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ABSTRACT

As one of the natural disasters, drought has caused a large amount of finan-
cial loss in the past few centuries. It is quite essential to reveal the variation of ex-
treme drought event in Wei River Basin (WRB) of China. This paper investigated the 
change patterns of extreme drought event using Standardized Precipitation Evapo-
transpiration Index (SPEI). Furthermore, the SPEI is predicted by combining differ-
ent influencing factors in the WRB using Long Short-Term Memory (LSTM) model. 
The spatiotemporal variation characteristics were examined using non-parametric 
Mann-Kendall test, and the nonlinear relationships between El Niño-Southern Oscil-
lation (ENSO) and SPEI were quantified using wavelet coherence analysis (WTC). 
Results showed that midland of the WRB have the highest probability of extreme 
drought events. Meanwhile, changes in SPEI in the northeast were more erratic than 
in other regions. The area with extreme drought had increased at a rate of 2.4% per 
decade. The prediction result of SPEI-24 was the best by LSTM model, and the pre-
diction result of SPEI-3 was the worst. The R-square between the predicted value and 
the actual value of SPEI-24 is 0.87. The results help to realize the characteristics of 
extreme drought in the last hundreds of years, which can provide scientific basis and 
reference for drought emergency response and management in the WRB.
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1. INTRODUCTION

Drought refers to the climate phenomenon that water 
resources are no longer enough for human life and social 
development (Jiang et al. 2015; Zhao et al. 2019). Since an-
cient times, it has been one of the main natural disasters 
affecting the human beings, which exerted significant im-
pacts on agriculture, ecology, environment, and economy 
(Dubrovsky et al. 2009). The main reason for severe dam-
age and loss is that human beings have not fully grasped 
the occurrence rule and change trend of drought. With the 
continuous climate changes, many studies showed that the 
intensity and frequency of droughts had significantly in-
creased across the world (Spinoni et al. 2015). Therefore, 
it is of great significance to study the regularity and change 
trend of drought occurrence for disaster prevention and mit-
igation. However, given the complex nature of drought, it is 
difficult to define drought events (Tirivarombo et al. 2018).

There are many studies using drought indices to sim-
plify the description of complex drought phenomenon, and 
each drought index has its merits and demerits. As a com-
mon indicator, the Palmer Drought Severity Index (PDSI) 
has been widely used in meteorology, climate, agriculture, 
hydrology and water resources (Palmer 1968); The Stan-
dardized Precipitation Index (SPI) is an indicator of long-
term climatic conditions relative to local rainfall, reflecting 
the occurrence probability of observed rainfall (McKee et 
al. 1993). Both drought indicators have been widely used, 
but there are still some deficiencies and limitations. The cal-
culation of PDSI involves the lack of soil moisture, which 
leads to some uncertainties. The calculation of SPI is simple 
and convenient, but temperature and evaporation are not 
included. SPEI has the advantages of both PDSI and SPI 
(Vicente-Serrano et al. 2010). At present, SPEI has gradu-
ally become one of commonly used drought indicators to 
study the global drought change (Tan et al. 2015; Labudová 
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et al. 2017; Abbasi et al. 2019). E.g., Wang et al. (2020) 
founded that the application of SPEI is superior to sc-PDSI 
and SPI in the northern Shaanxi province of China. Jiang et 
al. (2015) analyzed the variation features of drought using 
the SPI, SPEI, self-calibrated PDSI (scPDSI), and the origi-
nal PDSI (orPDSI) in Shaanxi province, and founded that 
the SPEI is superior to scPDSI, SPI, and orPDSI.

