
doi: 10.3319/TAO.2019.10.08.01

* Corresponding author 
E-mail: twkim72@hanyang.ac.kr

Probabilistic assessment of drought states using a dynamic naive Bayesian 
classifier

Dong-Hyeok Park1, Si Chen 2, and Tae-Woong Kim 3, *

1 Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea 
2 School of Resources and Environment, Hubei University, Wuhan, China 

3 Department of Civil and Environmental Engineering, Hanyang University, Ansan, Republic of Korea

ABSTRACT

Drought is a slow-onset hazard affecting ecosystems and human society. Al-
though it is difficult to assess the uncertainty associated with drought, it is very im-
portant to identify the severity of drought. Using a dynamic naive Bayesian classifier 
(DNBC), this study combined the strengths of three conventional drought indices, 
the Standardized Precipitation Index (SPI), the Evaporative Stress Index (ESI), and 
the Vegetation Health Index (VHI), and developed a DNBC-based drought index 
(DNBC-DI) to identify overall drought conditions. After comparing recent actual 
drought events with the drought indices, the drought severity was classified into five 
states using them: severe wet, moderate wet, normal, moderate drought, and severe 
drought. We evaluated the performance of the DNBC-DI for representing actual hy-
drological droughts that occurred since 2000. In this study, the actual hydrological 
drought was represented by the Streamflow Drought Index (SDI). Our results indi-
cated that the accuracy of the DNBC-DI was 60%, which was higher than SPI (40%), 
ESI (40%), and VHI (0.41%). Even though in practice, the evaluation of drought is 
highly dependent on the drought index, this study tried to develop a practical drought 
index that can be used for comprehensive drought assessment.
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1. INTRODUCTION

Due to the widespread impact and complex mecha-
nisms of drought, various studies have been devoted to 
drought monitoring, planning, and mitigation (Prabhakar 
and Shaw 2008; Mishra and Singh 2011). In drought moni-
toring, it is important to estimate and accurately predict the 
characteristics of drought. In general, the characteristics of 
drought are evaluated using standardized drought indices, 
which are usually based on various drought-related vari-
ables such as precipitation, temperature, and streamflow 
(Zargar et al. 2011; Hao and Singh 2015). These drought 
indices are used for the quantification of drought and the 
reference information of monitoring; however, they are 
heavily dependent on the purpose and availability of data 
(Tsakiris et al. 2007). Accordingly, droughts are classified 
as meteorological, agricultural, or hydrological drought ac-
cording to the purpose and variables of interest (Wilhite and 
Glantz 1985). A drought index integrates one or more cli-

matic or hydrological variables, such as precipitation, tem-
perature, soil moisture, and streamflow (Steinemann et al. 
2005). In recent years, significant progress has been made 
in employing multiple drought indices for comprehensive 
drought management (Sun et al. 2012).

It is important to assess the overall drought situation for 
regional drought planning and mitigation. Thus, there are 
many studies on comprehensive drought evaluation. Pres-
ently, drought indices are classified as either univariate or 
multivariate. Univariate drought indices use variables relat-
ed to meteorological, hydrological, and agricultural drought 
(Niemeyer 2008). The Standardized Precipitation Index 
(SPI) (McKee et al. 1993) and the Palmer Drought Severity 
Index (PDSI) (Palmer 1965) are representative indices for 
meteorological drought, the Palmer Hydrological Drought 
Index (PHDI) (Palmer 1965) and the Surface Water Supply 
Index (SWSI) (Shafer and Dezman 1982) for hydrological 
drought, and the Relative Soil Moisture (RSM) (Thorn-
thwaite and Mather 1955) and the Crop Specific Drought 
Index (CSDI) (Meyer et al. 1993) for agricultural drought. 
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The Korea Meteorological Administration (KMA) and the 
Korea Water Resources Corporation (K-water) mostly use 
the SPI to evaluate drought events in South Korea. Howev-
er, univariate drought indices are not suitable for expressing 
complex droughts (Heim 2002; Steinemann and Cavalcanti 
2006; Hao and AghaKouchak 2013).

