly lag time variation is higher as compared to sub-
basins #1003 and #1012. In this case, the probability that a 
weekly lag time becomes 10 weeks is 100% from all inten-
sities, but the trend is the same for that a weekly lag time 

becomes more than 10 weeks. The probability of certain 
weekly lag time increases with the decrease of the intensity. 
In the case of SPEI, as shown in Fig. 11, the probabilities 
curve showed the similar trend as in the case of SPI. The 
probability of occurring of weekly lag time increases with 
the decrease of the intensity.

Similar to the SPI, the spatial variation of week-
ly lag time was also observed as shown in Fig. 11. If we 
compare Figs. 10 and 11, the probability of a weekly lag 
time at the same intensity is different in both cases of SPI 
and SPEI. For example, in subbasin #1003, as shown in  
Figs. 10a and 11a, if the intensity of meteorological drought 
is I1, then the probability of occurrence of 10-week lag time 
is 87% in the case of SPI and 60% in the case of SPEI. 
The same scenario was observed in all other subbasins. The 

Copula P-Value

Gaussian 0.991

T 0.985

Gumbel 0.789

Clayton 0.812

Table 4. Statistics of K-S GOF test to find best copula joining the 
marginal.

(a) (b)

(c) (d)

Fig. 10. Probability of lag time occurrence conditioned on the intensity of meteorological drought (SPI) (a) #1003 (b) #1012 (c) #1018 (d) #1022.
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above results are clearly well in accordance with Fig. 9 and 
indicated that the probability of occurrence of weekly lag 
time increases with decrease of the intensity, and there is 
spatial variability of probability of the same lag time in all 
other subbasins.

4. CONCLUSION

It is very important to know the lag time and its rela-
tionship with the characteristics of meteorological drought 
for the early warning and mitigation process of hydrological 
drought. Therefore, this study developed a probabilistic re-
lationship of weekly lag time with the intensity of precedent 
meteorological drought using propagation and a Bayesian 
network model. We estimated the meteorological droughts 
from two different indices, i.e., SPI and SPEI on a weekly 
time scale, and found the best time scale using the correla-
tion analysis with a hydrological drought index. To show 
the propagation of meteorological drought to hydrological 
drought, we used the response rate, which showed a signifi-
cant percentage in all subbasins as well as for both indices. 
The quantitative analysis revealed that the weekly lag time 
varied under different intensities of meteorological drought 
and varied spatially as well. In the case of SPEI, the over-
all intensity of drought was less as compared with the SPI, 

however, the occurrence of weekly lag time was not much 
different. Finally, the probability of the occurrence of a 
weekly lag time conditioned on the intensity of meteoro-
logical drought was calculated for different intensities using 
a Bayesian network model. In both cases, it was found that 
the probability of occurrence of a weekly lag time increased 
if the intensity decreased. However, it varied spatially as 
well as with the method used to calculate intensity. Even 
though the results of this study are quite specific to the study 
area, the results and the techniques developed in this study 
would be helpful for making early mitigation plans for hy-
drological drought and for forecasting.
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