At present, drought is influenced by the change of 
precipitation, evaporation, sunlight and other factors, and 
the abnormal phenomena of atmospheric circulation often 
causes the abnormal climate change. Many studies have 
shown that the climate change and climate oscillation are 
closely related (De Oliveira-Júnior et al. 2018; Singh and 
Shukla 2020; Yang et al. 2020). Liu et al. (2018b) analyzed 
the variation trends of annual maximum and minimum tem-
peratures, as well as the teleconncection with sunspots num-
ber, soil moisture, and other factors in the WRB. Jiang et al. 
(2019) analyzed the variation trends of extreme precipita-
tion indices (EPIs) and teleconnection between ENSO and 
EPIs in the WRB. Yan et al. (2020) analyzed the variation 
trends of extreme temperature indices (ETIs) and telecon-
nection between ENSO and ETIs in the WRB. At the same 
time, more studies use physical models to predict drought, 
while fewer use data-driven models to predict drought. At 
present, the data-driven model represented by deep learning 
has been widely used in the prediction and simulation of 
time series (Langkvist et al. 2014; Ismail Fawaz et al. 2019). 
However, there had few studies focused on the extreme 
drought events in the Wei River Basin (WRB) of China. By 
analyzing the response of SPEI to ENSO events, this paper 
aims to reveal the impact of ENSO on the drought changes, 

and try to use a data-driven model to predict and verify the 
drought index, so as to deeply understand the mechanism 
of extreme drought variation, which can provide decision-
making support for the sustainable development and have 
important scientific value and practical significance.

2. METHODOLOGY
2.1 Study Area

The WRB flows through central Gansu, south-eastern 
Gansu and central Shaanxi provinces, and the area of WRB 
is about 135000 km2. Nearly half of the WRB are located 
in Shaanxi Province. The annual precipitation is about 500 
- 800 mm, most of them are short-term rainstorms, and fre-
quent spring and summer droughts. The Jing River is the 
largest tributary of the Wei River, and the Beiluo River is 
the longest river in Shannxi province. JRB (the Jing River 
Basin) and BRB (the Beiluo River Basin) are important 
parts of the WRB. However, many droughts events hap-
pened in the WRB in recent years, the further study of 
temporal and spatial variation and frequency analysis of 
drought has a deeper meaning to the development of scien-
tific drought prevention strategy (Huang et al. 2014; Jiang 
et al. 2020; Yan et al. 2020). The geographic of the WRB is 
shown in Fig. 1.

2.2 Data Sources

In this paper, the SPEI data for the period of 1901 - 
2015 that is used to analyze the drought event can be down-
loaded at http://spei.csic.es/. It provides data on long periods 

Fig. 1. The geographical information of the Wei River Basin. It shows that the Wei River Basin with girds that represent the locations of gridded 
data used in this study, with a total 75 grids at 0.5° × 0.5° resolution.

http://spei.csic.es/
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of drought around the world, the SPEI data sequence starts 
at 1st January 1901 and ends at 31st December 2015. The 
ENSO is measured using Niño 3.4 and SOI. The Niño 3.4 
can be obtained from https://www.esrl.noaa.gov/. The SOI 
reflects the evolution of pressure enhancement and weaken-
ing on both sides of the Pacific, which can be obtained from 
https://crudata.uea.ac.uk/cru/data/soi/. Monthly tempera-
ture and precipitation data were downloaded at http://data.
cma.cn/, the data sequence starts at January 1961 and ends 
at December 2015.

2.3 Standardized Precipitation Evapotranspiration 
Index (SPEI)

SPEI was proposed mainly because that SPI does not 
consider evaportranspiration and PDSI does not have the 
multiple time scales. Monthly climatic water balance is cal-
culated by Eq. (1).

D P PETi i i= -  (1)

where Pi and PETi are precipitation, potential evapotrans-
piration in period i. More details of SPEI can be found at 
previous studies (Vicente-Serrano et al. 2010; Jiang et al. 
2015). The classification of drought and wetting according 
to the value of SPEI refer to previous of Yang et al. (2020).

2.4 Mann-Kendall Trend Test

The Mann-Kendall trend test has been widely used to 
detect the trend of time series (Du et al. 2015). This method 
is a non-parametric statistical test, which does not require 
samples to conform to some distributions and is not dis-
turbed by a few outliers.

For a time series A = {a1, a2, …, am}, the statistic value 
is given as follows:
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The variance Var and statistic Z are calculated as follows:
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When Z > 0, the trend of the sequence is upward, and vice 
versa (Yilmaz 2019). When Z is greater than 1.65, 1.96, and 
2.58, it means that the significance test with confidence of 
90, 95, and 99% has been passed respectively.