Multivariate drought indices combine two or more 
drought indices. Examples of multivariate drought indi-
ces are the Hydrological Drought Index (HDI) (Karamouz 
et al. 2009), the Multivariate Standardized Drought Index 
(MSDI) (Hao and AghaKouchak 2013), and the Objective 
Blend of Drought Indicator (OBDI) (Svoboda et al. 2002), 
which were developed for comprehensive drought monitor-
ing and assessments. Drought begins with extreme rainfall 
shortages, which then lead to lack of soil moisture, river 
flows, groundwater levels, and groundwater flows. Thus, 
drought should be analysed by considering various causes. 
Keyantash and Dracup (2002) developed the Aggregate 
Drought Index (ADI) considering precipitation, runoff, and 
soil moisture together, and Wilhite (2005) noted that vari-
ous weather variables should be employed, including pre-
cipitation, for drought monitoring and early warning. The 
National Drought Mitigation Center (NDMC) takes six in-
dices to produce U.S. drought monitoring information.

Although the combination of various drought indices 
may provide a more comprehensive drought assessment 
than univariate index approaches, there is a lack of system-
atic methods for their combination, application, and evalu-
ation (Steinemann and Cavalcanti 2006). Sun et al. (2012) 
developed a multi-index drought (MID) model to combine 
various drought indices for agricultural drought assessment 
in Canada. The results showed that the MID model was 
better than using any univariate drought index to represent 
drought characteristics, and provided a more reliable and 
comprehensive drought assessment. In recent years, the Hid-
den Markov Model (HMM), which is a type of probabilistic 
statistical model with wide practical applications, became 
popular in performing probabilistic drought forecasting and 
assessment (Mallya et al. 2013; Ramadas and Govindaraju 
2016; Chen et al. 2017, 2018). Especially, Chen et al. (2018) 
used a dynamic naive Bayes Classifier (DNBC) to classify 
drought severity using various drought indices for integrated 
drought assessment, and compared the DNBC with preced-
ing unidirectional indices such as SPI, SDI, and the Normal-
ized Vegetation Supply Water Index (NVSWI).

Drought indices in the past have been developed with 
the aim of assessing meteorological, hydrological, and ag-
ricultural droughts. However, in recent years, to compre-
hensively assess drought severity, a comprehensive drought 
index has been developed (Niemeyer 2008), which incor-
porates various drought information and can be used for 
drought planning or response. In this study, representative 
indices for meteorological, hydrological, and agricultural 
droughts were chosen to calculate a comprehensive drought 

index; the SPI for meteorological drought, the SDI for hy-
drological drought, and the VHI for agricultural drought.

The purpose of this study is to develop a comprehen-
sive drought index considering various drought causes, and 
to be used as a basis for drought planning and risk analysis. 
We used the dynamic naive Bayesian classifier (DNBC) 
to calculate a multiple-drought index. Various efforts have 
been made to apply the Bayesian theory to drought assess-
ment since the 1950s. It is possible to learn the probability 
of occurrence of ideas mechanically by extending one or 
more factors that contribute to a particular thought. In this 
study, the factors contributing to drought were identified as 
precipitation, streamflow, and evaporation. The DNBC is 
an extension of the HMM and provides a stochastic domain 
with a dynamic nature. The DNBC is capable of directly uti-
lizing all the information generated by the dynamic process 
as attributes to avoid any loss of training data information. 
Hence, this study employed the DNBC to perform multi-
index drought assessment by aggregating the effects of dif-
ferent physical dimensions of drought and considering the 
inherent uncertainty.

2. STUDY AREA AND DATA

Our study area covered South Korea except Jeju Is-
land, as shown in Fig. 1, within latitudes of 33 - 38°N and 
longitudes of 126 - 131°E. There are five major river basins 
in South Korea containing 113 subbasins. Specifically, the 
Han River basin has 30 subbasins, the Nakdong River basin 
33 subbasins, the Geum River 21 subbasins, the Seomjin 
River basin 15 subbasins, and the Yeongsan River basin 14 
subbasins.