2.5 Wavelet Coherence Analysis (WTC)

Compared with the traditional wavelet transform, 
WTC can be used to analyse the cross-correlation between 
time series in time frequency. It has been widely used in 
many disciplines to find the common variation region of 
two-time series in the time-frequency space. For two data 
sequences A and B, their wavelet transform were ( )W Sn

A  and 
( )W Sn

B , the wavelet coherence defined by Eqs. (6) - (8):
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The WTC is calculated as follows:
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AB

n
AB1 1 1z = - - -^ h" ", ,  (9)

where I f" , is the imaginary part of the wavelet spectra, 
and R f" , is the real part of wavelet spectra (Torrence and 
Compo 1998; Grinsted et al. 2004).

2.6 Long Short-Term Memory (LSTM) Model

An ensemble surrogate can improve the robustness and 
accuracy of the simulation model (Xing et al. 2019). The 
LSTM has been used in different aspects including learning 
translation language, controlling robots, image recognition, 
speech recognition, predicting time series data, and synthe-
sizing music. The LSTM settles the long-term dependency 
problems of the recurrent neural network (RNN), Bengio 
et al. (1994) found that the long-term dependency is what 
makes RNN difficult to train. Figure 2 shows the differenc-
es in each cell between RNN and LSTM. The structure of 
RNN looks relatively simple and the LSTM is controlled by 
three gates. The forget gate outputs a vector between 0 and 
1 with information about ht - 1 and xt, which indicating how 

https://www.esrl.noaa.gov/
https://crudata.uea.ac.uk/cru/data/soi/
http://data.cma.cn/
http://data.cma.cn/
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much of the previous information is retained or discarded. It 
is calculated by Eq. (10):

,f W h x bt f t t f1$v= +-^ h6 @  (10)

The input gate gets the information for ht - 1 and xt and then 
decides which information to update. It is calculated by the 
following formula:

,i W h x bt i t t i1$v= +-^ h6 @  (11)

,tanhC W h x bt c t t c1$= +-^ h6 @M  (12)

The output gate is used to control whether this content is 
treated as the current output. It is calculated by the follow-
ing formula:

C f C i Ct t t t t1) )= +- M  (13)

2.7 Model Design

This paper develops a model for predicting the month-
ly SPEI value, this model uses SPEIT-3 (the SPEI value at 
period T-3), SPEIT-2 (the SPEI value at period T-2), SPEIT-1 
(the SPEI value at period T-1), PRET (the precipitation at 
period T), and TEMT (the temperature at period T) to predict 
SPEIT (the SPEI value at period T). The two layers LSTM 
structure was adopted and a Dropout layer was added be-
tween the LSTM layers. The units of the first LSTM layer 
are designed to be 128 and the units of the second LSTM 
layer to be 64, the parameter for Dropout layer is set to 0.2, 
this means that 20% of the information will be discarded 
during training to prevent overfitting. The dense layer used 
the ReLU activation function, there has many papers have 
suggested that ReLU preforms better than either sigmoid or 
tanh function (Walls et al. 2020). Adam was chosen as the 
optimizer, which using momentum and adaptive learning 
rate to speed up convergence. Mean squared error (MSE) 
was selected as the losses of model. The number of itera-
tions is determined by actual testing to ensure that the model 
is sufficiently learned.

2.8 Research Framework

In this study, statistical analysis and Mann-Kendall 
analysis were used to analyze the spatiotemporal variation 
characteristics of SPEI in the WRB, then WTC was used 
to analyze the potential teleconnection relationship between 
SPEI and ENSO, and finally LSTM model was used to 
predict the SPEI. The research framework of this paper is 

shown in Fig. 3.

3. RESULTS
3.1 Spatiotemporal Variation Characteristics of SPEI 

in the WRB

Statistical calculation is carried out on the time scale 
to obtain the proportions of each grid in different drought 
degrees in each year. The result shows that the proportions 
of drought in different years of the WRB vary in different 
time scales. Taking SPEI-12 for an example, there were few 
droughts events in the WRB from 1901 to 1916. However, 
there were more droughts in the following years, especially 
in 1927, 1948, and 1985, the proportion of droughts in the 
WRB is relatively large in these three years, and more than 
70% of the grid areas have droughts of different degrees. 
Severe droughts occurred during 1920 to 1943, 1952 to 
1982, and 1985 to 2015. However, moderate drought and 
mild drought have maintained a certain proportion during 
1920 to 2015, especially after 2000.

The spatial distributions of drought frequency were 
further analyzed. Figure 4 shows the drought occurrence 
probability in the WRB. Taking SPEI-12 for an example, 
the frequency of different drought conditions in all grids in 
the WRB was counted, the probability of drought occur-
rence in each grid was calculated, and the spatial drought 
distributions in the WRB were obtained by using the natural 
neighborhood method for spatial interpolation.

The northern part of the WRB is the place with the 
lowest occurrence probability of extreme drought and ex-
treme wetting. The central part of the WRB is the Guan-
zhong plain area with the highest occurrence probability of 
extreme drought. Meanwhile, the western and eastern parts 
of the upper reaches of the WRB have a high occurrence 
probability of extreme drought, while the north-east parts of 
the upper reaches and the western parts of the lower reaches 
have a high occurrence probability of extreme wetting. The 
central part of the upper reaches and the western part of the 
WRB downstream are the areas with a high probability of 
severe drought, while the probability of severe drought is 
relatively low near the Guanzhong plain, at the same time, 
the WRB has a high probability of severe wetting except the 
northeast edge, and the other marginal parts (the west of the 
upper reaches, the south of the middle reaches, the east of 
the lower reaches, the north of the JRB and the north of the 
BRB) have a low probability of severe wetting. In the south-
ern part of the WRB, the probability of moderate drought is 
low, while in the northern part of BRB, the probability of 
moderate drought is high. The middle part of the WRB has 
the highest probability of mild drought, while the western 
part has the lowest probability. The central WRB has the 
highest probability of mild drought, while the southern edge 
of the WRB has the lowest probability.

In order to understand the stability of drought spatial 
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Fig. 2. Comparison of model structure between RNN and LSTM. RNN has only one tanh unit, while LSTM has multiple gates.

Fig. 3. The research route and framework of this study.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. The spatial distributions of different drought probability of SPEI-12 in the WRB: (a) Extreme drought; (b) Extreme wetting; (c) Severe 
drought; (d) Severe wetting; (e) Moderate drought; (f) Moderate wetting; (g) Mild drought; (h) Mild wetting. Under different drought conditions, 
the probability of drought in all grids was spatially interpolated.
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and temporal variation, the cloud model is used to analyze 
the drought variation of the WRB. Figure 5a shows that the 
Expectation (Ex) of SPEI-12 ranges from -0.0044 to 0.0025 
in the WRB. The Ex of SPEI-12 in the western of WRB is 
significantly lower than other areas. Figure 5b shows that 
the Entropy (En) in the northeast is higher than other re-
gions, which indicates that the change in the northeast is 
more unstable. The result of the Hyper Entropy (He) value 
is almost the opposite with respect to that of the En value, 
for example, the En value in the western of the WRB is the 
lowest in the whole region, but the He value is the high-
est in the whole region. The En value in Guanzhong plain 
is lower, but the He value is higher. There also have some 
areas where the exact opposite is not true. For example, the 
En value in the northeast of the WRB is the highest, but 
the He value is not the lowest. Instead, the peripheral areas 
around the region present the lowest He value. It indicates 
that the fluctuation of En in the upstream is higher than that 
in other areas.

3.2 Trend Analysis of SPEI

Figure 6 shows the spatial distribution of Mann-Ken-
dall test results in the WRB. It shows that SPEI in different 
time scales have similar results in the period from 1901 to 
2016. The Mann-Kendall test result of SPEI in the WRB 
showed a significant downward trend in Figs. 6a and b. Ex-
cept the southeastern part of the WRB, the decreasing trend 
is significant at elsewhere. Meanwhile, the area in which 
SPEI-6 failed the significance test was larger than that in 
SPEI-1. The area that showed an upward trend was small 
in Fig. 6c, and it became larger in Fig. 6d. In Fig. 6c, the 
northern part of the WRB showed an upward trend. And the 
southeastern region showed significantly increasing trend in 
Fig. 6d. As the SPEI timescale increased, the trend of SPEI 
went from a significant decrease to a significant increase, 
first in the southeast of the WRB and then in the north of 
the WRB, indicating that SPEI values in these areas have 
increased and drought conditions have aggravated.