We used satellite data for analysis and comparison 
of drought in the subbasins. The precipitation data used 
to calculate the SPI were combined with Tropical Rainfall 
Measuring Mission (TRMM) data (January 2001 to March 
2013) and Global Rainfall Measurement (GRM) data (April 
2013 to December 2014). The evapotranspiration data used 
to produce the ESI were the actual evapotranspiration and 
potential evapotranspiration produced by the Moderate Res-
olution Imaging Spectroradiometer (MODIS). The land sur-
face temperature (LST) and the normalized difference veg-
etation index (NDVI) to produce the VHI used data from the 
MODIS. The SDI used in the verification was the natural 
flow rate provided by the Korea Institute of Civil Engineer-
ing and Building Technology (KICT). Natural flow data 
were estimated using the continuous rainfall-runoff model. 
The procedural steps of this study are shown in Fig. 2.

2.1 Standardized Precipitation Index (SPI)

The SPI is a useful tool to define drought sever-
ity on the basis of the standardized deficit of precipitation 
at various time scales, e.g., 3-, 6-, 9-, and 12-month. The  



Classification of Drought States 361

Fig. 1. South Korea’s major river basins and their subbasins.

Fig. 2. Procedural steps of study.
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short-period time scales are used for agricultural drought 
management and the long-period time scales are used for 
water resource management. Chang et al. (2006) compared 
and evaluated the spatio-temporal characteristics of drought 
using the SPI. Similarly, Bonaccorso et al. (2003) analyzed 
the spatial diversity of drought using the SPI. We calculat-
ed the SPI for our studied subbasins using satellite data, as 
shown in Fig. 3a.

2.2 Evaporative Stress Index (ESI)

The ESI incorporates the water supply between the sur-
face and the atmosphere using actual evapotranspiration and 
potential evapotranspiration, as given by Eq. (1). Anderson 
et al. (2011) developed a drought map using the ESI across 
the United States, confirming that it was more applicable 
than the existing drought indices such as SPI and PDSI. We 
calculated the ESI using satellite data, as shown in Fig. 3b.

ESI PET
AET=  (1)

where AET and PET are the actual and potential evapo-
transpiration, respectively.

2.3 Vegetation Health Index (VHI)

As an agricultural drought index, the VHI was used 
to assess drought condition in agricultural areas of Africa 
(Rojas et al. 2011). The VHI combines the Vegetation Con-
dition Index (VCI) and the Temperature Condition Index 
(TCI), as given in Eqs. (2) - (4). Figure 3c shows the VHI 
calculated for July 2014 using satellite data, for example. 

VCI NDVI NDVI
NDVI NDVI

max min

min= -
-  (2)

TCI LST LST
LST LST

max min

max= -
-  (3)

. ( )VHI VCI TCI0 5#= +  (4)

where NDVI is the normalized difference vegetation index. 
LSTmin and LSTmax are the minimum and maximum of the 
land surface temperature, respectively.

In this study, the SPI, ESI, and VHI were calculated for 
subbasins to compare and evaluate the onset and affected 
areas of drought. In addition, their values were reproduced 
to have five states: state 1 for severe wet, state 2 for moder-
ate wet, state 3 for normal, state 4 for moderate drought, 
and state 5 for severe drought, which were used to further 
compare with the DNBC-DI.

2.4 Streamflow Drought Index (SDI)

The calculation of SDI is the same as that of SPI except 
for using streamflow instead of precipitation. Similar with 
Tabari et al. (2013) and Won and Chung (2016), the SDI 
was used for assessing hydrological droughts in this study.

3. DYNAMIC NAIVE BAYESIAN CLASSIFIER 
(DNBC)

The DNBC is a simple probabilistic classifier based 
on Bayes’ theorem with strong naive assumptions of condi-
tional independence among the attributes given the hidden 
state. The model is composed of a set A = {At|t = 1, …, T}, 
where each At = {Atn |1 ≤ n ≤ N} is a set of N attribute values 
generated by the dynamic process at state St = {1, …, m} 
(Chen et al. 2018). Thus, Atn  identifies a specific attribute, 
e.g., an individual drought index, while St denotes a realiza-
tion of the drought state with different severity at time t in 
this study. The joint likelihood of observed attributes and 
latent states in a DNBC can be taken by Eq. (5).
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where P(S1) is the initial probability distribution for the hid-
den state St at time t = 1, P(St + 1|St) is the transition probabil-
ity from state St to state St + 1, and ( ) ( )P A S P A St t t