For further understanding the occurrence of extreme 
drought in the WRB, the extreme SPEI-12 values were sta-
tistically analyzed from different time scales and the trends 
analysis were carried out. The maximum SPEI value (MAX_
SPEI) and minimum SPEI value (MIN_SPEI) of all grids 
in each year were selected to form two sequences. Table 1 
shows that the statistics show a significant increase in the 
maximum value (P < 0.01) and a significant decrease in the 
minimum value (P < 0.01), which indicates that trends are 
increasing, and there is a tendency to become more extreme.

3.3 Teleconnection Between the Large-Scale Climate 
Factors and SPEI

There are many reasons for changes in drought charac-

teristics, such as human activity and climate impacts. From 
the perspective of atmospheric general circulation model, 
this paper further analyzed the potential relationships be-
tween the maximum and minimum SPEI and Niño 3.4, SOI 
using WTC analysis. In order to understand the potential 
correlation between atmospheric circulation factors and ex-
treme drought, extreme SPEI values (maximum and mini-
mum) including SPEI-3, and SPEI-12 were selected and 
wavelet coherence was used for analysis.

The WTC analysis between extreme SPEI and Niño 
3.4 are shown in Fig. 7. Figure 7a shows that there is a 2 - 4 
years signal from 1959 to 1969 and a 0 - 2 years signal from 
1995 to 2001 with negative correlations between Niño 3.4 
and MAX_SPEI-3. Figure 7b shows that there is a 8 - 18 
years signal from 1958 to 2010 with positive correlations 
between Niño 3.4 and MAX_SPEI-12. Figure 7c shows that 
there is a 0 - 2 year signal during 1960 to 1965, 1970 to 
1974, and 1978 to 1985 and a 4 - 6 years signal from 1980 
to 1987 with a 90° phase difference between Niño 3.4 and 
MIN_SPEI-3. Figure 7d shows that there is a 5 - 7 year sig-
nal from 1976 to 1988 and a 7 - 10 year signal during 1955 
to 1970 with negative correlations between Niño 3.4 and 
MIN_SPEI-12.

The WTC analysis results between SOI and extreme 
SPEI are shown in Fig. 8. Figure 8a shows that there is a 
0 - 2 years signal from 1995 to 2000 with positive correla-
tions and a 4 - 6 years signal from 1975 to 1985 with -45° 
phase difference between MAX_SPEI-3 and SOI. Figure 8b 
shows that there is a Fig. 8c shows that there is a 2 - 3 year 
signal from 1945 to 1950 with negative correlations and a 
4 - 6 year signal from 1980 to 1990 with positive correla-
tions between MIN_SPEI-3 and SOI. Figure 8d shows that 
there is a 5 - 6 year signal from 1980 to 1990 with positive 
correlations between MIN_SPEI-12 and SOI.

3.4 Prediction of SPEI by Using LSTM

Inputs to the model are SPEIT-3, SPEIT-2, SPEIT-1, 
PRET, and TEMT, the output is SPEIT. The whole data set 
was divided to the ratio of 8:1:1, the first 80% data and 
the middle 10% data were used as training sets verification 
sets, the last 10% data are used to predict and prevent mod-
els from overfitting.

Figure 9a shows that the model clearly captures the 
change trend of SPEI-1, but the prediction of the extreme 
values is not precise enough, the actual value greater than 
2 (the Extremely wetting) occurred four times, but only 
one predicted value was also greater than 2, and the other 
three extremely wet were all predicted to be the Severe wet-
ting. Figure 9b shows that compared to SPEI on other time 
scales, the model predicted SPEI-3 to be the worst, val-
ues and trends are less well predicted. Compared with the 
Figs. 9c, d, and e, it can be seen that the prediction of trend 
change and extreme value in Fig. 9f is more accurate. The 
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evaluation indices (MSE and R2) can also reflect that SPEI-
24 has the best prediction performance as shown in Table 2. 
Table 2 shows that the best model of prediction is SPEI-24, 
the MSE and R2 are 0.2342 m3 s-1 and 0.8709, it is better 
than the other models. And the worst model is SPEI-3, the 
MSE and R2 are 0.5929 m3 s-1 and 0.3977, it is worse than 
other models.

4. DISCUSSION

This paper first analyzes the spatial and temporal varia-
tion of drought in the WRB. It was found that the study 
area showed a general trend of drying out by Mann-Kendall 
test. Zou et al. (2017) founded that a trendency to dry out 
can be observed during 1961 to 2012 in the WRB, this is 
consistent with the findings of this paper. The results also 
found that both the accumulation time of extreme drought 
and the maximum time of extreme drought in Guanzhong 
Plain were much higher than those in other regions, which 
indicated that the drought situation in Guanzhong area was 
more severe. It was worthy of attention to ensure the water 
supply in this area, which was consistent with the previous 
findings of Huang et al. (2014).

This paper further explains the variation trend and 
potential influencing factors of extreme drought events in 

WRB by analyzing the teleconnection between SPEI and 
ENSO. The results show that there are complex correlations 
between SPEI and atmospheric circulation patterns. The 
correlation between SPEI and Niño 3.4 and SOI had oppo-
site results, this may be due to the negative SOI corresponds 
to an El Niño event, while the continuous increase of Niño 
3.4 is also considered to be an El Niño event. At present, 
there are many atmospheric circulation patterns have been 
used to realize the impacts of climate change, such as North 
Atlantic Oscillation (NAO) (Vazifehkhah and Kahya 2018), 
Altantic Multidecadal Oscillation (AMO) (Schillerberg and 
Tian 2020), Arctic Oscillation (AO) (Li et al. 2017), and 
Pacific decadal Oscillation (PDO) (Oñate-Valdivieso et al. 
2020). Given the close relationships between atmospheric 
circulation patterns, how to realize the impact of atmospher-
ic anomalies on the change of extreme drought events needs 
more attention.

LSTM captures the changing trend of time series data 
accurately, but there are still some problems worth further 
studying and discussing. In this study the best predicted 
result is SPEI-24, and it can still be seen from the Fig. 9f 
that there are still three distinct mild and moderate droughts 
that are not accurately predicted. This problem of inaccurate 
predictions of extreme values is more pronounced in SPEI-
3. There are many variation trend prediction errors and  

(a) (b)

(c)

Fig. 5. The spatial variation distributions of three numeric characteristic (Ex, En, He) in the WRB: (a) Ex; (b) En; (c) He. Ex refers to the expectation 
and represents the average level of numerical change; En refers to entropy, which is used to indicate the stability of numerical changes; He refers to 
the super entropy and is used to indicate the stability of the change in En.
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(a) (b)

(c) (d)

Fig. 6. The spatial distribution of Mann-Kendall test results in the WRB: (a) SPEI-1; (b) SPEI-6; (c) SPEI-12; (d) SPEI-24. The Mann-Kendall test 
statistics of all grids was interpolated spatially.

MAX_SPEI MIN_SPEI

SPEI-1 6.3522** -6.6399**

SPEI-3 5.9437** -5.777**

SPEI-6 5.9026** -5.4482**

SPEI-9 5.3346** -4.8488**

SPEI-12 5.3153** -5.1171**

SPEI-24 4.9369** -5.554**

Table 1. Mann-Kendall test statistics of the maximum and minimum sequence 
of SPEI at different SPEI time scales. If the absolute value of the statistic is 
greater than 2.32, it is statistically significant at the 1% significance level. A 
positive (negative) value represents a trend of increase (decrease).

Note:  * and ** represents statistically significant trend at significant level of 5% 
and 1%.
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(a) (b)

(c) (d)

Fig. 7. WTC analysis results between Niño 3.4 and extreme value of SPEI: (a) MAX_SPEI-3, (b) MAX_SPEI-12, (c) MIN_SPEI-3, (d) MIN_SPEI-
12. The thick enclosed areas indicate statistically significance level of 5% against a red noise process, and the arrows in the figures represent the 
phase difference of time periods and coherence bigger than 0.5 between two data series, with anti-phase pointing left and in phase pointing right.