n
tn

N
1= =%  

is the emission probability distribution of an observed 
attribute at time t given the state St. It is noted that 
( ) ( )P A S P A St t t

n
tn

N
1= =%  is valid for its naive conditional 

independence assumption among the attributes given the 
class. Moreover, the DNBC follows two main assumptions.
(1)  The dynamic process of St follows the first-order Mar-

kov chain property, i.e., the next state is only dependent 
on the current state.

(2)  The dynamic process is stationary, i.e., the transition 
probability is not time-dependent.

We estimated the parameters of the DNBC using the 
R package ‘depmixS4’ (Visser and Speekenbrink 2010), 
which is based on the expectation-maximization (EM) algo-
rithm iteratively maximizing the expected joint log-likeli-
hood of the parameters given the attribute observations and 
states. In the DNBC, the complete set of parameters for a 
given model was defined as θ = (θ1, θ2, θ3) with three vec-
tors demonstrating the parameters for the initial, transition, 
and emission distributions, respectively. Thus, the joint log-
likelihood can be written as Eq. (6).
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In this study, the previously calculated drought indices 
SPI, SDI, and VHI were adopted as three input attributes for 
drought assessment in the DNBC. Assuming that the input 
variables were independent each other, we chose a Gaussian 
distribution for the emission distribution of each attribute, 
as given by Eq. (7). 
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where i
Nn  and i

n2v  are the mean and the variance of the 
Gaussian emission distribution for the ith latent state and 
the nth observed variable. Chen et al. (2018) selected the 
Gaussian distribution due to its easy computation and avail-
ability to account for the drought-related indicator’s com-
plex process. With the estimated optimal DNBC parame-
ters, the most probable path of the latent drought state that 
maximizes ( )P A : , together with the probability of each 
state at every time step, can be obtained using the Viterbi 
algorithm (Chen et al. 2018).

4. RESULTS

As introduced in previous sections, using monthly 
data, three different drought indices were calculated for 14 
years from January 2001 to December 2014; the SPI for me-
teorological, the ESI for hydrological, and the VHI for agri-
cultural drought. The values of SPI and ESI ranged between 

-2 and +2, whereas the VHI varied from 0 to 100. Thus, we 
converted the value of VHI to be between -2 and +2.

In this study, we developed a DNBC-based drought in-
dex (DNBC-DI), which combined the SPI, ESI, and VHI, 
and was used to identify drought severity for 113 subba-
sins. For example, Fig. 4 shows the DNBC-DI, SPI, ESI, 
and VHI for the Han River basin with different drought 
states. Severe droughts occurred in the Han River basin in 
2001, 2008 - 2009, and 2012. As shown in Fig. 4, the SPI, 
SDI, and VHI did not clearly represent the drought events 
that occurred, whereas the DNBC-DI identified most of the 
drought events.

Although it was considered to be most reasonable to 
compare with the spatio-temporal information about actual 
drought-damaged areas, it was difficult to directly apply 
because the information on drought damage was limited. 
Hydrological droughts may have widespread impacts by 
reducing or eliminating water supplies, limiting irrigation 
water, causing crop failures, and influencing the diversity 
of economic and social activities (Mishra and Singh 2010). 
Therefore, we selected hydrological drought closest to the 
actual drought as the verification target, and the SDI was se-
lected and used for the verification. In South Korea, severe 
droughts occurred in 2001, 2008, and 2014. The upper panel 
of Fig. 5 indicates the probability that each drought state 
will occur, and the lower panel shows that the SDI presented 
the droughts occurred in 2001, 2008, and 2014. The DNBC-
DI presented a high probability with state 5 (represented by 
yellow bars) in 2001, 2008, and 2014.

Chen et al. (2018) developed the DNBC-DI for 
drought assessment in a subbasin (#1001) in the Han River 

(a) (b) (c)

Fig. 3. Drought indices calculated for July 2014: (a) SPI, (b) ESI, (c) VHI.