(a) (b)

(c) (d)

Fig. 8. WTC analysis results between SOI and extreme value of SPEI: (a) MAX_SPEI-3, (b) MAX_SPEI-12, (c) MIN_SPEI-3, (d) MIN_SPEI-12.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. The comparison between the predicted value and the true value: (a) SPEI-1; (b) SPEI-3; (c) SPEI-6; (d) SPEI-9; (e) SPEI-12; (f) SPEI-24.

MSE (m3 s-1) R2

SPEI-1 0.3532 0.8236

SPEI-3 0.5929 0.3977

SPEI-6 0.4552 0.6865

SPEI-9 0.3309 0.7519

SPEI-12 0.2900 0.7926

SPEI-24 0.2342 0.8709

Table 2. The evaluation results of different models. The smaller the MSE 
indicates the smaller prediction error. The closer R2 to 1 indicates the better 
model fits.
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extreme value prediction errors in SPEI-3, and the reasons 
for these needs to be further studied and discussed. Similar 
to the LSTM, which is a variant of RNN, the LSTM has its 
own variants, the most famous of which is the gate recur-
rent unit (GRU) (Liu et al. 2018a), more variations can be 
designed around the theme of gating. Some scholars have 
found that adding a bias to the forgetting gate in the LSTM 
will make the model more robust (Gers et al. 2000).

However, although the complexity of LSTM model 
layers increases, the parameters also increase greatly. The 
design of the model and the tuning of parameters have a 
huge influence on the application of the model. In this pa-
per, there is no special detail tuning for all parameters. In 
the future, further research may be conducted on parameter 
tuning to improve the robustness of the model.

5. CONCLUSION

In this paper, SPEI was selected as the indicator to 
evaluate extreme drought events during 1901 to 2016 in the 
WRB. Mann-Kendall trends test method was used to inves-
tigate the spatiotemporal variation characteristics of WRB 
extreme drought events, and WTC analysis was used to ana-
lyze the teleconnection between SPEI and ENSO. The main 
conclusions of this paper are as follows:
(1)  On the temporal scale, extreme droughts and extreme 

wetting were almost nonexistent between 1901 and 
1920. It can be roughly divided into three stages from 
1920. During the first period of 1920 - 1940, extreme 
drought events are beginning to increase. During the 
second period of 1940 - 1980, drought events were rare 
in the early stage, and frequent in the latter. During the 
last period of 1980 - 2015, extreme drought events hap-
pened frequently before 2010 and rarely after 2010. 
The total drought area had increased at a rate of 3.96%/
decade, and the extreme drought area had increased 
at a rate of 2.4% per decade. On the spatial scale, the 
northern part of the WRB has the lowest probability of  
extreme drought and extreme wetting. The central part 
of the WRB, namely the Guanzhong plain, has the high-
est probability of extreme drought. As the most impor-
tant grain producing area in Shaanxi province, the rel-
evant departments should pay attention to the drought 
conditions of Guanzhong Plain.

(2)  The MAX_SPEI and MIN_SPEI of the WRB had a sig-
nificant increasing trend and a significant decreasing 
trend, respectively, indicating that extreme wetting and 
drought in the WRB may be polarized in the future. The 
teleconnection between SPEI and SOI is mainly posi-
tive, while the teleconnection between SPEI and Niño 
3.4 is mainly negative.

(3)  Through the prediction of LSTM model, it is found that 
the prediction result of SPEI-24 is the best, and SPEI-
3 is the worst. The MSE of SPEI-24 and SPEI-3 are 

0.2343 m3 s-1 and 0.5929 m3 s-1, and R2 of SPEI-24 and 
SPEI-3 are 0.8709 and 0.3977.

(4)  In particular, the teleconnection between ENSO and 
extreme drought events was analyzed, which provides 
ideas for the influence of atmospheric circulation anom-
alies on the occurrence of drought events.
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