Park et al.364

basin. According to Chen et al. (2018), a severe drought 
started September 2008 and ended in March 2009, and the 
SPI failed to reflect the drought event whereas the others 
represented at least one drought event during the period. It 
was mainly because the rainfall intensity was too small to 
generate enough effective runoffs, which further led to the 
agricultural and hydrological drought. The NVSWI clas-
sified the moderate drought state only for December 2008 
and January 2009, while the SDI successfully recognized 
the drought onset but not able to detect the drought termina-
tion, because a severe/extreme wet state was indicated in 
advance for December 2008. However, the DNBC-DI illus-
trated a moderate drought event from September 2008 to 
March 2009, which was well matched with the evolution of 
the drought event.

It is necessary to perform nationwide drought assess-
ment for developing a comprehensive drought plan. Thus, 
this study extended Chen et al. (2018) results nationwide 
and confirmed the applicability of drought evaluation. This 
study investigated the performance of drought indices to 
identify drought occurrence in a quantitative way using the 
proportion correct (PC), as given by Eq. (8). 

PC a b c d
a b= + + +
+  (8)

where a, b, c, and d are values for hit, false alarm, miss, and 
correct rejection, respectively, as shown in Table 1.

For accuracy evaluation of drought indices, the PCs 
were calculated for DNBC-DI, SPI, ESI, and VHI with 
the SDI, and their results are shown in Fig. 6. In addition,  
Table 2 summarizes the average, maximum, and minimum 
of PC corresponding to Fig. 6. Comparing the SPI with the 
SDI, the average PC was 0.3990, the maximum 0.4630, and 
the minimum 0.3274. Comparing the ESI with the SDI, 
the average proportion correct was 0.3980, the maximum 
0.4702, and the minimum 0.3036. Comparing the VHI with 
the SDI, the average proportion correct was 0.4091, the 
maximum 0.4702, and the minimum 0.3274. The DNBC-
DI represented the drought severity with five states in con-
sideration of various drought perspectives. Comparing the 
DNBC-DI states with the SDI, the average PC was 0.5959, 
the maximum 0.8155, and the minimum 0.3869. Thus, as-
sessing droughts using the DNBC-DI more accurately de-
termined the drought onset and severity compared with 
univariate drought indices. The maximum accuracy of the 
SPI, ESI, and VHI was lower than the average accuracy of 
the DNBC-DI. As shown in Fig. 6, the DNBC-DI showed 
higher accuracy over the country.

5. CONCLUSION

Climate change has increased the interest in drought 
assessment, and comprehensive drought planning is be-

coming necessary. A univariate drought index is not suf-
ficient for this purpose, so in this study, we developed the 
DNBC-DI reflecting various drought effects as a multivari-
ate drought index. In addition, the DNBC-DI is available 
for probabilistic drought assessment compared with actual 
drought occurrences.

Drought can be assessed from various perspectives. 
However, as shown in Fig. 4, the SPI and ESI have similar 
patterns during the historical drought periods, but the VHI 
showed different. Since drought is classified as meteoro-
logical, hydrological, or agricultural, and may be observed 
differently depending on the point of view, when establish-
ing drought plans, various drought indices should be used 
separately. However, this may lead bias and confusion in 
decision-making. Instead, a comprehensive drought plan 
must be established that can consider not only a specific 
drought but also its various causes. It is very important to 
thoroughly assess droughts because their causes vary and 
their consequences are extensive.

In this study, assessing drought states using the DN-
BC-DI was more accurate than with the commonly used 
indices such as the SPI, ESI, and VHI in determining the 
occurrence, extent, and termination of droughts. In compar-
ing with actual droughts in March 2001 to June 2001, Sep-
tember 2008 to May 2009, and January 2012 to June 2012 in 
Han River basin, the SPI, ESI, and VHI did not clearly iden-
tify the drought events, but the DNBC-DI indicated overall 
dry conditions. As a result of this study, our DNBC-DI clas-
sified drought into five states and can be useful for drought 
planning. It can be used as a reference in the process of es-
tablishing a step-by-step drought plan.
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